
So There’s My Bug!
Debugging Universal Verification Methodology (UVM) Environments

Mike Floyd
Cadence Design Systems, Inc.

270 Billerica Rd.
Chelmsford, MA 01824

1- 978-262-6241
mikef@cadence.com

ABSTRACT
Modern verification environments like those built with the Universal
Verification Methodology (UVM) more closely resemble software
applications than hardware applications. The challenge is that the
teams building and debugging such environments are more often
trained in hardware verification than software verification. Debug
considerations start in the verification component development phase
where bugs can lurk in sloppy data structures and object inheritance
management. Most of the bugs should be removed during block-
level verification where the new issues for designers are debugging
dynamic data types and through class inheritance hierarchies. In
scaling to the system level, we are squarely in the transaction
verification space searching among thousands of concurrent
transactions – often in multiple verification languages – to find the
last few bugs in our system. The new techniques presented in this
paper will provide verification engineers with the information to both
limit the introduction and speed the removal of bugs in
SystemVerilog- and e-based verification environments leading to
faster convergence and higher quality silicon realization.

1. INTRODUCTION

Hardware engineers have built expertise debugging complex designs
but the constant in each project has been the code and data structures.
UVM, implemented with SystemVerilog or e, changes that by
introducing both dynamic data types and dynamic code that can both
created and destroyed during the execution of a given simulation run
or test.

It is this transient nature that is the heart of the challenge. For
example, UVM testbenches often create threads of execution during
a given test run and the engineer must be cognizant of the specific
thread being displayed in the source browser. Compounding the
challenge is that the flow of execution in the dynamic code flows
from method to method within and across inheritance trees rather
than through static, hierarchical interfaces. A similar situation
occurs with data where an object grows and shrinks through
simulation execution, which may be untimed, so debug methods that
expect data persistence have to be adjusted.

The net result is a new set of challenges for hardware engineers. The
most common issue is memory management where data structures
grow unexpectedly so new approaches are needed to recognize and
resolve these testbench bugs. Often related to memory management
is understanding class inheritance to avoid obfuscating data and
methods and debug tools can help the engineer understand the
environments they both build and receive. Since UVM leverages
both class environments and efficient memory usage, it has these
challenges and some unique ones related to its dependence on

transaction verification and constraint randomization. Developing
new skills is critical to efficiently debugging these modern
verification environments.

2. RECOGNIZING AND MANAGING
MEMORY LEAKS

2.1 Memory Management

In static environments the process size does not grow except to
handle recording of waveform data or for users PLI code which may
allocate memory. With class based environments and dynamic data
types this is not the case. Memory is allocated as dynamic objects
grow and as class objects are created. Care has to be used to properly
manage the dynamic data or simulation process size can continue to
grow and results in the process terminating due to memory allocation
failures. Even if memory allocation does not fail it is possible to
grow the process size to the point at which it does not fit within the
physical memory on the system. This then leads to paging and
swapping which causes simulation performance to degrade.

2.2 Memory Leaks

In order to understand how a memory leak is created one need to
understand the difference between class variables and class objects.
A class variable is a pointer that references a class object that has
been allocated by calling new. Multiple class variables can have
references to the same class object. A class object exists and the
memory is not reclaimed until the reference count on the object
drops to zero. If care is not used in storing references to class objects
it is possible to create a memory leak.

A real case example of this occurred with several customers. In one
example a customer allocated a data member by calling new and then
stored this in a dynamic array. Later in the code they then assigned
NULL to the class data member. By doing this, the customer thought
they had freed the memory; they had not because the dynamic array
held a reference to the allocated object. This resulted in the dynamic
array growing for every data member allocated.

There are several ways a debug environment must help in tracking
down memory explosions. The first is using a class browser to show
all the instances of a class in existence. A class browser shows the
inheritance hierarchy of the classes in the design and is useful for
many debugging tasks. Looking at a list of instances can show that
objects are being created but not freed. This is the most basic
approach. Another more powerful approach is to use a memory
analyzer. A memory analyzer must be able to show the current heap

memory allocation and to graph the heap memory usage over time.
This can then be used to show what objects are growing in size over
time and can allow the user to better focus on the parts of the
environment that are using the largest amount of memory. By
graphing individual object size over time, it become clear where
memory leaks may be occurring. It was by using the memory
analyzer that the customer was able to locate the source of the
memory leak in the dynamic array. The graphing capability and
instance specific data presented to the user allowed the user to
quickly find the area where memory was exploding and to determine
the object that was growing in size. By analyzing the source they
were able to easily find the cause and quickly implement a solution.

2.3 Duplicating Data – Inefficient Memory
Usage
Another source of excessive memory use is duplicating data
members in derived classes. Cases have been seen where a user has
derived a class from a base class defined in a class library such as
UVM. The customer then declared a data member in the derived
class to hold some information. It turns out that there already existed
a data member in a parent class that held the same data. The user has
now increased the size of the object to contain duplicate data that the
object was already holding. This is easily avoidable.

A debug environment can help in several ways. First, a class browser
should be able to show all of the data members of a class definition
including those that are inherited from a parent class. This data must
include the visibility of the data members in derived classes so the
user knows what is accessible in a derived class. Additionally, if the
user is viewing an instance of the object, they should be able to see
all of the data members in both a flattened view and by inheritance
from parent classes. This is also true when viewing waveforms for a
class object, the user must be able to view all of the data members of
the object for the lifetime of the object.

3. OBFUSCATION OF CODE AND DATA

One of the challenges of debugging a class based verification
environment is the creation of dynamic scopes. This can result in
multiple instances of a class. To debug an instance of a class the
user must be able to locate it quickly and once located, the
environment must support the viewing and controlling simulation
specific to this instance. This is best accomplished by debugging at
the source level. The user must be able to use a class browser to
quickly find all the instances of a class and to view that instance in a
source browser. In Figure 1, the class browser sidebar is displayed
with an instance of the bus monitor selected. All source value
annotation must be for data member in the specific instance of the
class. The user also has to be able to set line breakpoints in methods
of the class for any instance and for a specific instance of the class.
When a breakpoint is hit, the user must be able to traverse the call
stack to see when the method was called from. Without knowing the
context of the call it is almost impossible to understand the flow of
control in simulation to track down a bug in the test bench.

Figure 1: Object from Class Browser Displayed in Source

Class variables also hold references to class objects. If the user is
starting with a class variable or a data member of another class
instance, they must be able to have the debug environment
automatically dereference the variable to show the class instance that
is pointed to by the variable in the source browser for accessing
instance specific data. Take for example a class variable that has a
reference to a sequence generator. Being able to take the class
variable and have the source be shown for the instance of the
generator simplifies the users debugging of the generator by being
able to quickly traverse into the generator instance and set line
breakpoints for that instance of the generator.

Finally the user should be able to create waveforms and view class
objects and there data members for the lifetime of the object. Class
variables should hold references to class objects so that the user can
see how class variables are holding references to class objects over
time with the ability to focus on an individual class object and its
data members..

4. UVM-SPECIFIC CONSIDERATIONS

UVM is quasi-static in nature. This means that once constructed, the
UVM verification component hierarchy does not change. As a result
a verification environment must be able to show the quasi-static
UVM verification component hierarchy as a separate hierarchy from
that of the design hierarchy. This provides a clean separation of the
verification hierarchy from the design hierarchy making it easier for
the verification engineer to focus on the verification components.
This allows quick traversal of the verification hierarchy allowing the
user to quickly display source, probe the hierarchy to waveforms and
to verify the correct construction of the verification hierarchy. Figure
2 shows UVM component hierarchy after construction.

Figure 2: UVM Verification Hierarchy Display

UVM is also a transaction based verification methodology by using
sequencers to generate sequence item to stimulate the design under
verification. A debug environment must support the recording of the
transactions to a database. These transactions can then be viewed in
waveforms. However, when debugging sequences it is imperative
that the order of sequences in the system is known. This can only be
handled by displaying transaction items in a stripe chart display. This
type of display allows the user to see the order of transactions for all
components in the hierarchy or for selected components. The stripe
chart must be linked to the waveform window so that the duration of
the transaction and the other transactions from the component can be

viewed. Transactions also have predecessor/successor relationships.
The strip chart must be able to show these as well as parent/child
relationships.

Finally, in a verification environment it is important to take
advantage of constraint randomization. When randomizing an object
it is possible that values for a variable or variables cannot be solved
due to an over constraint violation. When this occurs simulation
stops. A debug environment must be able to debug constraint
violations. To do this, the constraint debugger must automatically
focus on the constraints that are in conflict. The debugger must allow
the user to change the rand state of variables, enable/disable
constraints and to define a new constraint on the fly. The user must
then be able to run the constraint solver to verify the changes before
continuing simulation with solved values.

5. ACKNOWLEDGMENTS
The recommendations outlined in this document have come from
gathering input from many sources. This includes customers,
Cadence application engineers, product engineers, and R&D. I
wanted to extend my thanks to all that have contributed, directly or
indirectly to making a more robust verification environment.

6. REFERENCES
[1] IEEE IEEE Standard for SystemVerilog — Unified Hardware
Design, Specification, and Verification Language. New York: IEEE
2005
[2] IEEE IEEE Standard for the Functional Verification Language e.
New York: IEEE 2008
[3] Accellera Universal Verification Methodology (UVM) 1.0 Early
Adopter California: Accellera 2010

