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PACKET-BASED DESIGNS

What's the game here?
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DVCON Sequential Multi-packet Designs

* Units of data flow together in what we call as packets
— Fixed number of packets

— Variable number of packets

« Usual requirement is that packets must not be:
— Reordered
— Dropped
— Modified in flight

« State of each packet depends on the state of all others ahead of it

3@4@,& VERIFICATION NIGHTMARE!
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DVCON SoC Verification
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PACKET-BASED DESIGNS ARE A COMMON THEME
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DVCON Verification Challenge

» Directed testing is too directed
« Constrained random inherently incomplete — FSMs challenging
* Formal verification capable of

— Hunting deep corner case bugs

— Build exhaustive proofs

« But formal without a good methodology doesn’t scale
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DVCOIN

COMFEREMCE AMD EXHIBITION

PACKETS

MAX 4 PACKETS
CAN BE STORED
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Variable Packet Design

BUFFER DEPTH e.g., 8 DEEP

8-bit PACKET

NOT ALLBUFFER LOCATIONS ARE

. . . WRITTEN

GREEN DOTS SPECIFY WHICH BUFFER

LOCATIONS HOLD VALID PACKETS
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DV Design Description

WRITE FSM READ FSM
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DVCON

COMFERENCE AMD EXHIBITION
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Buffer depth: 4
No of packets: up to 8
PACKET SIZE: 8-bits
9th valid bit set to 1

Packet length=pkt_len_i+1
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DVCON Verification Strategy

* Build mechanisms to track data

* Provide any constraints or assumptions

« \Write checks/assertions to establish “correctness always holds”
* Write cover properties to check certain behaviours can occur

« Ensure that you have not missed any bug in your test bench

EEEEEEEEEEEEEE



DESIGMN ARD WVERIFICATICMN™

DVCON Formal Verification Strategy

No sequence generation, stimulus is free

Just constrain out the illegal stimulus

Checking by formal tools is symbolic — covering all combinations of Os and 1s

Track inputs going into the DUT and check if the expected ones come out
— But, tracking is not done for every incoming value explicitly
— Track one symbolic value — you track all the values... yeah seems like magic!

— Designated values that are tracked are called “watched values”
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DVCOIN

COMFEREMCE AMD EXHIBITION
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~—— Smart Tracker
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DVCON ' I
Smart Tracker in Action
FIFO is EMPTY
data |
push
pop data o
clk

(
“ resetn

push—
pop —
clk —

reseth —
accellera
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counter=0
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DVCON First Write

UNITED STATES

data o

counter=0

accellera
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DVCON Second Write

UNITED STATES

data o

counter=1

accellera
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DVCON Third Write

UNITED STATES

data o

counter=2

accellera
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DVCON Watched Data Appears on Input

data o

push—
pop —
clk —,
resetn —,

counter=3
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Three Elements Ahead of Watched Data

data o

push—
pop —
clk counter=4
—_—
reseth —,
accellera
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DVCON Reading The Data

data o

push—
pop —
clk —,
resetn —,

counter=4

18

SYSTEMS INITIATIVE



DESIGMN ARD WVERIFICATICMN™

DVCON '
Reading The Data

data |

push

data o

clk

resetn

push—
pop —
clk —,
resetn —,

counter=3
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DVCON '
Reading The Data

data |

push

data o

clk

resetn

push—
pop —
clk —,
resetn —,

counter=2
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DVCON '
Reading The Data

data i

push

data o

push—
pop —
clk —
resetn —,

Counter is 1 and we have a read
counter=1 request means we are ready to
read the watched data

accellera
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DVCOIN

COMFEREMCE AMD EXHIBITION
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) Adapting Smart Tracker
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DVCOIN Adapting Smart Tracker

Tracking would have to be done for all packets, not just one!

Challenge is that we have variable number of packets, not just fixed size!

Watched data can be any packet between 0 and P-1 for a max of P packets!

Checkers verify that the design works for all watched packets not just one!
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DV Observing Sampling In

always (@ (posedge clk or negedge resetn)
if ('resetn)

sample in started <= 1'Db0;
else

sample in started <= ready to start sampling in;

always (@ (posedge clk or negedge resetn)
if ('resetn)

sample in finished <= 1'Db0;
else

sample in finished <= ready to finish sampling in;

(acceller2)
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DV Observing Sampling Out

always (@ (posedge clk or negedge resetn)
if ('resetn)

sample out started <= 1'Db0;
else

sample out started <= ready to start sampling out;

always (@ (posedge clk or negedge resetn)
if ('resetn)

sample out finished <= 1’'b0;
else

sample out finished <= ready to finish sampling out;

(acceller2)
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DVCON Ready to Sample?
assign ready to start sampling in = sample in started || sample in started c;
assign ready to finish sampling in = sample in finished || sample in finished c;

assign ready to start sampling out sample out started | |
sample out started c;
assign ready to finish sampling out = sample out finished ||

sample out finished c;
‘'sample_in started c: on an input handshake when the very first input data matches wd|[0]
\

sample in finish c: if we already started and are going to finish and have an input handshake

sample out started c: start sampling out when tracking counter is 1

sample out finish c: Stop sampling out if all packets would be be read out and we started to sample out

26
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DVCOIN Tracking Counter

always @Q(posedge clk or negedge resetn)

if ('resetn)

tracking counter <= ‘h0; . . ..
I sample 1n started && sample 1n finished;

else if

tracking counter <= tracking counter + incr - decr;
assign incr = hsk i && (pkt wptr[wptr]==cpkt len[wptr]) && !input sampled completely;

assign decr = hsk o && (pkt rptr[rptr]==0) && !sample out started;

27
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DV Counting Output Packets

always @ (posedge clk or negedge resetn)
if ('resetn)
counter out <= ‘h0;
else if (input sampled completely && not sampled out completely)

counter out <= counter out + 1’'bl;

SYSTEMS INITIATIVE
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DVCON Master Ordering Checks
generate
for (i=0;i<PKT _LEN-1;i=i+l) begin: as_all packets
but last:

assert property (input sampled completely &&
not sampled out completely &&
(counter out==i)
| =>
data o==wd[i]) ;
end

endgenerate

as_last packet:
assert property (input sampled completely && sample out started &&

$rose (sample out_finished) ryymemps: length one
| =>

| \
_.__:_3@ (data o==wd[PKT LEN-1] || data o==wd[0])) ;

SYSTEMS INITIATIVE
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SNl Catching Reordering Bug

| Carried out on an Intel i5 7300 with 6 GB RAM |

Fle View Source Tace Tools Window Help ',w""' \
O MDL B Z 6 DDes0000LT @ SE B | 1042248 states )
@ 7 (4 s @ Appmose: Fev - ~141K flops

VCF:GoallList

E] Time Max Cycle |-1 I | <Enter name Match Value>

Verification Targets: ALL
512-deep buffer
status * | deptn | name | elapsed time | engine | type
< Up to 8 packets
5 packet design.u_pkt design sva.as all packets[0].but last 00:02:16 bl assert p p
7 packet_design.u_pkt_design_sva.as_all_packets[1].but_last 00:02:42 bl assert Packet Slze 32 bl‘t
9 packet_design.u_pkt_design_sva.as_all_packets[2].but_last 00:03:46 bl assert
14 packet_design.u_pkt_design_sva.as_all_packets[3].but_last 00:06:49 sl assert

Bug found in less than 40

16 packet_design.u_pkt_design_sva.as_all_packets[5].but_last 00:07:05 sl assert mtunu te S

18 packet_design.u_pkt_design_sva.as_all_packets[6].but_last 00:39:22 el assert

- packet_design.u_pkt _design_sva.as_last_packet 00:01:16 el assert

O Tool shown: Synopsys VC Formal

W eﬂ 31
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16 packet_design.u_pkt design_sva.as_all packets[4].but last 00:26:49 el assert

DNV JIWIN|-
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DVCON Inconclusive Proofs

Fle \View Source Tace Tools Window Help / “

emE-L B2 DResBRO0OL% @ o s
s | .
z A ode; |[FPV -
2 Nedof X RS | ~128 flops
VCF: GoalList
E] Time Max Cycle [—1 ] [ |--:E|'|I:E|' name Match Value=
Verification ‘I'n‘ 8—deep buffer
status depth name Up to 4'paCketS
1 A packet design.u_pkt design sva.as all packets[0].but last Packet size: 4 bit
7 Y 22 packet_design.u_pkt design_sva.as all_packets[1].but_last
? A 23 packet _design.u_pkt design sva.as all packets[2].but last INCONCLUSIVE PROOEF
4 ki

22 packet_design.u_pkt design sva.as last packet /

Carried out on an Intel 15 7300 with 6 GB RAM
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What's the Biggest Design Provable in an Hour?

When rubber hits the ground

33
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COMFEREMCE AMD EXHIBITION

(acceller2)
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REAL TIME (sec)

4000
3500
3000
2500
2000
1500
1000

500

Increasing Buffer Depth

6 8 10 12
DEPTH

——2 PACKETS WITH 1 BIT WIDE DATA

14

'V"vv
/
|

10° states!
~16 flops

8-deep buffer

Up to 2-packets
Packet size: 1 bit

-

CONCLUSIVE PROOF

16
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DVCOIN

COMFEREMCE AMD EXHIBITION
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REAL TIME (sec)

600

500

400

300

200

100

Increasing Number of Packets

4 6 8 10 12
PACKETS

——2DEEP BUFFER WITH 1 BIT WIDE DATA

14

16

10° states!
~16 flops

2-deep buffer

Up to 8-packets
Packet size: 1 bit

\-

CONCLUSIVE PROOF
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DVCOIN Increasing Packet Size
4000 ( )
3500 10676 states!
3000 ~2048 flops
T 2500
(]
= 2000 2-deep buffer
= 1500 Up to 2-packets
= 1000 Packet size: 512 bit
o
5"2 CONCLUSIVE PROOF

2 68 134 200 266 332 398 464 530
DATA WIDTH \\x\_

——2 DEEP BUFFER WITH 2 PACKETS

: ._:_a@ 36
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DVCON

COMFERENCE AMD EXHIBITION
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DVCOIN Proof Engineering

Scalable formal verification

“Proof Engineering”

Invariants
Assume Guarantee

a@ 38
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DVCON Invariants and Assume Guarantee

* Break the whole puzzle into smaller jigsaws

¥
* |dentify helper lemmas asi‘ndividual components of jigsaw
+ |dentify how they fit together to complete the full puzzle
« PROVE helper lemmas the‘n ASSUME them to prove other lemmas
- CAUSE )
FFECT

EEEEEEEEEEEEEEE
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DVEEL!:;' Invariants Help in Proof Convergence

RESET RESET RESET

Once proven
tools save
time on
search

40
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DVCON Invariants and Assume Guarantee

LO: If sample in started and sample out finished then the tracking
counter is zero.

RESET L1: If watched data input has not been sampled in then tracking counter
is less than or equal to the difference between the write and the read

’ pointers.
L2: If watched data input has been sampled in but sampling out has not
started then the tracking counter is less than or equal to the difference
between the write and the read pointers.

L3: If the sampling out has not started then the very first watched data that
was sampled in the design must be residing at the location given by the
function of read pointer and tracking counter.

L4: If the very first watched data value has been seen at the output port
then the next data value to be seen on the output will be the next watched
data value sampled into the design.

41
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COMFEREMCE AMD EXHIBITION
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REAL TIME (sec)

Increasing Packets

600
500
400
300
200

100

2 4 6
NO. OF PACKETS

--256 DEEP BUFFER WITH 1 BIT WIDE DATA

10616 states!
~2048 flops

|

Up to 8-packets

256-deep buffer
Packet size: 1 bit

PROOF in 7 min 59 sec

- /
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DVCOIN Increasing Buffer Depth
)
1200
101232 states!

1000 ~4096 flops
= 800 512-deep buffer
Q Up to 8-packets
= 600 Packet size: 1 bit
= 400 . .
— PROOF in 17 min
— 200
< \_ -/
L
© 0

0 100 200 300 400 500
DEPTH

-8 PACKETS WITH 1 BIT WIDE DATA

3 - 43
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DVCOIN Increasing Packet Size
\
2505
107397 states!
2005 ~24,576 flops
g 1505 256-deep buffer
L Up to 8-packets
g 1005 Packet size: 12 bit
E 505 PROOF in 35 min
<
L 5
- 2 4 6 8 10 12 \ /

DATA WIDTH
—--256 DEEP BUFFER WITH 8 PACKETS

.' E@ 44
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DVCOIN Proof Engineering

Scalable formal verification

“Proof Engineering”

Invariants
Assume Guarantee
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DVCON Structural Decomposition

Split wide vectors into groups of 8-bits
Creates more properties to prove / \

. J 1010,000 states!
I status | depth I name (C) | engine [ elapsed_time ‘
” S S g g I ~32,768 flops
5 v packet_design.u_pkt_design_sva.all_packets_bits[1].index_15_8 el 00:16:29
_5 v packet_design.u_pkt_design_sva.all_packets_bits[1].index_23 16 el 00:30:33
T v packet_design.u_pkt_design_sva.all_packets_bits[1].index_31_24 e3 05:26:31 256_d eep bUffer
T packet design.u_pkt_design_sva.all_packets bits[1].index_7 0 Up to 4_packets
'—9 v 'packet_design.u_pkt_design_sva.all_packets_bits[Z].index_lS_B e3 01:55:23 P k t . . 32 b.t
E packet_design.u_pkt_design_sva.all_packets_bits[2].index_23_16 e3 05:39:03 ac e Slze' L
7]: v packet_design.u_pkt _design_sva.all_packets_bits[2].index_31_24 e3 05:56:47
el packet_design.u_pkt_design_sva.all_packets_bits[2].index_7_0 . H
2 PROOF in 7 hours 54 min
status | depth | name (C) v I engine I elapsed_time I type
X A 46 packet_design.u_pkt_design_sva.all_packets_bits[2].index_7 0 bl 02:02:09 assert
Bl packet_design.u_pkt_design_sva.all_packets_bits[1].index_7_0 el 00:48:24 assert a
2 | | Running out of compute
3 v packet_design.u_pkt_design_sva.all_packets_bits[0].index_7 0 el 00:40:18 assert . .
= power at this point!!
status \I depth I name (C) ] engine ] elapsed_time [ type
1 v packet_design.u_pkt_design_sva.all_packets_bits[2].index_7_0 el 00:14:21 assert

SYSTEMS INITIATIVE
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DV Scaling Compute Power

« On a 128 GB, 18-core machine

« For a design with 500K+ flops (10764228 states)
— 256-deep, up to 64 packets, each packet being 32-bit

Bug hunting

— Random reordering bug can be found in under 20 min of run time

 Exhaustive Proof obtained in under 3 hours

a@ 47
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DVCOIN

COMFEREMCE AMD EXHIBITION

Qgcceﬂera
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W formal

92 sec to find corner case bugs!

Designflops 126+ million
Gates 449+ million
Property flops 7.9+ million
Checktype end-to-end
Compiletime 35 minutes!
Cut-pointing No

Black-boxing: No

338 million flops, 1.1 billion gates, 100.2 seconds to find bugs!

48
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DVCON

COMFEREMCE AMD EXHIBITION

accellera)
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DV Summary

Verification of serial designs is a challenge
What we need is: Methodology + Technology

On a laptop we find:

— bugs in designs with 141K flops in less than 40 min

— proof in designs with 24K flops in less than 35 min

On a server with 128GB RAM we find:

— catch bugs in designs with 500k+ flops in less than 20 min
— proof in 3 hours (256 deep, 64 packets, 32-bit packet size)

There is no other verification paradigm quite like formal!
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