
Smart Formal for Scalable Verification

1

Ashish Darbari
Axiomise

PACKET-BASED DESIGNS

What’s the game here?

2

Sequential Multi-packet Designs

• Units of data flow together in what we call as packets
– Fixed number of packets
– Variable number of packets

• Usual requirement is that packets must not be:
– Reordered
– Dropped
– Modified in flight

• State of each packet depends on the state of all others ahead of it

3

VERIFICATION NIGHTMARE!

SoC Verification

4

DDR

CPU GPU Vision Radio

INTERCONNECT

USB I2C Bluetooth Ethernet

DMA

Load Store Unit Memory
subsystem

Tile Memory
Architecture

Routers DMA Data
Transfer

Bus Bridges

Bus Bridges

NoC

PACKET-BASED DESIGNS ARE A COMMON THEME

Verification Challenge

• Directed testing is too directed
• Constrained random inherently incomplete – FSMs challenging
• Formal verification capable of

– Hunting deep corner case bugs
– Build exhaustive proofs

• But formal without a good methodology doesn’t scale

5

Variable Packet Design

6

Design Description

7

8

Example Behaviour

Buffer depth: 4

No of packets: up to 8

PACKET SIZE: 8-bits

9th valid bit set to 1

Packet length=pkt_len_i+1

Verification Strategy

• Build mechanisms to track data

• Provide any constraints or assumptions

• Write checks/assertions to establish “correctness always holds”

• Write cover properties to check certain behaviours can occur

• Ensure that you have not missed any bug in your test bench

9

Formal Verification Strategy
• No sequence generation, stimulus is free

• Just constrain out the illegal stimulus

• Checking by formal tools is symbolic – covering all combinations of 0s and 1s

• Track inputs going into the DUT and check if the expected ones come out

– But, tracking is not done for every incoming value explicitly

– Track one symbolic value – you track all the values… yeah seems like magic!

– Designated values that are tracked are called “watched values”

10

11

Smart Tracker

Smart Tracker in Action

12

wptr

rptr

counter=0

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

FIFO is EMPTY

First Write

13

wptr

rptr

counter=0

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

A

Second Write

14

wptr

rptr

counter=1

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

A

B

Third Write

15

wptr

rptr

counter=2

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

C

BA

Watched Data Appears on Input

16

wptr

rptr

counter=3

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

CB

WD

A

Three Elements Ahead of Watched Data

17

wptr

rptr

counter=4

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

CB WDA

Reading The Data

18

wptr

rptr

counter=4

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

CB WDA

Reading The Data

19

wptr

rptr

counter=3

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

CB WD
A

Reading The Data

20

wptr

rptr

counter=2

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

C WD
B

Reading The Data

21

wptr

rptr

counter=1

push

pop

data_i

clk

resetn

data_o

push
pop
clk

resetn

WD
C

Counter is 1 and we have a read
request means we are ready to

read the watched data

22

Adapting Smart Tracker

Adapting Smart Tracker

• Tracking would have to be done for all packets, not just one!

• Challenge is that we have variable number of packets, not just fixed size!

• Watched data can be any packet between 0 and P-1 for a max of P packets!

• Checkers verify that the design works for all watched packets not just one!

23

Observing Sampling In
always @(posedge clk or negedge resetn)
if (!resetn)

sample_in_started <= 1’b0;
else

sample_in_started <= ready_to_start_sampling_in;

always @(posedge clk or negedge resetn)
if (!resetn)

sample_in_finished <= 1’b0;
else

sample_in_finished <= ready_to_finish_sampling_in;

24

Observing Sampling Out
always @(posedge clk or negedge resetn)
if (!resetn)

sample_out_started <= 1’b0;
else

sample_out_started <= ready_to_start_sampling_out;

always @(posedge clk or negedge resetn)
if (!resetn)

sample_out_finished <= 1’b0;
else

sample_out_finished <= ready_to_finish_sampling_out;

25

Ready to Sample?
assign ready_to_start_sampling_in = sample_in_started || sample_in_started_c;

assign ready_to_finish_sampling_in = sample_in_finished || sample_in_finished_c;

assign ready_to_start_sampling_out = sample_out_started ||

sample_out_started_c;

assign ready_to_finish_sampling_out = sample_out_finished ||

sample_out_finished_c;

26

sample_in_started_c: on an input handshake when the very first input data matches wd[0]

sample_in_finish_c: if we already started and are going to finish and have an input handshake

sample_out_started_c: start sampling out when tracking counter is 1

sample_out_finish_c: stop sampling out if all packets would be be read out and we started to sample out

Tracking Counter
always @(posedge clk or negedge resetn)

if (!resetn)

tracking_counter <= ‘h0;

else if

tracking_counter <= tracking_counter + incr – decr;

assign incr = hsk_i && (pkt_wptr[wptr]==cpkt_len[wptr]) && !input_sampled_completely;

assign decr = hsk_o && (pkt_rptr[rptr]==0) && !sample_out_started;

27

Counting Output Packets

always @(posedge clk or negedge resetn)

if (!resetn)

counter_out <= ‘h0;

else if (input_sampled_completely && not_sampled_out_completely)

counter_out <= counter_out + 1’b1;

28

Master Ordering Checks
generate
for (i=0;i<PKT_LEN-1;i=i+1) begin: as_all_packets

but_last:
assert property (input_sampled_completely &&

not_sampled_out_completely &&
(counter_out==i)
|=>
data_o==wd[i]);

end
endgenerate

as_last_packet:
assert property (input_sampled_completely && sample_out_started &&

$rose(sample_out_finished)
|->

(data_o==wd[PKT_LEN-1] || data_o==wd[0]));
29

Packets of length one

30Catching Bugs

Catching Reordering Bug

31

Tool shown: Synopsys VC Formal

1042,248 states
~141K flops

512-deep buffer
Up to 8 packets

Packet size: 32 bit

Bug found in less than 40
minutes

Carried out on an Intel i5 7300 with 6 GB RAM

Inconclusive Proofs

32

Carried out on an Intel i5 7300 with 6 GB RAM

1038 states!
~128 flops

8-deep buffer
Up to 4-packets
Packet size: 4 bit

INCONCLUSIVE PROOF

What’s the Biggest Design Provable in an Hour?

When rubber hits the ground

33

Increasing Buffer Depth

34

0

500

1000

1500

2000

2500

3000

3500

4000

2 4 6 8 10 12 14 16

RE
AL

 T
IM

E
(s

ec
)

DEPTH

2 PACKETS WITH 1 BIT WIDE DATA

105 states!
~16 flops

8-deep buffer
Up to 2-packets
Packet size: 1 bit

CONCLUSIVE PROOF

Increasing Number of Packets

35

0

100

200

300

400

500

600

2 4 6 8 10 12 14 16

RE
AL

 T
IM

E
(s

ec
)

PACKETS

2DEEP BUFFER WITH 1 BIT WIDE DATA

105 states!
~16 flops

2-deep buffer
Up to 8-packets
Packet size: 1 bit

CONCLUSIVE PROOF

Increasing Packet Size

36

0

500

1000

1500

2000

2500

3000

3500

4000

2 68 134 200 266 332 398 464 530

RE
AL

 T
IM

E
(s

ec
)

DATA WIDTH

2 DEEP BUFFER WITH 2 PACKETS

10616 states!
~2048 flops

2-deep buffer
Up to 2-packets

Packet size: 512 bit

CONCLUSIVE PROOF

Increasing Scalability

Proof Engineering

38

Scalable formal verification
=

“Proof Engineering”

Invariants
Assume Guarantee

Invariants and Assume Guarantee

• Break the whole puzzle into smaller jigsaws

• Identify helper lemmas as individual components of jigsaw

• Identify how they fit together to complete the full puzzle

• PROVE helper lemmas then ASSUME them to prove other lemmas

39

Invariants Help in Proof Convergence

40

RESET RESET

Once proven
tools save

time on
search

RESET

Invariants and Assume Guarantee

41

L1

L2
L3
L4

L0: If sample in started and sample out finished then the tracking
counter is zero.

L1: If watched data input has not been sampled in then tracking counter
is less than or equal to the difference between the write and the read
pointers.

L2: If watched data input has been sampled in but sampling out has not
started then the tracking counter is less than or equal to the difference
between the write and the read pointers.

L3: If the sampling out has not started then the very first watched data that
was sampled in the design must be residing at the location given by the
function of read pointer and tracking counter.

L4: If the very first watched data value has been seen at the output port
then the next data value to be seen on the output will be the next watched
data value sampled into the design.

Master check

RESET

L0

Increasing Packets

42

0

100

200

300

400

500

600

2 4 6 8

RE
AL

 T
IM

E
(s

ec
)

NO. OF PACKETS
256 DEEP BUFFER WITH 1 BIT WIDE DATA

10616 states!
~2048 flops

256-deep buffer
Up to 8-packets
Packet size: 1 bit

PROOF in 7 min 59 sec

Increasing Buffer Depth

43

0

200

400

600

800

1000

1200

0 100 200 300 400 500

RE
AL

 T
IM

E
(s

ec
)

DEPTH
8 PACKETS WITH 1 BIT WIDE DATA

101232 states!
~4096 flops

512-deep buffer
Up to 8-packets
Packet size: 1 bit

PROOF in 17 min

Increasing Packet Size

44

5

505

1005

1505

2005

2505

2 4 6 8 10 12RE
AL

 T
IM

E
(s

ec
)

DATA WIDTH
256 DEEP BUFFER WITH 8 PACKETS

107397 states!
~24,576 flops

256-deep buffer
Up to 8-packets
Packet size: 12 bit

PROOF in 35 min

Proof Engineering

45

Scalable formal verification
=

“Proof Engineering”

Decomposition

Invariants
Assume Guarantee

Structural Decomposition

46

Split wide vectors into groups of 8-bits
Creates more properties to prove

But each property itself is tractable
1010,000 states!
~32,768 flops

256-deep buffer
Up to 4-packets
Packet size: 32 bit

PROOF in 7 hours 54 min

Running out of compute
power at this point!!

Scaling Compute Power

• On a 128 GB, 18-core machine

• For a design with 500K+ flops (10164,228 states)

– 256-deep, up to 64 packets, each packet being 32-bit

• Bug hunting

– Random reordering bug can be found in under 20 min of run time

• Exhaustive Proof obtained in under 3 hours

47

48

338 million flops, 1.1 billion gates, 100.2 seconds to find bugs!

ADEPT FV®

49

Summary

• Verification of serial designs is a challenge
• What we need is: Methodology + Technology
• On a laptop we find:

– bugs in designs with 141K flops in less than 40 min
– proof in designs with 24K flops in less than 35 min

• On a server with 128GB RAM we find:
– catch bugs in designs with 500k+ flops in less than 20 min
– proof in 3 hours (256 deep, 64 packets, 32-bit packet size)

• There is no other verification paradigm quite like formal!

50

	Smart Formal for Scalable Verification
	PACKET-BASED DESIGNS
	Sequential Multi-packet Designs
	SoC Verification
	Verification Challenge
	Variable Packet Design
	Design Description
	Example Behaviour
	Verification Strategy
	Formal Verification Strategy
	Slide Number 11
	Smart Tracker in Action
	First Write
	Second Write
	Third Write
	Watched Data Appears on Input
	Three Elements Ahead of Watched Data
	Reading The Data
	Reading The Data
	Reading The Data
	Reading The Data
	Slide Number 22
	Adapting Smart Tracker
	Observing Sampling In
	Observing Sampling Out
	Ready to Sample?
	Tracking Counter
	Counting Output Packets
	Master Ordering Checks
	Slide Number 30
	Catching Reordering Bug
	Inconclusive Proofs
	What’s the Biggest Design Provable in an Hour?
	Increasing Buffer Depth
	Increasing Number of Packets
	Increasing Packet Size
	Increasing Scalability
	Proof Engineering
	Invariants and Assume Guarantee
	Invariants Help in Proof Convergence
	Invariants and Assume Guarantee
	Increasing Packets
	Increasing Buffer Depth
	Increasing Packet Size
	Proof Engineering
	Structural Decomposition
	Scaling Compute Power
	Slide Number 48
	ADEPT FV®
	Summary

