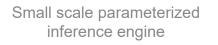
Small Scale Parameterized Inference Engine

Vishnu Bharadwaj Shruti Narake Saurabh Patil

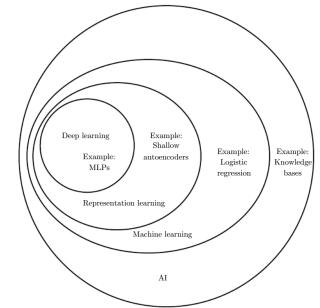


Contents

- AI and applications
- Neural Networks
- Software Modelling
- Hardware Implementation
- Conclusion
- Future Scope

DESIGN AND VERI

- WHAT?
 - Building Basic block of Neural network.
- WHY?
 - To support building of different Neural network topologies.
 - To accelerate applications in mobile devices, OCR etc
- HOW?
 - By using Deep Neural Networks

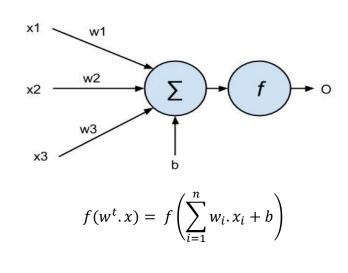

• Problem Definition: To hardware accelerate AI based computationally intensive tasks.

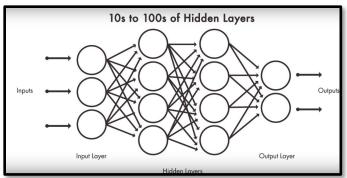
Basic Terminologies

- AI is a field of computer science that gives computers the ability to learn without being explicitly programmed
- Key terms in Al:
 - Learning
 - Supervised & Unsupervised.
 - Cost function & Gradient descent

$$H_w = w_0 + x \cdot w_1 + x^2 \cdot w_2 + \dots$$

$$C_{MST}(W, B, S^r, E^r) = \frac{0.5}{m} \sum_{j} (H_j^L - E_j^r)^2$$

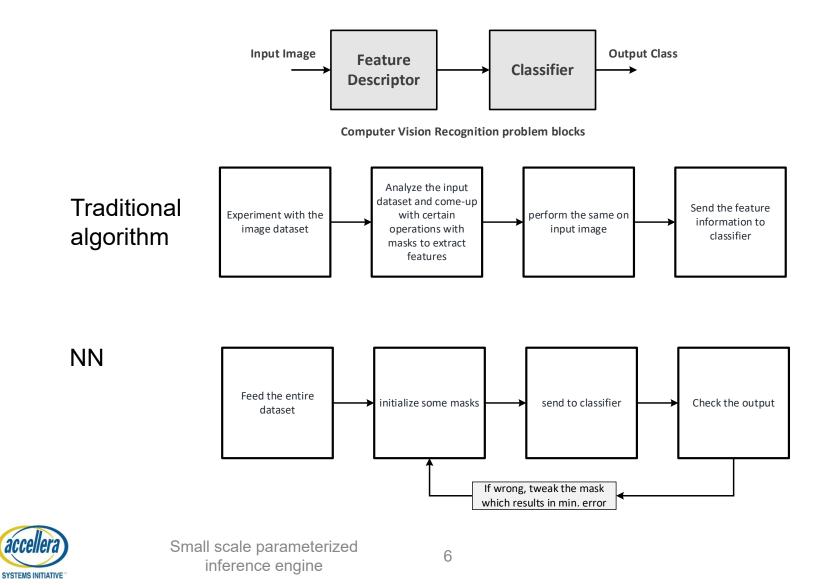




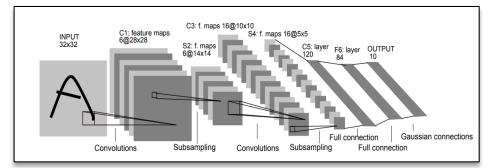
4

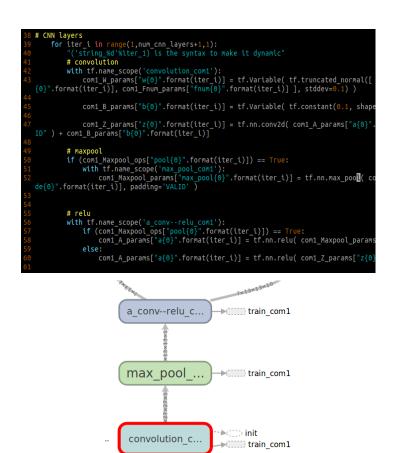
Key Terms in Neural Networks

- Feed forward NNBackpropagation
- Activation function
- Perceptron
- Deep neural nets
- Convolution NN



Computer Vision Algorithms

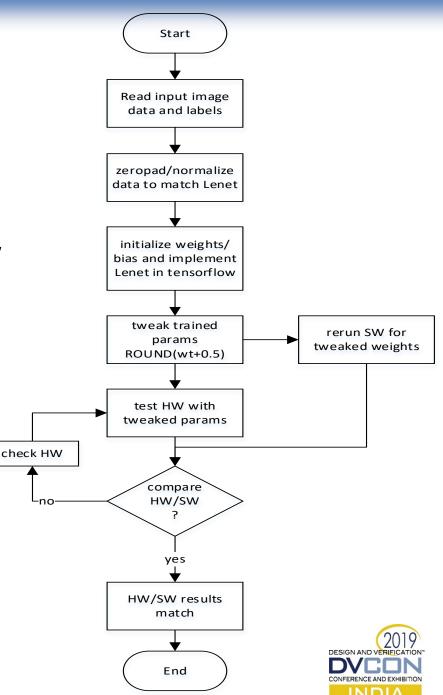



DESIGN AND VERIFICATION DVCCON CONFERENCE AND EXHIBITION

Topology and Datasets

- MNIST Database
- LeNet Topology

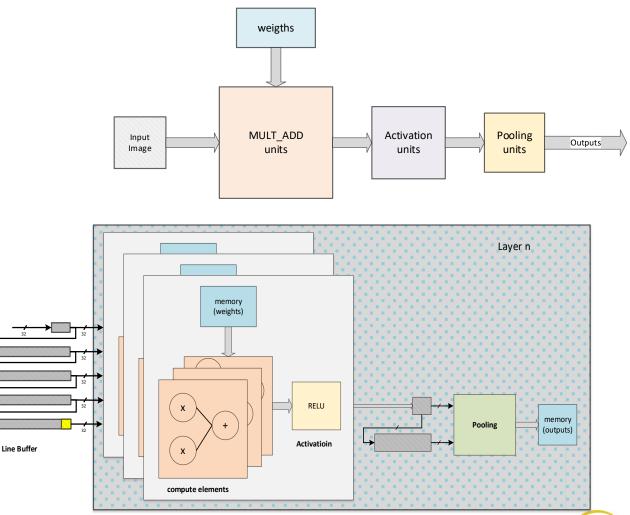
	<u> </u>
000000000000000	
/ \ \ \ / 1 / 7 1 / 7 1 / / /	
22222222222222	20
333333333333333	
44444444444444	
555555555555555	55
6666666666666	66
777177777777777	77
888888888888888	
9999999999999999	99


7

Implementation

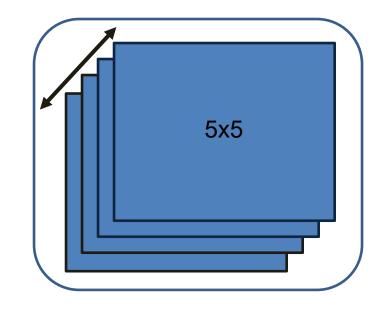
• Training is **iterative**, inference is one-shot

Matlab -> Python -> Numpy -> Tensorflow


- Others: neon, Keras, torch
- Output Visualization Tensor board

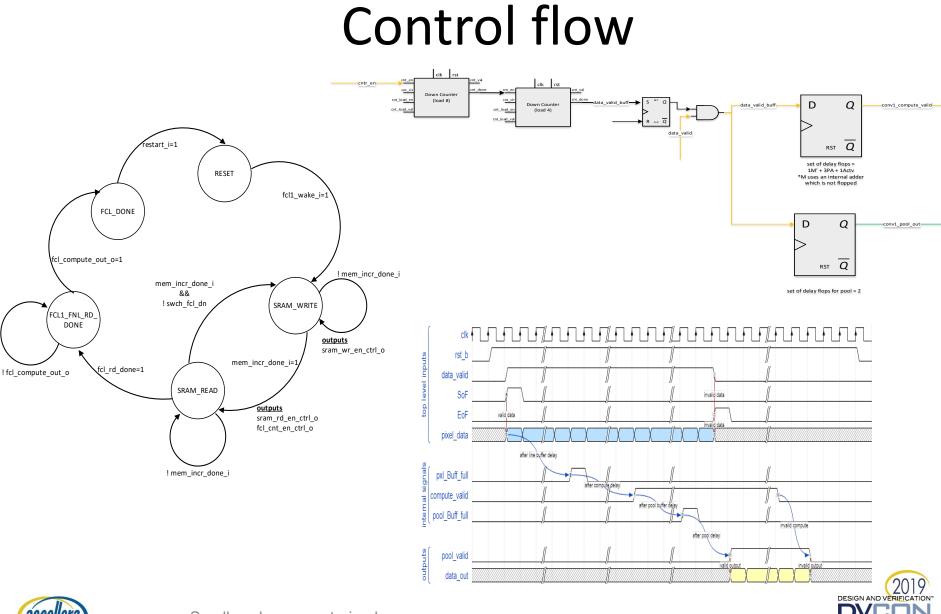
Hardware Architecture

- Line Buffers
- Routing Matrix
- Mult Add
- Parallel Adder
- ReLU
- Pooling


2019

DESIGN AND VERIFICATION

FCL Mapped as Convolution


- Flattened 400 units -> CNN
- Keep the filter size = 5x5
- Number of filters = 16
- Output volume formed is [1x120]

120 sets of 16 such filters

Small scale parameterized inference engine

CONFERENCE AND EXHIBITION

NDIA

Results

RTL Parameter	Description	
NUM_STRIDE_LEN	No. of parallel convolution operation	
NUM_FILTER	No. of filters in the layer	
LB_NUM_SHIFT_CONV	Length of line buffer for convolution	
LB_NUM_TAPS_CONV	No. of outputs from buffer for convolution	
LB_NUM_SHIFT_POOL	Length of line buffer for pooling	
LB_NUM_TAPS_POOL	No. of outputs from line buffer for pooling	
PIXEL_WIDTH	Width of a pixel before/after scaling	

Parameter	Value
No. of Combinational cells	79827
No. of sequential cells	49183
Combinational area	21877 um ³
Non-combination area	31120 um ³
Total Dynamic power	19.527 mW
Frequency	400 MHz
Minimum slack	+ 556.87 ps

DESIGN AND VERIEICATION

CONFERENCE AND EXHIBITION

INDIA

Contd...

Group1												
D conv1_top_clk												
		ebeb_ebeb	f8fb_fbeb	beeb.	_f5fe	0000_0015		0000_0000		fefe_fb8c	fefe_fefe	
⊡- 🛙 conv1_out_o_sig[5:0][3:0][21:0]	*000_	0000_0000_00	00_0000_0000_0000_0000_000	0_0000_0000_00	000_0000_0000	*0184_0000_0000_0000_0000	*0228_000d_6000_2b80_0060	0x*0000_0000_0000_0f40_0076 x0_0000_0000_0000_0000_0000_0000_0000_		0_0000_0000_0000_0000	0_0000_0000_0000_0000_00	00800_
			00_0000_0000_0000_0000	_0000		*134_0006_0000_1840_0000	*1d8_0004_d000_2740_00d7	*000_0000_0000_0000_003d	a) 000_0000_0000_0000_0000		0	8_aC
		00_0000			00_004d	00_0076	00_0000				0_0	
		00_0000			00_0060	00_004d		00_0		0_0		
			00_0000			00_0061	00_009d		00_0		0_0	
				00_0000			00_00d7	00_003d	00_0000			
🗐 🛛 🛙 conv1_out_o_sig[4][3:0][21:0]		00_0000_0000_0000_0000		*134_0006_0000_1840_0000	*134_0006_0000_2780_0076	*000_0000_0000_0f40_0076	00_0000_0000_0000_0000		0	8_al		
		00_0000_0000_0000_0000 (*		*180_0006_1000_0000_0000	*1d8_0008_a000_3580_00ae	*000_0000_0000_0000_003d	00_0000_0000_0000_0000		0	(5_a		
⊕. 🛙 conv1_out_o_sig[2][3:0][21:0]		00_0000_0000_0000_0000 3		*184_0000_0000_0000_0000	*228_000d_6000_2b80_0060	*000_0000_0000_0f40_0076	6 (00_0000_0000_0000_0000		0	0_0		
		00_0000_0000_0000_0000		*134_0006_0000_1840_0000	*030c_000a_d000_3f80_00d7	*000_0000_0000_0f40_00b3	3 00_0000_0000_0000_0000		0	8_al		
			00_0000_0000_0000_0000 (*		*184_0000_0000_0000_0000	*228_000d_6000_2b80_0060	*000_0000_0000_0f40_0076	\$ 00_0000_0000_0000_0000		0	0_0	
)_0000	*0180_0006_1000_1840_0000	*030c_000f_e000_3580_00ae	*000_000b_3000_0000_0076	0_0000_0000_0000_0000_00	00_00		
				000	_0000_0000			000_1800_0061	000_1d80_00d7	000_0000_003d	000_0000_0000	
					00_0000			00_0060	00_0076	(00_0000	
⊕- ● pool_out_o[5][0][21:0]		00_0000				00_0061	00_00d7	00_003d	00_0000			
		000_0000_0000				000_1800_0061	000_1800_009e	000_0000_0076	000_0000_0000			
		000_0000				000_1840_0000	000_2280_00d6	000_0000_003d	000_0000_0000			
⊞ D pool_out_o[2][1:0][21:0]		000_0000					000_1840_0000	000_3580_00ae	000_0000_0076	000_0000_0000		
⊕D pool_out_o[1][1:0][21:0]		000_0000_0000					000_1800_0061	000_30c0_00fe	000_0000_00b3	000_0000_0000	_	
		000_0000				000_1840_0000	000_3580_00ae	000_0000_0076	000_0000_0000			

Group1		
D conv1_top_clk		
- conv1_top_rst_b		
D-conv1_top_data_valid		
- D- conv1_lb_in_i(31:0)	000_000 (00°)(00°))(00°))(00°))(00°))(00°)))(0°)))(0°)))(0°)))(0°)))(0°))(0°)))(0°)))(0°)))(0°)))(0°)))(0°)))	
D-sof		
D- eof		
- 🚺 cstate[2:0]	*T START CONVI_POOL	
lb_pxl_cnt_done_i_sig		
conv1_compute_out_valid_i_sig		
conv1_out_o_sig(5:0)(3:0)(21:0)		
pool_valid_out_o		
⊕ pool_out_o(5:0)[1:0][21:0]		
		DEC
		DESI

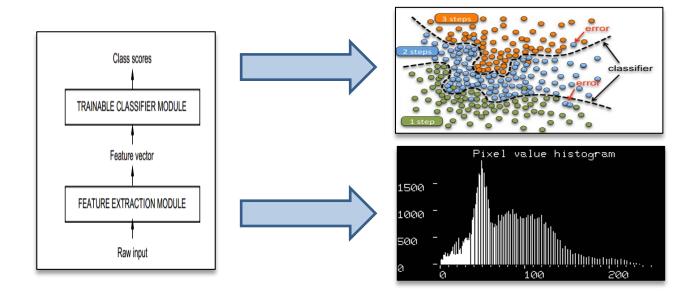
CONFERENCE AND EXHIBITION

INDIA

Conclusion and Future Scope

- CNN & FCL model for hardware
- This design gives flexibility to implement any topology because of the scalability feature being added.
- The novel approach of implementing vectorization, parallel and pipelined design adds to performance in terms of speed
- Fixed point implementation for higher accuracy
- Gate count optimizations

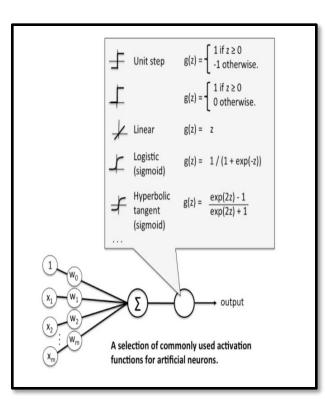
Questions?

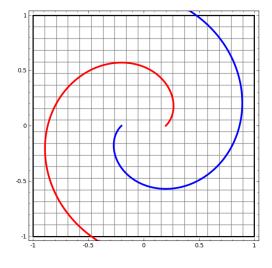


Backup slides

Traditional Algorithm

• Handcrafting the features is time consuming.

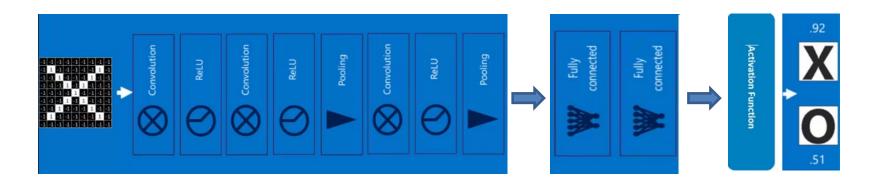

DESIGN AND VERIFICA


CONFERENCE AND EXHIBITION

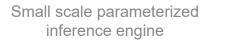
NDIA

Neural Network - Perceptron

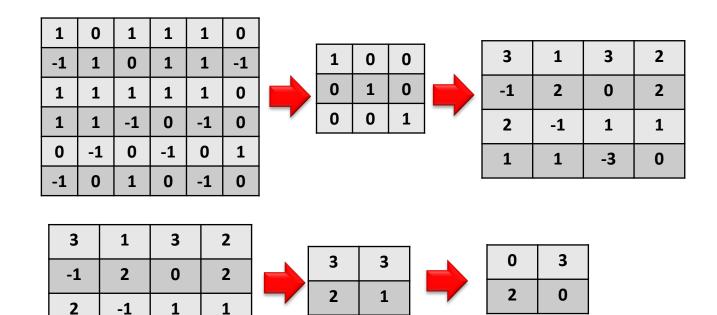
Perceptron- a basic neural network building block



MLP can classify Non linearly separable functions.



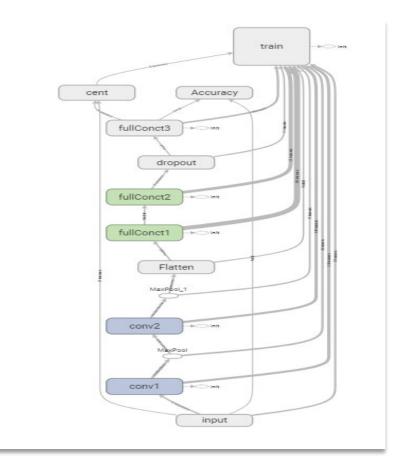
Topology

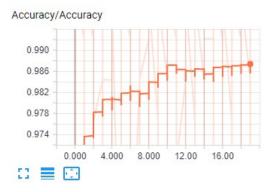

- Neural Network used in Feature extraction are called Convolutional Neural Network(CNN)
- MLP's used in Classification is Fully Connected Neural Networks(FCNN) .

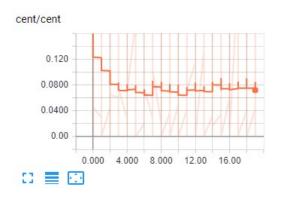
Convolution, Pooling and Activation

1

1


-3


0


20

Tensor Board Visualisation

Memory Requirement

LeNet			Weight size	Bias size (No. of Filters)				
	input data size	32*32*1						
	kernal (filter) size	5*5						
	kernal (filter) stride	1	5*5*1*6 =150					
	No. of Kernals (filters)	6						
CNN 1	dimension before pool	28*28*6		6				
	Max pool	yes		6				
	pool dimension	2x2						
	Pool stride	2						
	Activation	RELU						
	out dimension	14*14*6						
	input data size	14*14*6						
	kernal (filter) size	5*5						
	kernal (filter) stride	1						
	No. of Kernals (filters)	16						
CNN 2	dimension before pool	10*10*16	5*5*6*16=2400	16				
	Max pool	yes	5 5 6 10-2400	10				
	pool dimension	2*2						
	Pool stride	2						
	Activation	RELU						
	out dimension	5*5*16						

FC 1`	input data size fc neurons Activation	5*5*1 6 120 RELU	120*400= 48000	120	
FC 2	input data size fc neurons Activation	120 84 RELU	84*120=1 0080	84	
	input data size fc neurons	84 10	10*84=84 0	10	
			Total = 61470	Total = 246	
			61470 values ~= 120.058KB if 16 bits		

DESIGN AND VERIFICATION

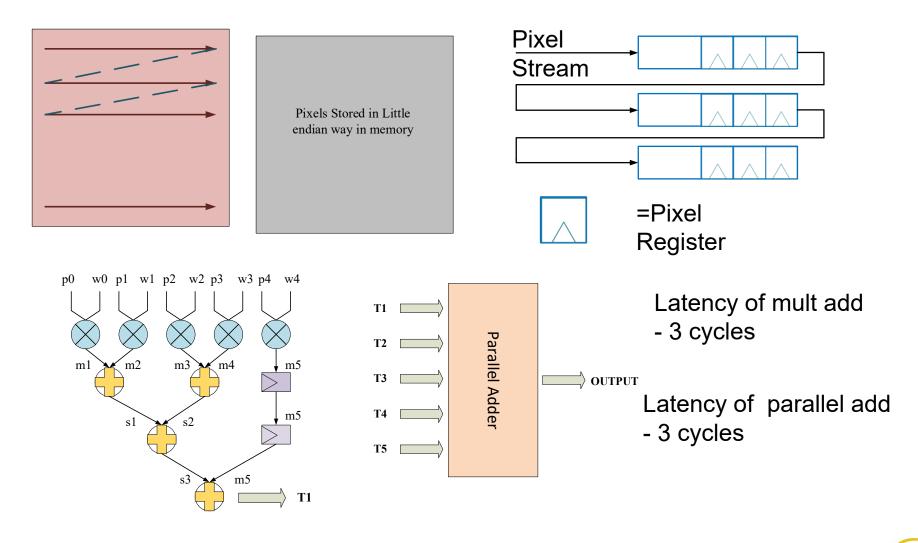
CONFERENCE AND EXHIBITION

ND

Software Results

HyperParameters	Values
Epoch	20
Batchsize	128
Dropout	0.8
Learning rate	0.001

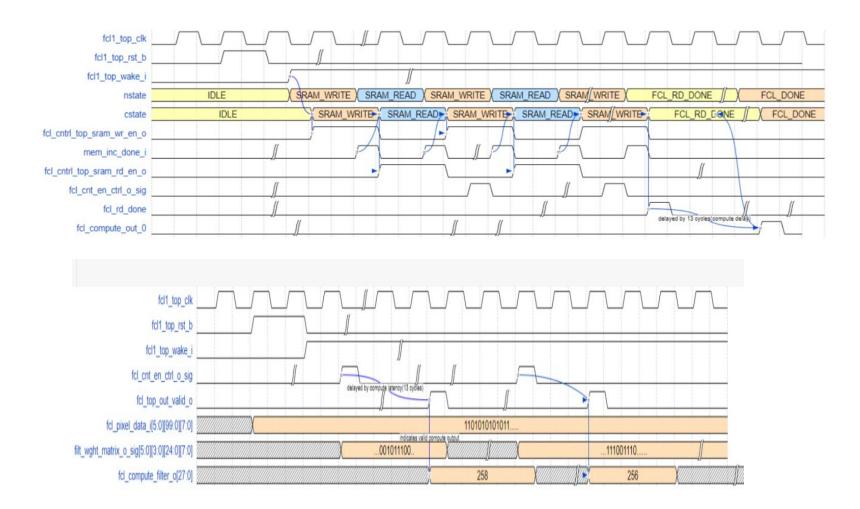
TOPOLOGY	VALIDATION SET ACCURACY	TESTING SET ACCURACY
LeNet	99.2	98.6
DreamNet	99	97.3
LeNet for Universal OCR	98.1	97.6


DESIGN AND VERILEICATION

CONFERENCE AND EXHIBITION

INDIA

Hardware Components



SYSTEMS INITIATIVE

DESIGN AND VERIEIC

Hardware Results

