
© Carinthia Institute for Microelectronics

An easy to use Python framework for circuit
sizing from designers for designers.

Wolfgang Scherr, DVCON 2024, Munich
Violeta Petrescu, Johannes Sturm, Dirk Hammerschmidt, Santiago Martin Sondon

V1.1

© Carinthia Institute for Microelectronics

Automation is not new…

Source: Keynote Austrochip 2022, Benjamin Prautsch, Fraunhofer IIS
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/384d05a3-60b7-4216-aa63-dbcb1dd35a6d/content

CCC

Expert Design Plan

Toolbox approach
with own language

Berkeley Analog Generator

Proprietary PDK
Python framework

CUAS Cell Creator

Python class
for agile
notebooks

Analog Design Toolkit

GUI based

© Carinthia Institute for Microelectronics

Why yet another approach?

• Electrical engineering ≠ Computer science

• Analogue design competence ≠ Programming competence

• Ensure the focus on the needs of analogue designers (not programmers)

• Make exchange of design procedures as simple as passing on a schematic

• Lightweight setup, PDK & tool agnostic, open for any tool extension

© Carinthia Institute for Microelectronics

Assume you need a Schmitt-trigger
for TSMC 65nm – given spec: Vil, Vih, Vihys.

• One might probably think it is trivial, but…
• … how to choose the design (and from where)?

• How long would it take to design it?
Or just let an optimiser like e.g. Wicked find them?

• How long would it take to verify (at least PVT)?

• How to post-process and document the results?

• What about quickly reacting on a spec update later on?
• Or what about re-use for e.g. TSMC 28nm?

I. M. Filanovsky and H. Baltes, "CMOS Schmitt trigger design," in
IEEE Transactions on Circuits and Systems I: Fundamental Theory
and Applications, vol. 41, no. 1, pp. 46-49, Jan. 1994

© Carinthia Institute for Microelectronics

Circuit generation with CCC

• Get the Jupyter notebook of this generator from a lib or just a colleague
• Open a terminal, start Spyder (as tool to use Jupyter notebooks)
• Open/run the notebook  take the TB, schematic and result plots

MN25/MP25

tsmcN65

© Carinthia Institute for Microelectronics

How can CCC handle “any”
technology and tool?

A designer does not need to worry about this!

Tested
for TSMC:
- 180nm
- 65nm
- 28nm

© Carinthia Institute for Microelectronics

Exemplary mapping for TSMC PDKs

Note: one can still use ANY library/cell from
a PDK, but note that your notebook will not
be technology-independent anymore.

QN
QP

… … …

© Carinthia Institute for Microelectronics

What does agile design mean in CCC context?

.) use scripts to
- create
- modify
schematics
.) run simulations
.) post process

.) interactive tool
usage to debug
the circuit
.) manual modify,
simulate, etc.
.) ideally, bring
correct solution
back to the script

© Carinthia Institute for Microelectronics

Outlook
• Open-source educational version with ng-spice planned
• Potential use of CCC for layout generation - not for release yet

• A very simple “analogbase” approach (like BAG2) is shown as example:

• Own (PhD) work on layout ongoing with similar philosophy as CCC

© Carinthia Institute for Microelectronics

Thank you for your attention!

• Acknowledgements:
• SODA (System-on-Chip Design Automation) Josef-Ressel Centre

for funding this work

• Special acknowledgements:
• Skillbridge: Diss. Tobias Markus / R.-K. University Heidelberg
• Skill/tool details: Andrew Beckett via Cadence forum

© Carinthia Institute for Microelectronics

Backup slides

© Carinthia Institute for Microelectronics

Typical designers’ (manual) work tasks…

• Get familiar with a new technology
• extract relevant sizing parameters
• check out device performance
• work out advantages and limitations

• Evaluate different circuit architectures
• literature research, “well known” designs
• hand calculations / estimations
• trial setups of designs and initial simulations

• Set up final implementation
• proper circuit sizing
• proper circuit verification (m.c., PVT, …)
• exhaustive documentation (allow re-use)

automation can significantly improve speed by
avoiding to re-do the same task for every PDK
(and it gets more critical for a modern tech.)

automation can significantly improve speed by
re-using existing designs from the past and
directly map it to new PDK - also use symbolic
solvers, do calculations reproducible in scripts…

automation can significantly improve speed by
executable optimisation and verification steps
(for square-law sizing and especially gm/ID)

Also: re-use is often limited to own circuits made in the past – or maybe some blocks done in the same group…

© Carinthia Institute for Microelectronics

 Allow a setup to generate with the same code circuits in multiple technologies

 Modular approach - what does this mean:
− The framework is centrally maintained/released, users never modify that
− Script is technology-neutral and contains the actual IP, keep it that way
− Tool setup is also technology-dependent, encapsulate properly

.../framework_v1/ccc:

generator.py (or)
generator.ipynb

.cdsinit
cds.lib

.../my_project:

$PYTHONPATH

.../my_project/generated1

.../my_project/generated1/generated_lib

.../my_project/generated1/sim_data

.../my_project/generated2

this is where the user works
(with data management)

separated DFII environments
allowing different TECH setups
(fully auto-generated and thus
reproducible, no data
management required, but can
easily “hook” to any project DM)

central installation like
other Python packages,
versioned roll-out based
on release mechanism
(development with data
management)

.../framework_v1/ccc/templates/tsmc65

cdsctrl.py
ccctrl.py
...

specs.yaml
mchar_nch_mac_tsmcN65.hdf5
.cdsinit
cds.lib
...

CCC Environment

device mapping and
base tech data,
characterization (LUT)
data, tool setup data as
required by local install

© Carinthia Institute for Microelectronics

V

V
D

V
VV

G

V
B

V

I
DVV

G

V
B

 extract all relevant MOS device parameters (large and small signal)
and store them as value tables (versus the varied source) in HDF5

 use very same CCC framework for PDK independent characterization scripts

ID, gm, gm/ID, gm/gDS, ro, Vth,
...

VDS, gm, gm/ID, gm/gDS, ro, Vth,
...

Device characterisation setups

• Exemplary MOS FET characterisation (any device/type), V-driven and I-driven channel

Textbook stuff (square law, gm/Id, …)

© Carinthia Institute for Microelectronics

“Tech-learning” notebooks – get parameters
for script- or hand calculations

© Carinthia Institute for Microelectronics

Examples: agile “work mode” in Spyder

© Carinthia Institute for Microelectronics

Examples: waterfall “work mode” in Spyder

© Carinthia Institute for Microelectronics

ST design – sizing 1/2

© Carinthia Institute for Microelectronics

ST design - sizing 2/2

© Carinthia Institute for Microelectronics

ST design – implementation & TB

Outlook: use just a SPICE representation instead of
an programmatic API for instances & connections.

(this API will be anyhow used in the background by
the SPICE reader…)

© Carinthia Institute for Microelectronics

ST design – verification (simple DC)

It is obvious, this code can be easily re-used for many purposes of I/O diagram simulation/extraction…

© Carinthia Institute for Microelectronics

ST design – verification (PVT DC)

We do a nice normalisation, so we can compare results between
technologies with different supply voltages….

© Carinthia Institute for Microelectronics

ST design – verification (simple timing)
Again, one can see that this is easy to extend for PVT runs as well…

Later, one can “copy over” this notebook into a Python asset class for verification of any basic digital I/O block…

© Carinthia Institute for Microelectronics

Outlook
• Potential use of CCC for layout generation - not for release yet
• Own (PhD) work on layout ongoing with same philosophy as CCC
• A very simple “analogbase” approach (like BAG) is shown as example:

CCC can place
& configure
PCells

CCC can place
& connect
Paths, Vias, …

CCC can also
extract all
relevant
Pcell coords.

	An easy to use Python framework for circuit sizing from designers for designers.�
	Automation is not new…
	Why yet another approach?
	Assume you need a Schmitt-trigger�for TSMC 65nm – given spec: Vil, Vih, Vihys.
	Circuit generation with CCC
	How can CCC handle “any” �					technology and tool?
	Exemplary mapping for TSMC PDKs
	What does agile design mean in CCC context?
	Outlook
	Thank you for your attention!
	Backup slides
	Typical designers’ (manual) work tasks…
	CCC Environment
	Device characterisation setups
	“Tech-learning” notebooks – get parameters for script- or hand calculations
	Examples: agile “work mode” in Spyder
	Examples: waterfall “work mode” in Spyder
	ST design – sizing 1/2�
	ST design - sizing 2/2
	ST design – implementation & TB�
	ST design – verification (simple DC)
	ST design – verification (PVT DC)
	ST design – verification (simple timing)
	Outlook

