Smart Formal for Scalable Verification

Ashish Darbari

Axiomise

axromise’
predictable formal verification

UNITED STATES

PACKET-BASED DESIGNS

What's the game here?

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

DVCON Sequential Multi-packet Designs

* Units of data flow together in what we call as packets
— Fixed number of packets

— Variable number of packets

« Usual requirement is that packets must not be:
— Reordered
— Dropped
— Modified in flight

« State of each packet depends on the state of all others ahead of it

3@4@,& VERIFICATION NIGHTMARE!

EEEEEEEEEEEEEEE

2019

DESIGMN ARD WVERIFICATICMN™

DVCON SoC Verification

Memory Tile Memory
subsystem Architecture

Routers DMA Data
Transfer

padic
!

!

Load Store Unit

CPU GPU Vision

!

Bus Bridges I

NoC
INTERCONNECT

Bus Bridges

Bluetooth Ethernet

[
PACKET-BASED DESIGNS ARE A COMMON THEME

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

DVCON Verification Challenge

» Directed testing is too directed
« Constrained random inherently incomplete — FSMs challenging
* Formal verification capable of

— Hunting deep corner case bugs

— Build exhaustive proofs

« But formal without a good methodology doesn’t scale

EEEEEEEEEEEEEEE

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

PACKETS

MAX 4 PACKETS
CAN BE STORED

SYSTEMS INITIATIVE

Variable Packet Design

BUFFER DEPTH e.g., 8 DEEP

8-bit PACKET

NOT ALLBUFFER LOCATIONS ARE

. . . WRITTEN

GREEN DOTS SPECIFY WHICH BUFFER

LOCATIONS HOLD VALID PACKETS

2019

DESIGMN ARD WVERIFICATICMN™

DV Design Description

WRITE FSM READ FSM

clk ——)
l/f C
reseftn ——— ~ f} x
S

valid i ——

EMPTY AND FULL valid_o

S/

— enable o

3 ——— data o

data | —— — % /

| -~) E—
pkt len i —— _) _ }
J J — full o

enable | ——

PACKET PACKET
WRITE FSM READ F5M

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFERENCE AMD EXHIBITION

SYSTEMS INITIATIVE

«f LA A

data_i
hsk_i

pkt_len_i ;

wptr

data[0][0]
data[0][1] :
data[0][2]
mmmm:
data[1][1]
datal2][0] ;
data[2][1]
mmmm:
data[2][3]
data[3][0]

data[3][1]

Example Behaviour

2 ‘ 5

7

11

0x80

X dxdf

a

e

8 0 8 8 G0 €8

0, X W
= ‘ ‘ v
i ‘ ‘ B
A ‘ ‘ N
T ‘ ‘ 2

\

)

2 X s X b

%,

2

7

7

7227\

Buffer depth: 4
No of packets: up to 8
PACKET SIZE: 8-bits
9th valid bit set to 1

Packet length=pkt_len_i+1

DESIGMN ARD WVERIFICATICMN™

DVCON Verification Strategy

* Build mechanisms to track data

* Provide any constraints or assumptions

« \Write checks/assertions to establish “correctness always holds”
* Write cover properties to check certain behaviours can occur

« Ensure that you have not missed any bug in your test bench

EEEEEEEEEEEEEE

DESIGMN ARD WVERIFICATICMN™

DVCON Formal Verification Strategy

No sequence generation, stimulus is free

Just constrain out the illegal stimulus

Checking by formal tools is symbolic — covering all combinations of Os and 1s

Track inputs going into the DUT and check if the expected ones come out
— But, tracking is not done for every incoming value explicitly
— Track one symbolic value — you track all the values... yeah seems like magic!

— Designated values that are tracked are called “watched values”

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

7
7L
AT~
e
[mmeaay

3y

V4 \ \\"“\‘
4, :@* \\\\§\}\ <
/ \

\ (N X AV
I 7z NN N v uu).""ﬁ‘é"
gl 8 » I NN
I\ \”\ y S : /4;4;.;:{.7IEIA'A ‘

~—— Smart Tracker

SYSTEMS INITIATIVE

e
e

DVCON ' I
Smart Tracker in Action
FIFO is EMPTY
data |
push
pop data o
clk

(
“ resetn

push—
pop —
clk —

reseth —
accellera

SYSTEMS INITIATIVE

counter=0

e
2019

DESISM ARD W IS ATICMN™

DVCON First Write

UNITED STATES

data o

counter=0

accellera

SYSTEMS INITIATIVE

13

e
2019

DESISM ARD W IS ATICMN™

DVCON Second Write

UNITED STATES

data o

counter=1

accellera

SYSTEMS INITIATIVE

14

e
2019

DESISM ARD W IS ATICMN™

DVCON Third Write

UNITED STATES

data o

counter=2

accellera

SYSTEMS INITIATIVE

15

DESIGMN ARD WVERIFICATICMN™

DVCON Watched Data Appears on Input

data o

push—
pop —
clk —,
resetn —,

counter=3

16

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

Three Elements Ahead of Watched Data

data o

push—
pop —
clk counter=4
—_—
reseth —,
accellera

SYSTEMS INITIATIVE

17

DESIGMN ARD WVERIFICATICMN™

DVCON Reading The Data

data o

push—
pop —
clk —,
resetn —,

counter=4

18

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

DVCON '
Reading The Data

data |

push

data o

clk

resetn

push—
pop —
clk —,
resetn —,

counter=3

19

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

DVCON '
Reading The Data

data |

push

data o

clk

resetn

push—
pop —
clk —,
resetn —,

counter=2

20

SYSTEMS INITIATIVE

2019

DESISM ARD W IS ATICMN™

DVCON '
Reading The Data

data i

push

data o

push—
pop —
clk —
resetn —,

Counter is 1 and we have a read
counter=1 request means we are ready to
read the watched data

accellera

SYSTEMS INITIATIVE

21

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

I

A
77777
ek Y

A e
4, :@* \\\\§\}\ <
/ \

\ (N X AV
I 7z NN N v uu).""ﬁ‘é"
gl 8 » I NN
I\ \”\ y S : /4;4;.;:{.7IEIA'A ‘

) Adapting Smart Tracker

SYSTEMS INITIATIVE

22

DESIGMN ARD WVERIFICATICMN™

DVCOIN Adapting Smart Tracker

Tracking would have to be done for all packets, not just one!

Challenge is that we have variable number of packets, not just fixed size!

Watched data can be any packet between 0 and P-1 for a max of P packets!

Checkers verify that the design works for all watched packets not just one!

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DV Observing Sampling In

always (@ (posedge clk or negedge resetn)
if ('resetn)

sample in started <= 1'Db0;
else

sample in started <= ready to start sampling in;

always (@ (posedge clk or negedge resetn)
if ('resetn)

sample in finished <= 1'Db0;
else

sample in finished <= ready to finish sampling in;

(acceller2)

SYSTEMS INITIATIVE

24

2019

DESIGMN ARD WVERIFICATICMN™

DV Observing Sampling Out

always (@ (posedge clk or negedge resetn)
if ('resetn)

sample out started <= 1'Db0;
else

sample out started <= ready to start sampling out;

always (@ (posedge clk or negedge resetn)
if ('resetn)

sample out finished <= 1’'b0;
else

sample out finished <= ready to finish sampling out;

(acceller2)

SYSTEMS INITIATIVE

25

2019

DESIGMN ARD WVERIFICATICMN™

DVCON Ready to Sample?
assign ready to start sampling in = sample in started || sample in started c;
assign ready to finish sampling in = sample in finished || sample in finished c;

assign ready to start sampling out sample out started | |
sample out started c;
assign ready to finish sampling out = sample out finished ||

sample out finished c;
‘'sample_in started c: on an input handshake when the very first input data matches wd|[0]
\

sample in finish c: if we already started and are going to finish and have an input handshake

sample out started c: start sampling out when tracking counter is 1

sample out finish c: Stop sampling out if all packets would be be read out and we started to sample out

26

SYSTEMS INITIATIVE

2013

DESIGMN ARD WVERIFICATICMN™

DVCOIN Tracking Counter

always @Q(posedge clk or negedge resetn)

if ('resetn)

tracking counter <= ‘h0;
I sample 1n started && sample 1n finished;

else if

tracking counter <= tracking counter + incr - decr;
assign incr = hsk i && (pkt wptr[wptr]==cpkt len[wptr]) && !input sampled completely;

assign decr = hsk o && (pkt rptr[rptr]==0) && !sample out started;

27

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DV Counting Output Packets

always @ (posedge clk or negedge resetn)
if ('resetn)
counter out <= ‘h0;
else if (input sampled completely && not sampled out completely)

counter out <= counter out + 1’'bl;

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVCON Master Ordering Checks
generate
for (i=0;i<PKT _LEN-1;i=i+l) begin: as_all packets
but last:

assert property (input sampled completely &&
not sampled out completely &&
(counter out==i)
| =>
data o==wd[i]) ;
end

endgenerate

as_last packet:
assert property (input sampled completely && sample out started &&

$rose (sample out_finished) ryymemps: length one
| =>

| \
_.__:_3@ (data o==wd[PKT LEN-1] || data o==wd[0])) ;

SYSTEMS INITIATIVE

29

110011010010100011100n* " -"1101001010100101111cC

1 1651 15 Iy
)00110000000110100~ _,_L)O 1o '00101010100101001

11 1100101010111”11 1%"_0 1010() '10101100100010C

)00110001100010¢ 110010101010110
01010100101010' 01071 B LG 1001 0100010101001
010011100101010¢ 10101010000101
ho01110010011100. Y10010101010 20n1010
01100010100011100g g 4 (4 5 1 #-01010:-
010100101010100101010.4+ ©41000111001010100 -

acelerd) Catching Bugs

O
2019

DESIGMN ARD WVERIFICATICMN™

SNl Catching Reordering Bug

| Carried out on an Intel i5 7300 with 6 GB RAM |

Fle View Source Tace Tools Window Help ',w""' \
O MDL B Z 6 DDes0000LT @ SE B | 1042248 states)
@ 7 (4 s @ Appmose: Fev - ~141K flops

VCF:GoallList

E] Time Max Cycle |-1 I | <Enter name Match Value>

Verification Targets: ALL
512-deep buffer
status * | deptn | name | elapsed time | engine | type
< Up to 8 packets
5 packet design.u_pkt design sva.as all packets[0].but last 00:02:16 bl assert p p
7 packet_design.u_pkt_design_sva.as_all_packets[1].but_last 00:02:42 bl assert Packet Slze 32 bl‘t
9 packet_design.u_pkt_design_sva.as_all_packets[2].but_last 00:03:46 bl assert
14 packet_design.u_pkt_design_sva.as_all_packets[3].but_last 00:06:49 sl assert

Bug found in less than 40

16 packet_design.u_pkt_design_sva.as_all_packets[5].but_last 00:07:05 sl assert mtunu te S

18 packet_design.u_pkt_design_sva.as_all_packets[6].but_last 00:39:22 el assert

- packet_design.u_pkt _design_sva.as_last_packet 00:01:16 el assert

O Tool shown: Synopsys VC Formal

W eﬂ 31

SYSTEMS INITIATIVE

16 packet_design.u_pkt design_sva.as_all packets[4].but last 00:26:49 el assert

DNV JIWIN|-

XX XXX XXX

.
2019

DESIGMN ARD WVERIFICATICMN™

DVCON Inconclusive Proofs

Fle \View Source Tace Tools Window Help / “

emE-L B2 DResBRO0OL% @ o s
s | .
z A ode; |[FPV -
2 Nedof X RS | ~128 flops
VCF: GoalList
E] Time Max Cycle [—1] [|--:E|'|I:E|' name Match Value=
Verification ‘I'n‘ 8—deep buffer
status depth name Up to 4'paCketS
1 A packet design.u_pkt design sva.as all packets[0].but last Packet size: 4 bit
7 Y 22 packet_design.u_pkt design_sva.as all_packets[1].but_last
? A 23 packet _design.u_pkt design sva.as all packets[2].but last INCONCLUSIVE PROOEF
4 ki

22 packet_design.u_pkt design sva.as last packet /

Carried out on an Intel 15 7300 with 6 GB RAM

SYSTEMS INITIATIVE

UNITED STATES

What's the Biggest Design Provable in an Hour?

When rubber hits the ground

33

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

(acceller2)

SYSTEMS INITIATIVE

REAL TIME (sec)

4000
3500
3000
2500
2000
1500
1000

500

Increasing Buffer Depth

6 8 10 12
DEPTH

——2 PACKETS WITH 1 BIT WIDE DATA

14

'V"vv
/
|

10° states!
~16 flops

8-deep buffer

Up to 2-packets
Packet size: 1 bit

-

CONCLUSIVE PROOF

16

34

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

SYSTEMS INITIATIVE

REAL TIME (sec)

600

500

400

300

200

100

Increasing Number of Packets

4 6 8 10 12
PACKETS

——2DEEP BUFFER WITH 1 BIT WIDE DATA

14

16

10° states!
~16 flops

2-deep buffer

Up to 8-packets
Packet size: 1 bit

\-

CONCLUSIVE PROOF

35

2019
DVCOIN Increasing Packet Size
4000 ()
3500 10676 states!
3000 ~2048 flops
T 2500
(]
= 2000 2-deep buffer
= 1500 Up to 2-packets
= 1000 Packet size: 512 bit
o
5"2 CONCLUSIVE PROOF

2 68 134 200 266 332 398 464 530
DATA WIDTH \\x_

——2 DEEP BUFFER WITH 2 PACKETS

: ._:_a@ 36

SYSTEMS INITIATIVE

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFERENCE AMD EXHIBITION

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

DVCOIN Proof Engineering

Scalable formal verification

“Proof Engineering”

Invariants
Assume Guarantee

a@ 38

EEEEEEEEEEEEEEE

DESIGMN ARD WVERIFICATICMN™

DVCON Invariants and Assume Guarantee

* Break the whole puzzle into smaller jigsaws

¥
* |dentify helper lemmas asi‘ndividual components of jigsaw
+ |dentify how they fit together to complete the full puzzle
« PROVE helper lemmas the‘n ASSUME them to prove other lemmas
- CAUSE)
FFECT

EEEEEEEEEEEEEEE

39

(2019

DESIGMN ARD WVERIFICATICMN™

DVEEL!:;' Invariants Help in Proof Convergence

RESET RESET RESET

Once proven
tools save
time on
search

40

2019

DESIGMN ARD WVERIFICATICMN™

DVCON Invariants and Assume Guarantee

LO: If sample in started and sample out finished then the tracking
counter is zero.

RESET L1: If watched data input has not been sampled in then tracking counter
is less than or equal to the difference between the write and the read

’ pointers.
L2: If watched data input has been sampled in but sampling out has not
started then the tracking counter is less than or equal to the difference
between the write and the read pointers.

L3: If the sampling out has not started then the very first watched data that
was sampled in the design must be residing at the location given by the
function of read pointer and tracking counter.

L4: If the very first watched data value has been seen at the output port
then the next data value to be seen on the output will be the next watched
data value sampled into the design.

41

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

COMFEREMCE AMD EXHIBITION

SYSTEMS INITIATIVE

REAL TIME (sec)

Increasing Packets

600
500
400
300
200

100

2 4 6
NO. OF PACKETS

--256 DEEP BUFFER WITH 1 BIT WIDE DATA

10616 states!
~2048 flops

|

Up to 8-packets

256-deep buffer
Packet size: 1 bit

PROOF in 7 min 59 sec

- /

42

2019
DVCOIN Increasing Buffer Depth
)
1200
101232 states!

1000 ~4096 flops
= 800 512-deep buffer
Q Up to 8-packets
= 600 Packet size: 1 bit
= 400 . .
— PROOF in 17 min
— 200
< _ -/
L
© 0

0 100 200 300 400 500
DEPTH

-8 PACKETS WITH 1 BIT WIDE DATA

3 - 43

SYSTEMS INITIATIVE

2013
DVCOIN Increasing Packet Size
\
2505
107397 states!
2005 ~24,576 flops
g 1505 256-deep buffer
L Up to 8-packets
g 1005 Packet size: 12 bit
E 505 PROOF in 35 min
<
L 5
- 2 4 6 8 10 12 \ /

DATA WIDTH
—--256 DEEP BUFFER WITH 8 PACKETS

.' E@ 44

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

DVCOIN Proof Engineering

Scalable formal verification

“Proof Engineering”

Invariants
Assume Guarantee

EEEEEEEEEEEEEEE

2019

DESIGMN ARD WVERIFICATICMN™

DVCON Structural Decomposition

Split wide vectors into groups of 8-bits
Creates more properties to prove / \

. J 1010,000 states!
I status | depth I name (C) | engine [elapsed_time ‘
” S S g g I ~32,768 flops
5 v packet_design.u_pkt_design_sva.all_packets_bits[1].index_15_8 el 00:16:29
_5 v packet_design.u_pkt_design_sva.all_packets_bits[1].index_23 16 el 00:30:33
T v packet_design.u_pkt_design_sva.all_packets_bits[1].index_31_24 e3 05:26:31 256_d eep bUffer
T packet design.u_pkt_design_sva.all_packets bits[1].index_7 0 Up to 4_packets
'—9 v 'packet_design.u_pkt_design_sva.all_packets_bits[Z].index_lS_B e3 01:55:23 P k t . . 32 b.t
E packet_design.u_pkt_design_sva.all_packets_bits[2].index_23_16 e3 05:39:03 ac e Slze' L
7]: v packet_design.u_pkt _design_sva.all_packets_bits[2].index_31_24 e3 05:56:47
el packet_design.u_pkt_design_sva.all_packets_bits[2].index_7_0 . H
2 PROOF in 7 hours 54 min
status | depth | name (C) v I engine I elapsed_time I type
X A 46 packet_design.u_pkt_design_sva.all_packets_bits[2].index_7 0 bl 02:02:09 assert
Bl packet_design.u_pkt_design_sva.all_packets_bits[1].index_7_0 el 00:48:24 assert a
2 | | Running out of compute
3 v packet_design.u_pkt_design_sva.all_packets_bits[0].index_7 0 el 00:40:18 assert . .
= power at this point!!
status \I depth I name (C)] engine] elapsed_time [type
1 v packet_design.u_pkt_design_sva.all_packets_bits[2].index_7_0 el 00:14:21 assert

SYSTEMS INITIATIVE

DESIGMN ARD WVERIFICATICMN™

DV Scaling Compute Power

« On a 128 GB, 18-core machine

« For a design with 500K+ flops (10764228 states)
— 256-deep, up to 64 packets, each packet being 32-bit

Bug hunting

— Random reordering bug can be found in under 20 min of run time

 Exhaustive Proof obtained in under 3 hours

a@ 47

EEEEEEEEEEEEEEE

2019

DESIGMN ARD WVERIFICATICMN™

DVCOIN

COMFEREMCE AMD EXHIBITION

Qgcceﬂera

SYSTEMS INITIATIVE

W formal

92 sec to find corner case bugs!

Designflops 126+ million
Gates 449+ million
Property flops 7.9+ million
Checktype end-to-end
Compiletime 35 minutes!
Cut-pointing No

Black-boxing: No

338 million flops, 1.1 billion gates, 100.2 seconds to find bugs!

48

2019

DESIGMN ARD WVERIFICATICMN™

DVCON

COMFEREMCE AMD EXHIBITION

accellera)

SYSTEMS INITIATIVE

AVOID
BUGS

T

FORMAL
TOOL

T

DESIGN

DETECT
BUGS

T

FORMAL
TOOL

T

DESIGN
+
CONSTRAINTS

ADEPT FV®

BUGs

COVERAG®

ERASE
BUGS

T4y

FORMAL
TOOL

T

DESIGN
+

CONSTRAINTS

=+

USER
PROPERTIES

PROOFs

COVERAG®

PROVE
BUG
ABSENCE

T

FORMAL
TOOL

T

DESIGN
+
CONSTRAINTS
+

USER
PROPERTIES

TAPE OUT
WITHOUT
BUGS

T

FORMAL
TOOL

T

DESIGN

+

CONSTRAINTS

+

USER
PROPERTIES

49

DESIGMN ARD WE|

COMFEREMCE AM|

HHHHHHHHHH

DV Summary

Verification of serial designs is a challenge
What we need is: Methodology + Technology

On a laptop we find:

— bugs in designs with 141K flops in less than 40 min

— proof in designs with 24K flops in less than 35 min

On a server with 128GB RAM we find:

— catch bugs in designs with 500k+ flops in less than 20 min
— proof in 3 hours (256 deep, 64 packets, 32-bit packet size)

There is no other verification paradigm quite like formal!

IIIIIIIIIII

IATIVE

50

	Smart Formal for Scalable Verification
	PACKET-BASED DESIGNS
	Sequential Multi-packet Designs
	SoC Verification
	Verification Challenge
	Variable Packet Design
	Design Description
	Example Behaviour
	Verification Strategy
	Formal Verification Strategy
	Slide Number 11
	Smart Tracker in Action
	First Write
	Second Write
	Third Write
	Watched Data Appears on Input
	Three Elements Ahead of Watched Data
	Reading The Data
	Reading The Data
	Reading The Data
	Reading The Data
	Slide Number 22
	Adapting Smart Tracker
	Observing Sampling In
	Observing Sampling Out
	Ready to Sample?
	Tracking Counter
	Counting Output Packets
	Master Ordering Checks
	Slide Number 30
	Catching Reordering Bug
	Inconclusive Proofs
	What’s the Biggest Design Provable in an Hour?
	Increasing Buffer Depth
	Increasing Number of Packets
	Increasing Packet Size
	Increasing Scalability
	Proof Engineering
	Invariants and Assume Guarantee
	Invariants Help in Proof Convergence
	Invariants and Assume Guarantee
	Increasing Packets
	Increasing Buffer Depth
	Increasing Packet Size
	Proof Engineering
	Structural Decomposition
	Scaling Compute Power
	Slide Number 48
	ADEPT FV®
	Summary

