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Abstract- Verifying serial designs is a formidable challenge for both simulation and formal. The complexity of such a 
design stems from the serialised nature where the state of each packet depends upon the history of all the previous 
packets in flight. In this paper, we show a smart, scalable formal verification methodology for verifying serial designs. 
Our smart solution using abstraction and assume-guarantee reasoning can find bugs in multi-packet serial designs with 
about 140K flops (1042,248 states) in under 40 minutes, and exhaustively proves bug absence in designs with about 24K 
flops (107397 states) in 35 minutes on a tablet PC (two Intel i5 cores with 6 GB memory). When we were not limited by 
compute resources (128 GB memory, 18 CPU cores), we could find random reordering bugs in under 20 minutes of proof 
times for a design configuration with half-a-million flip-flops (10164,228 states). 

 

I.   INTRODUCTION 

Verification of serial designs is a known challenge for both simulation and formal verification. Whereas 
constrained random simulation-based verification has the usual shortcomings of not being able to apply enough 
input stimulus to exercise all corner cases, formal verification can very often suffer from the state-space explosion. 
While with formal verification in principle one can exhaustively prove correctness – in practice, this can often be 
challenging if not impossible unless good methodologies are used. In this paper, we show a smart, formal 
verification methodology based on abstractions and assume-guarantee reasoning for verifying serial multi-packet 
designs using limited computing resources. 

 

II.   PROBLEM DOMAIN 

Serial multi-packet data designs are everywhere across the system-on-chip (SoC). Examples include but are not 
limited to buses (AMBA, OCP, PCIe), bus bridges, network-on-chip interconnects (NoCs), video packers and 
unpackers, networking devices, SoC peripherals (I2C, I2S, UART, USB, Bluetooth, and Ethernet), load-store units in 
CPUs, and memory sub-systems. Modern-day machine learning architectures have serialised behaviour where deep 
learning and prediction hardware typically employs looking up long sequences of historical sequential data.  

The basic characteristic of multi-packet designs is that one or more packets may be written, but there is no 
requirement that a fixed number of packets is always written on every new write. When the number of packets is a 
variable, it introduces new challenges for verification of serial designs increasing the number of combinations to be 
verified. If the number of packets accepted every cycle is a fixed number, the problem is slightly easier to solve with 
formal especially using our methodology.  

Typically, in such designs, there is no requirement that all packet locations are written at a given buffer index, but 
once they have been, the packets must not be lost, corrupted, reordered and duplicated. Given the non-determinism 
introduced in these serial designs due to an arbitrary number of packets being transported, it makes verification a lot 
harder as we track all possible combinations of packet writes and reads for the entire path of data transport.  

For our purpose, we have three dimensions to this problem. Packets can have different sizes (defined by the 
Width), and they are stored in buffers that are defined by Depth. The maximum number that can be transported is 
defined by the parameter called Packets. 

III. SMART TRACKER SOLUTION 

In the recent past [1-2], we showed how a transaction counting methodology could be used to verify huge designs. 
In this section, we present the key aspects of our solution we call the smart tracker solution. The basic idea of this 
solution is based on observing a pre-determined symbolic data value namely a watched data value as it enters the 
DUT and leaves it. By using a counter to count how many non-watched data values are ahead of the watched data, 



 
we can predict when we expect to see the watched data value appear on the output port. The formal tool chooses all 
possible data values as an instantiation of the watched data value and chooses to insert the watched data at all 
possible locations within the DUT thereby allowing an exhaustive coverage of the entire design space. This method 
of observing just one symbolic data value to verify that all data values remain correctly ordered in the design and do 
not get duplicated or dropped is a data and temporal abstraction technique. It is data abstraction because the 
symbolic data value encodes all possible data values composed of 0s and 1s. It is temporal abstraction because the 
time at which the watched data value is captured in the design is left completely arbitrary allowing multiple time 
points to be used for capturing the data in the DUT, but the verification engineer doesn’t have to manually control 
when the watched data are read into the design. By leaving the exact timing completely arbitrary, the formal tool 
makes use of non-determinism. Without the need for tracking the state of all possible data values explicitly and at all 
possible time points the formal tool can obtain massive scalability in proof times and can generate converging 
results on properties both for cases when the DUT may have a bug (bug hunting) and when there is no bug in the 
design (exhaustive proof). This is the reason why we call our solution a smart tracker solution. By employing just 
one tracking counter to count how many data values are ahead of the watched data and employing only two 
sampling registers to detect the entrance and exit of the watched data we were able to verify FIFOs as deep as 8192 
carrying 32-bit data payload exhaustively [1-2].  

IV. DESIGN DESCRIPTION 

FIFOs are a special case of multi-packet designs where at most one packet can be read or written in any location. 
When the number of packets becomes a variable, the problem of verification becomes significantly harder. The 
reason is that now there is more choice in the design execution – any number of packets can be written or read into 

 

 

 

 

the design at any given clock cycle bounded only by a maximum pre-configured design parameter. In Figure 1, we 
show a configuration where up to four packets can be stored in any of the locations from 0 to 7. The packet size 
itself can be any number of bits defined by a top-level design parameter. A three-dimensional data structure is used.  

We show the top-level design interface used in the case study in Figure 2.  Input data is transferred in packets 
where each input packet is written into data_i on an input handshake hsk_i (valid_i && enable_o). Output data 
(data_o) is read out on an output handshake hsk_o (valid_o && enable_i). It is worth mentioning here that it takes 
multiple clock cycles to write and read multiple packets of defined size. For example, to write/read four one-byte 
packets we need four clock cycles and the 32-bit word would be written and read out from a location defined by the 
write index (wptr) and read index respectively (rptr). Validation and invalidation logic determine which data 
entries are legally written and must be therefore read out.  

Figure 1: Multiple variable number of data packets can be written in the design. The green dots indicate locations where valid 
data packets are stored. Non-green locations indicate invalid data (no data has been written into these locations). 



 
The design might come across as not very complex – but five finite-state machines control the read and the write 

of multiple packets. The Write FSM controls how the data is written while the Read FSM ensures that without a 
valid write, reads do not occur, but when a read is requested, a valid number of packets are read out in the expected 
number of clock cycles.  

Exactly how many packets would be written is defined by the input pkt_len which is registered into the design on 
the very first beat of the input handshake of a new write transaction. Subsequent values of pkt_len (which is 
PKT_BITS wide) are disregarded until another new packet stream is seen. The read and write of packets is controlled 
by buffer read/write FSM which is a function of read/write pointers indexing the buffer depth and a packet 
read/write FSM which is a function of packet read/write pointers indexing the packet locations.  

A new valid write starts when the write pointer index is pointing to 0 and there is an input handshake. In this clock 
cycle, the value of pkt_len is registered in the design and this is how many packets would be written at the buffer 
index pointed to by wptr. So, the wptr walks along the buffer depth, whilst pkt_wptr indexes the individual packets 
at a given buffer location. Similarly, rptr reads along the buffer depth, while pkt_rptr reads the individual packets 
from the buffer indexed by rptr. The design also has flags empty_o and full_o to indicate when it is empty and full 
respectively, and, is driven to reset by an active low resetn. Since this design is multi-packets, we need an array of 
watched values not just one.  

 

 
 

 

 

 

 

V. SMART TRACKER SOLUTION FOR MULTI-PACKET DESIGN 

In this section, we show a smart solution that exhaustively verifies serial multi-packet designs to ensure that they 
have no data loss, no data reordering, and no data duplication. There are two fundamental components of our smart 
solution. We have taken our foundational smart tracker abstraction from our previous work [1-2] and adapted it to 
verify the multi-packet behaviour of serial designs.  The basic architecture of our formal testbench is a collection of 
auxiliary glue logic in Verilog and formal properties (assertions, covers and constraints) in a bound SVA module. 
Other than this there is nothing else to be done, in contrast to simulation-based verification. 

The basic principle of our abstraction is to watch an arbitrary symbolic data (an array of them for multi-packets) 
called watched data on the input interface of the design and count how many data values are ahead of this watched 
data. We use a transaction counter that is incremented on every write until the watched data appears on the input 

Figure 2: Top-level design interface shown. Five interacting finite-state machines control the read and write of multiple packets. 
The number of  packets to be written in any given clock cycle is determined by pkt_len, and the packets themselves are 
written and read from data_i and data_o respectively. Handshake signals determine when the data will be written or read 
from the design, while empty and full denote when the buffer is empty and full respectively. 



 
interface. We decrement the counter on every read, and when the counter has reached the value of one, we expect 
the watched data to appear on the output of the design in the same clock cycle or multiple clock cycles (in case of 
multi-packets). We describe the details of the solution now. We start by defining a set of watched values by using 
the logic datatype in SystemVerilog. As this design is multi-packet, at any given time we can have more than one 
watched packet in the design. Thus, we need a whole set of watched values bound by the maximum number of 
packets defined by PKT_LEN. 
logic [DATA_WIDTH-1:0] wd [PKT_LEN-1:0]; 

where PKT_LEN is a function of the input pkt_len and is defined as 1<<PKT_BITS. We constrain these watched 
values to be stable after reset. This allows the formal tool to keep these values stable for each run that it executes, 
but the value in each run is chosen to be unique.  

Table 1 shows the key wires used in the testbench. The ready_to* signals are used to model the conditions that 
detect the start and finish of sampling of watched data values both at the input and the output data ports. These 
signals are used in modelling the sampling registers which are used for tracking the watched data values. The 
increment (incr) and decrement (decr) wires (also shown in Table 1) are used for our tracking counter that 
calculates “how many values are ahead” of the watched data.  

 
ready_to_start_sampling_in sample_in_started_cond      ||   sample_in_started wire 

ready_to_finish_sampling_in sample_in_finished_cond     ||   sample_in_finished wire 
ready_to_start_sampling_out sample_out_started_cond     ||  sample_out_started wire 
ready_to_finish_sampling_out sample_out_finished_cond    ||  sample_out_started wire 
inp_sampled_completely sample_in_started      &&  sample_in_finished   wire 

not_sampled_out_completely  sample_out_started     && !sample_out_finished wire 

 

 

We use four sampling registers – one pair for detecting when the watched data packets have entered the DUT and 
another to detect when the sampled in watched packets leave the DUT. These registers are cleared at reset and 
subsequently take on the values of the ready_to* signals. Table 2 shows how they are defined. 

 Value at Reset Otherwise  

sample_in_started 1’b0 ready_to_start_sampling_in reg 

sample_in_finished 1’b0 ready_to_finish_sampling_in reg 
sample_out_started 1’b0 ready_to_start_sampling_out reg 
sample_out_finished 1’b0 ready_to_finish_sampling_out reg 

 

 

We now define the smart tracker counter below. We increment (incr) the counter so long as we do not see the 
watched data stream on the input, and decrement (decr) the counter every time there is read for non-watched data. 
always @(posedge clk or negedge resetn) 

      if (!resetn) 

        tracking_counter <= ‘h0; 

      else 

        tracking_counter <= tracking_counter + incr - decr; 

We also need to define another counter that simply counts how may watched data packets appear on the output 
data port once we have read in all the packets but not read them all out. This counter (counter_out) is used to 
establish a check for each watched data packet. We now define two additional conditions that capture when we have 
sampled in the watched packets completely and when we have started to sample out the watched packets but not 
completely sampled them out. 
 

assign input_sampled_completely    =  sample_in_started    &&  sample_in_finished; 

assign not_sampled_out_completely  =  sample_out_started   &&  !sample_out_finished; 

Table 1: Key signals used in our testbench. 

Table 2: Sampling registers used in our testbench. 



 
We then use two fairness assumptions to force a stream of valid_i and enable_i signals to allow write and read 

handshakes. The property that establishes that all packets received at the input interface are delivered to the output at 
the correct time without a loss, reorder or duplication is shown below. We use a generate loop to model these, where 
the loop itself is sensitive to PKT_LEN. 
 generate 

 for (i=0;i<PKT_LEN-1;i=i+1) begin:all_packets 

but_last: assert property (input_sampled_completely && not_sampled_out_completely &&     

                          (counter_out==i) 

                |=>  

                                 data_o==wd[i]); 

                end 

 endgenerate 

Note, that the loop above ranges up to PKT_LEN-2, and for the final packet PKT_LEN-1, we write a separate 
assertion. This is due to the design artefact and the way we have modelled our testbench registers that track the data. 
When sample_out_finished goes high then we see the watched data stored at index PKT_LEN-1 or the watched 
packet at location 0 is seen if the watched packet was of length 0 at the time of input sampling. 

The property that checks that the very last packet has been delivered is shown below: 

last_packet: assert property (inp_sampled_completely  &&  sample_out_started  &&    

                              $rose(sample_out_finished) 

                            |->  

                          (data_o==wd[PKT_LEN-1] || data_o==wd[0])); 

The two assertions shown above are enough to check for reordering, data loss and duplication bugs. We also 
wrote additional checks to validate that empty and full work correctly and that validation/invalidation is correctly 
implemented.  

VI. RESULTS 

When we ran our checks against the design, we started finding bugs in the design. One classic bug that we caught 
was in the packet pointer calculation where we were wrapping the pointers too soon and were losing the data 
captured. Once we started to get exhaustive proofs, we moved on to the next step to obtain design coverage. We 
used two methods – first was to run the formal coverage analysis in the tool (where available), and the second was 
manual fault injection. Manual fault injection is cheap to run, and we can inject interesting bugs to assess the 
vulnerability in our testbench to see if the properties that previously passed are now failing.  

We used multiple formal tools to check if the coverage data reported made sense and once, we started to get a 
100% coverage from the tools, we moved onto the manual fault injection phase. The reason we use both techniques 
is that formal coverage reported from tools is not yet standardised and we cannot compare like for like results. 
Having said that we would like to point out that we use tool-based coverage as an integrated mechanism for design 
bring up. This helps us identify structural defects (reachability, toggle, deadcode, redundant code) in the design 
automatically, saving us precious time later in the verification flow. This is part of our new Axiomise ADEPT FV® 
agile flow which is vendor agnostic and is available for anyone to use. The flow provides an agile method to avoid 
(A) bugs, detect (D) bugs, erase (E) bugs, prove (P) that no bugs exist and finally and tape-out (T) without bugs.  

Once we fixed all the design bugs and started to get exhaustive proofs on smaller design configurations (such as a 
2-deep buffer, carrying up to two packets, each packet being 32-bit wide), we decided to deliberately break the 
design by inserting bugs to see if they are caught by our checkers. We were able to catch all the bugs. We then 
decided to start increasing the design configurations to see if the ability to catch bugs scaled as well. We were 
indeed able to catch bugs in very big design configurations. One such configuration where we caught an ordering 
bug was a 512-deep buffer carrying up to 8 packets of 32-bit data i.e., nearly 1042,248 states (about 141K flip-flops). 
The bug was a random reordering bug. The design would work as normal until a random event happened, and when 
it did it will randomly choose some locations to reorder. 

Once we were happy with the quality of the testbench we decided to assess how well the proofs would scale to 
establish bug absence for bigger design configurations. We set the timeout for an hour to see what configurations 
were verifiable. The results are shown in Figure 3. We found out that beyond 8-deep buffers the proofs were not 



 
scaling for up to two 1-bit packets (i.e., 105 states). We noticed that we could verify up to 8 packets for a 2-deep 
buffer, each packet being 1-bit wide (i.e., 105 states). Also, we could verify for a 2-deep buffer with up to two 
packets where packet size can be up to 512-bit wide (i.e., 10616 states).  It was promising to see that we could scale 
up to 10616 states with such a small test bench for verifying end-to-end properties under an hour of run time on a 
laptop with 6 GB RAM running two Intel i5 7300 CPU cores. However, we wanted to assess if we could scale any 
further in terms of the state space. One strategy was to increase the timeout to larger values and we were able to go a 
little further with the design sizes, but the results were not that impressive. We decided to apply assume-guarantee 
reasoning at this stage. To scale the proofs what we needed were a set of helper properties specified manually by the 
user. Helper properties speed up the state-space search by being used as guides by the formal tool. Once proven 
these helper properties are assumed to drive the proofs of the other properties whose proofs either don’t converge or 
take a long time to converge. This way of leveraging helper properties first to prove, and then assume is called an 
assume-guarantee flow first discussed by Ken McMillan [3] and which we exploited in our earlier work [1-2].  

 

 
 

 

The key helper properties we used in our case study were: 

L0: If the sampling has started and sample out finished then the tracking counter must be zero. 
L1: If sample out has finished then sampled in must have started and tracking counter must be zero. 
L2: If all watched data input has not been sampled in completely then the tracking counter is less than or   
       equal to the difference between the write and the read pointers. 
L3: If all the watched data input has been sampled in but sampling out of the watched data has not started  
       then the tracking counter is less than or equal to the difference between the write and the read pointers. 
L4: If all the watched data input has been sampled in and the sampling out has not started then the very first  
       watched data that was sampled in the design must be residing at the location given by the function of  
       read pointer and tracking counter. 
L5: If all the watched data input has been sampled in and the sampling out started for the watched data  
       values but not completed, then if the very first watched data value has been seen at the output port  
       then the next data value to be seen on the output will be the next watched data value that was sampled in. 

In Figure 4, we show runtime for different parameters with helper lemmas having been used as assumptions.  

 

Figure 3: Runtime (real time) with varying depths, width and packet sizes using abstraction. Within an hour we could verify different 
design configurations ranging from 105 states to 10616 states. We used Synopsys VC Formal for proof runs. 



 

 

 

 

 

Depth: For exhaustive proofs establishing that there is no bug in the design, runtimes scale linearly with 
increasing depth for 1-bit wide but a variable number of packets up to 8 (101232 states).  Runtime is 8.33 minutes 
(Figure 4) for the 512-deep buffer. 

Packets: If we fix the buffer depth at 256 for packets 1-bit wide, the runtime scales nicely with the increasing number of 
packets (Figure 3). It takes nearly 11.33 minutes to exhaustively verify this buffer for 8 packets (10616 states). When we allowed 
up to 16 packets (power of 2 increase), the runtime jumped to 132 min 13 sec (beyond an hour). 

Width: When we keep the buffer depth fixed at 256, allowing up to 8 packets to be written but the width of packets can 
change from 1 to 12, the runtime scales nicely (Figure 4). However, when the bit width became 13, the runtime jumped to 3 
hours 13 minutes and continued to increase exponentially with further width increase.  We can control this by exploiting property 
decomposition – splitting the word level check into individual checks on 1-bit data word (a much more tractable problem) but 
overall this would still make the runtime exceed an hour – in fact it took us 7 hours 54 minutes to verify 256 deep buffers with up 
to 8 packets where each packet is 32-bits wide on the tablet PC (two Intel i5 cores with 6 GB memory). This astronomical 
increase in run times with varying width is currently a challenge with all formal tools. We can confirm that the runtime decreases 
significantly if compute resources were not a limitation.  

To summarise our results, we evaluated our solution for both bug hunting and exhaustive proofs. We found 
reordering bugs in the design in less than 40 minutes for a design that was 512-deep, carrying up to 8 packets of 32-
bit data (about 140K flip-flops, 1042,248 states in the design). We were able to prove bug absence in designs as big as 
24K flops (107397 states) in 35 minutes (using helper properties as assumptions) on a tablet PC with two Intel i5 7300 
cores and 6 GB memory running inside VMware. If we were not limited by compute resources, then for a design 
configuration with nearly half-a-million flops (10164,228 states), we can find random reordering bugs in under 20 
minutes of proof time on a machine for example with 128 GB memory (with 18 Intel CPU cores). This specific 
configuration was 256 deep, with up to 64 packets each packet being 32-bit wide. We were able to prove exhaustive 
correctness for this design configuration in under 3 hours on this big machine using a single tool license.  We were 
able to reproduce these results across multiple different tools when we could get the tools to compile and elaborate 
these configurations successfully. 

VII. DISCUSSION 

To summarise, the five key steps used in our overall verification reported in this paper are: 

1. Developed formal verification testbench by using abstraction and end-to-end assertions, in the presence of 
interface constraints, and then run properties in the formal tool. 

Figure 4: Runtime (real time) with varying depths, width and packet sizes using abstraction and helper lemmas as assumptions. 
We can exhaustively verify a design with 107397 states (24K flip-flops) in 35 minutes (256-deep buffer with 8 packets, each packet 
being 12-bits wide).  



 
2. Pipe-cleaning the testbench and design – finding testbench issues, design bugs, and tightening constraints. 

Run   formal coverage analysis (akin to simulation functional coverage) to visualise any blind spots – catch 
dead code, redundant code, over-constraints, and missing checks. 

3. Manually inject bugs to assess the robustness of the formal testbench. 

4. Check what is the biggest design configuration on which bugs can be found within an hour. 

5. Finally, deploy invariants (helper properties) and assume-guarantee flow to improve scalability. 

6. Check if proofs scale for bigger configurations. 

The reader will note that there is nice linearity in the results in Figure 4 and this is on a problem that is increasing 
exponentially in size. This phenomenon is due to the usage of helper properties. The problem of verifying multi-
packet serial designs is significantly challenging for any kind of verification, not just formal due to the variability in 
the number of packets. If the number of packets to be written at every clock cycle is fixed rather than variable, the 
verification problem is hard but much easier to solve. In both cases though, without an abstraction, it is nearly 
impossible to obtain any proof convergence on even the smallest of design configurations.  

For abstraction-based solutions there are many choices, some are more scalable than others. It depends on what is 
being tracked, how much of it is tracked, and how often. In our solution, we track a ‘single’ symbolic transaction 
which in the case of multi-packet design consists of observing a single stream of watched packets. The single 
transaction abstraction is smart in the way that it allows end-to-end properties to be modelled and verified 
exhaustively for proofs as well as bugs. In the past, we have used a two-transaction based tracking solution [1-2]. 
The two-transaction solution makes use of tracking ‘two’ symbolic transactions rather than one and is similar in 
concept to the Wolper’s colouring method [4]. Our comparisons showed [1-2] that two-transaction is worse than 
single transaction method, so we didn’t employ that for this design.  

Abstraction provides a solid foundation for laying the overall solution. The scalable proof convergence is obtained 
by providing helper properties in the test bench for minimising proof search for end-to-end properties. Such is the 
impact of these helper lemmas that once they are proven and then assumed, the proofs of end-to-end property 
converges very fast even on huge design configurations. Overall, the return on investment using abstraction and 
user-defined invariants is significant as evidenced by the results we show. Without this investment, the problem of 
verifying such designs with rigour is intractable with all forms of verification including formal, simulation, 
emulation and FPGAs.  

VIII.  CONCLUSION 

Our smart formal verification solution scales both for computing exhaustive proofs as well as finding bugs in 
multi-packet serial designs with varying configurations. We believe this scalable solution is smart in the way it 
leverages abstraction with assume-guarantee to exhaustively verify complex multi-packet serial designs for a vast 
range of configurations within an hour on a tablet PC with 6 GB memory. When not limited with compute resources 
we could find random ordering bugs in design configurations with half-a-million flip-flops in under 20 minutes, and 
exhaustively prove correctness in under 3 hours. 
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