So There’'s My Bug!
Debugging Universal Verification Methodology (UVM)Environments

Mike Floyd
Cadence Design Systems, Inc.
270 Billerica Rd.
Chelmsford, MA 01824
1- 978-262-6241
mikef@cadence.com

ABSTRACT

Modern verification environments like those builtimthe Universal
Verification Methodology (UVM) more closely reseralgoftware
applications than hardware applications. The ehak is that the
teams building and debugging such environmentsnare often
trained in hardware verification than software freation. Debug
considerations start in the verification comporggtelopment phase
where bugs can lurk in sloppy data structures dfecbinheritance
management. Most of the bugs should be removedgiblock-
level verification where the new issues for desigraee debugging
dynamic data types and through class inheritarerartuhies. In
scaling to the system level, we are squarely irtrdmesaction
verification space searching among thousands afuroent
transactions — often in multiple verification larges — to find the
last few bugs in our system. The new techniquesqmted in this
paper will provide verification engineers with tindormation to both
limit the introduction and speed the removal of birg
SystemVerilog- an@-based verification environments leading to
faster convergence and higher quality silicon raéion.

1. INTRODUCTION

Hardware engineers have built expertise debuggingptex designs

but the constant in each project has been theaudielata structures.

UVM, implemented with SystemVerilog er changes that by
introducing both dynamic data types and dynami@dbet can both
created and destroyed during the execution of@ngsimulation run
or test.

It is this transient nature that is the heart ef¢hallenge. For
example, UVM testbenches often create threadsesfugbon during
a given test run and the engineer must be cognafahe specific
thread being displayed in the source browser. @omging the
challenge is that the flow of execution in the dyi@code flows
from method to method within and across inheritarees rather
than through static, hierarchical interfaces. rilgir situation
occurs with data where an object grows and shthmkaigh
simulation execution, which may be untimed, so deimethods that
expect data persistence have to be adjusted.

The net result is a new set of challenges for harewengineers. The
most common issue is memory management where tdattuses
grow unexpectedly so new approaches are neededdgrize and
resolve these testbench bugs. Often related toonyemma.nagement
is understanding class inheritance to avoid obfirsraata and
methods and debug tools can help the engineer staddrthe
environments they both build and receive. SincéU®verages
both class environments and efficient memory usiagpas these
challenges and some unique ones related to ithdepee on

transaction verification and constraint randomizati Developing
new skills is critical to efficiently debugging teemodern
verification environments.

2. RECOGNIZING AND MANAGING
MEMORY LEAKS

2.1 Memory Management

In static environments the process size does ot grkcept to
handle recording of waveform data or for usersdlde which may
allocate memory. With class based environmentsdgndmic data
types this is not the case. Memory is allocatedyaamic objects
grow and as class objects are created. Care hesused to properly
manage the dynamic data or simulation processcaizeontinue to
grow and results in the process terminating duadmory allocation
failures. Even if memory allocation does not faisipossible to
grow the process size to the point at which it duzdit within the
physical memory on the system. This then leadsing and
swapping which causes simulation performance toatkey

2.2 Memory Leaks

In order to understand how a memory leak is createdneed to
understand the difference between class variabiéglass objects.
A class variable is a pointer that references ssabéject that has
been allocated by calling new. Multiple class Jaleéa can have
references to the same class object. A classtadyests and the
memory is not reclaimed until the reference coumthe object
drops to zero. If care is not used in storing eiees to class objects
it is possible to create a memory leak.

A real case example of this occurred with sevarstamners. In one
example a customer allocated a data member bypgaiéw and then
stored this in a dynamic array. Later in the cdas then assigned
NULL to the class data member. By doing this, thet@mer thought
they had freed the memory; they had not becausgytiemic array
held a reference to the allocated object. Thisltexin the dynamic
array growing for every data member allocated.

There are several ways a debug environment mysiréaiacking
down memory explosions. The first is using a classvser to show
all the instances of a class in existence. A diase/ser shows the
inheritance hierarchy of the classes in the desighis useful for
many debugging tasks. Looking at a list of instarzan show that
objects are being created but not freed. Thisasibst basic
approach. Another more powerful approach is toausemory
analyzer. A memory analyzer must be able to shevetirent heap

memory allocation and to graph the heap memoryausagr time.
This can then be used to show what objects areiiggaw size over
time and can allow the user to better focus orp#res of the
environment that are using the largest amount ohong. By
graphing individual object size over time, it beeootear where
memory leaks may be occurring. It was by usingnleenory
analyzer that the customer was able to locatedhees of the
memory leak in the dynamic array. The graphing bdipaand
instance specific data presented to the user alldhe user to
quickly find the area where memory was explodingd ndetermine
the object that was growing in size. By analyzimg $ource they
were able to easily find the cause and quickly engnt a solution.

2.3 Duplicating Data — Inefficient Memory

Usage

Another source of excessive memory use is duptigatata
members in derived classes. Cases have been seemawiser has
derived a class from a base class defined in a blasry such as
UVM. The customer then declared a data membeiei¢nived

class to hold some information. It turns out thate already existed
a data member in a parent class that held the datae The user has
now increased the size of the object to contairlicafp data that the
object was already holding. This is easily avoidabl

A debug environment can help in several ways. Farstass browser
should be able to show all of the data membersctdss definition
including those that are inherited from a pareassl This data must
include the visibility of the data members in dedwclasses so the
user knows what is accessible in a derived cladditidnally, if the
user is viewing an instance of the object, theyukhbe able to see
all of the data members in both a flattened vied layinheritance
from parent classes. This is also true when viewrageforms for a
class object, the user must be able to view ah@fdata members of
the object for the lifetime of the object.

3. OBFUSCATION OF CODE AND DATA

One of the challenges of debugging a class baséatagon
environment is the creation of dynamic scopes. Gaisresult in
multiple instances of a class. To debug an instaha class the
user must be able to locate it quickly and oncatkst, the
environment must support the viewing and contrglBimulation
specific to this instance. This is best accomglisby debugging at
the source level. The user must be able to usesa browser to
quickly find all the instances of a class and ®avthat instance in a
source browser. In Figure 1, the class browsebaidis displayed
with an instance of the bus monitor selected. élirse value
annotation must be for data member in the spdogitance of the
class. The user also has to be able to set le@kpoints in methods
of the class for any instance and for a specifitaimce of the class.
When a breakpoint is hit, the user must be ablete@rse the call
stack to see when the method was called from. Witkiwowing the
context of the call it is almost impossible to urstiend the flow of
control in simulation to track down a bug in thetteench.

-Bx

File Edit View Select Format Windows Help cadence

¥|= es @ " RERRBHUEE
M, Timea | -|280 Hne v px- 4w | Search Times:| Value ~ |,
mle?
Lv ., Scope: | 8 xous_tb_lopxbus_bus_monior@1120_2 B @ Fies: [momedmikesuvm_bus_bus_monitorsv (1:371] - %
FSveiem veriog Ciazs Browsat x @]
I @ | 0 class xbus_bus_meniter extends uum_monitor;
Class Search: - & s =
- Class Inheritance Hierarchy Objects | |8 protected wirtual xbus if xbmi;
ous_to_toptest_2m_ds 1202 ,i]
ous_to_toplesl_ro_wb_id_v - protected int unsigned Ium transactions = 0
s _th_toptest_read_modify_wite |
ous_ta_top.write_byte_ser| "
xous_t_top.write_double_word_seq TR vl
s _t_top.write_half_word_seq ' U VR

bit coverage enahle = 1;
ous_th_top write_word_seq

¥bus_th_top.xbus_bus_monitor
#bus_th_top.xbus_demo_scoreboard

um_analysis_poct #(xbus_transfer) iten collected por
uvn_analysis_port #(xbus_status) state port;
Methods | Data Members |

Method Name protected xbus_status status;

f0 acceptir
V3 all_dropped
w# apply_config_settings

protacted slave_address map_info slave addr msp[strin

protected xbus_transfer trans collected;

W Click and send fo source code area

@ 0 objects selected

Figure 1: Object from Class Browser Displayed in Sarce

Class variables also hold references to class @bjéthe user is
starting with a class variable or a data membanother class
instance, they must be able to have the debugcement
automatically dereference the variable to showcthass instance that
is pointed to by the variable in the source broviigeaccessing
instance specific data. Take for example a classie that has a
reference to a sequence generator. Being abdd&eéche class
variable and have the source be shown for therinstaf the
generator simplifies the users debugging of thegenor by being
able to quickly traverse into the generator insteenad set line
breakpoints for that instance of the generator.

Finally the user should be able to create wavefa@mubview class
objects and there data members for the lifetimé@ibbject. Class
variables should hold references to class objectkat the user can
see how class variables are holding referencelass objects over
time with the ability to focus on an individual staobject and its
data members..

4. UVM-SPECIFIC CONSIDERATIONS

UVM is quasi-static in nature. This means that ormastructed, the
UVM verification component hierarchy does not chands a result
a verification environment must be able to showdghasi-static
UVM verification component hierarchy as a sepahgearchy from
that of the design hierarchy. This provides a clegparation of the
verification hierarchy from the design hierarchyking it easier for
the verification engineer to focus on the verificatcomponents.
This allows quick traversal of the verification taechy allowing the
user to quickly display source, probe the hieratochyaveforms and
to verify the correct construction of the verificat hierarchy. Figure
2 shows UVM component hierarchy after construction.

Browse: I@ All Available Data n Gek Options... E‘E@.
=2 simulatar
{3 xbus_tb_top
E|Lm Fackages
B wiotklibuwm_pk:
EI'EI} uvim_top_levels
Bl uvm_top_levels(o]
@ printer
E@! whus_demo_tho
1@! scareboard

= @ rhusd

@ bus_manitar
@ masters[0]
@ slaves(d]

5
B
=)
¥

Leaf Filter: |* B &

Shows contents: | In the signal list area =

Figure 2: UVM Verification Hierarchy Display

UVM is also a transaction based verification mettogy by using
sequencers to generate sequence item to stimoétesign under
verification. A debug environment must supportreording of the
transactions to a database. These transactioribeabe viewed in
waveforms. However, when debugging sequencesnitgsrative
that the order of sequences in the system is kn®his.can only be
handled by displaying transaction items in a stcipart display. This
type of display allows the user to see the orderanfsactions for all
components in the hierarchy or for selected compisnd he stripe
chart must be linked to the waveform window so thatduration of
the transaction and the other transactions froncohgonent can be

viewed. Transactions also have predecessor/sacaetstionships.
The strip chart must be able to show these asasgifarent/child
relationships.

Finally, in a verification environment it is imparit to take
advantage of constraint randomization. When raimdlaman object
it is possible that values for a variable or vagalzannot be solved
due to an over constraint violation. When this esaimulation
stops. A debug environment must be able to debugticnt
violations. To do this, the constraint debuggertrausomatically
focus on the constraints that are in conflict. @abugger must allow
the user to change the rand state of variablebleddesable
constraints and to define a new constraint onlyhé@ he user must
then be able to run the constraint solver to vehi&changes before
continuing simulation with solved values.

5. ACKNOWLEDGMENTS

The recommendations outlined in this document lcavge from
gathering input from many sources. This includet@uers,
Cadence application engineers, product engineedsR&D. |
wanted to extend my thanks to all that have conteith, directly or
indirectly to making a more robust verification @oament.

6. REFERENCES

[1] IEEE IEEE Standard for SystemVerilog — Unified Hardware
Design, Specification, and Verification Langualyew York: IEEE
2005

[2] IEEE IEEE Standard for the Functional Verification Largee.
New York: IEEE 2008

[3] AccelleraUniversal Verification Methodology (UVM) 1.0 Early
AdopterCalifornia: Accellera 2010

