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Automation is not new…

Source: Keynote Austrochip 2022, Benjamin Prautsch, Fraunhofer IIS
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/384d05a3-60b7-4216-aa63-dbcb1dd35a6d/content

CCC

Expert Design Plan

Toolbox approach
with own language

Berkeley Analog Generator

Proprietary PDK
Python framework

CUAS Cell Creator

Python class 
for agile
notebooks

Analog Design Toolkit

GUI based
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Why yet another approach?

• Electrical engineering   ≠   Computer science

• Analogue design competence   ≠   Programming competence

• Ensure the focus on the needs of analogue designers (not programmers)

• Make exchange of design procedures as simple as passing on a schematic

• Lightweight setup, PDK & tool agnostic, open for any tool extension
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Assume you need a Schmitt-trigger
for TSMC 65nm – given spec: Vil, Vih, Vihys.

• One might probably think it is trivial, but…
• … how to choose the design (and from where)?

• How long would it take to design it?
Or just let an optimiser like e.g. Wicked find them?

• How long would it take to verify (at least PVT)?

• How to post-process and document the results?

• What about quickly reacting on a spec update later on?
• Or what about re-use for e.g. TSMC 28nm?

I. M. Filanovsky and H. Baltes, "CMOS Schmitt trigger design," in 
IEEE Transactions on Circuits and Systems I: Fundamental Theory 
and Applications, vol. 41, no. 1, pp. 46-49, Jan. 1994
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Circuit generation with CCC

• Get the Jupyter notebook of this generator from a lib or just a colleague
• Open a terminal, start Spyder (as tool to use Jupyter notebooks)
• Open/run the notebook  take the TB, schematic and result plots

MN25/MP25

tsmcN65
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How can CCC handle “any” 
technology and tool?

A designer does not need to worry about this!

Tested
for TSMC:
- 180nm
- 65nm
- 28nm
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Exemplary mapping for TSMC PDKs

Note: one can still use ANY library/cell from
a PDK, but note that your notebook will not
be technology-independent anymore.

QN
QP

…           …          …
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What does agile design mean in CCC context?

.) use scripts to
- create
- modify
schematics
.) run simulations
.) post process

.) interactive tool
usage to debug
the circuit
.) manual modify,
simulate, etc.
.) ideally, bring
correct solution
back to the script
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Outlook
• Open-source educational version with ng-spice planned
• Potential use of CCC for layout generation - not for release yet

• A very simple “analogbase” approach (like BAG2) is shown as example:

• Own (PhD) work on layout ongoing with similar philosophy as CCC
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Thank you for your attention!

• Acknowledgements:
• SODA (System-on-Chip Design Automation) Josef-Ressel Centre

for funding this work

• Special acknowledgements:
• Skillbridge: Diss. Tobias Markus / R.-K. University Heidelberg
• Skill/tool details: Andrew Beckett via Cadence forum
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Backup slides
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Typical designers’ (manual) work tasks…

• Get familiar with a new technology
• extract relevant sizing parameters
• check out device performance
• work out advantages and limitations

• Evaluate different circuit architectures
• literature research, “well known” designs
• hand calculations / estimations
• trial setups of designs and initial simulations

• Set up final implementation
• proper circuit sizing
• proper circuit verification (m.c., PVT, …)
• exhaustive documentation (allow re-use)

automation can significantly improve speed by
avoiding to re-do the same task for every PDK
(and it gets more critical for a modern tech.)

automation can significantly improve speed by
re-using existing designs from the past and
directly map it to new PDK - also use symbolic
solvers, do calculations reproducible in scripts…

automation can significantly improve speed by
executable optimisation and verification steps
(for square-law sizing and especially gm/ID)

Also: re-use is often limited to own circuits made in the past – or maybe some blocks done in the same group…
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 Allow a setup to generate with the same code circuits in multiple technologies

 Modular approach - what does this mean:
− The framework is centrally maintained/released, users never modify that
− Script is technology-neutral and contains the actual IP, keep it that way
− Tool setup is also technology-dependent, encapsulate properly

.../framework_v1/ccc:

generator.py  (or)
generator.ipynb

.cdsinit
cds.lib

.../my_project:

$PYTHONPATH

.../my_project/generated1

.../my_project/generated1/generated_lib

.../my_project/generated1/sim_data

.../my_project/generated2

this is where the user works
(with data management)

separated DFII environments
allowing different TECH setups
(fully auto-generated and thus
reproducible, no data
management required, but can
easily “hook” to any project DM)

central installation like
other Python packages, 
versioned roll-out based 
on release mechanism 
(development with data 
management)

.../framework_v1/ccc/templates/tsmc65

cdsctrl.py
ccctrl.py
...

specs.yaml
mchar_nch_mac_tsmcN65.hdf5
.cdsinit
cds.lib
...

CCC Environment

device mapping and 
base tech data, 
characterization (LUT) 
data, tool setup data as
required by local install



© Carinthia Institute for Microelectronics

V

V
D

V
VV

G

V
B

V

I
DVV

G

V
B

 extract all relevant MOS device parameters (large and small signal)
and store them as value tables (versus the varied source) in HDF5

 use very same CCC framework for PDK independent characterization scripts

ID, gm, gm/ID, gm/gDS, ro, Vth, 
...

VDS, gm, gm/ID, gm/gDS, ro, Vth, 
...

Device characterisation setups

• Exemplary MOS FET characterisation (any device/type), V-driven and I-driven channel

Textbook stuff (square law, gm/Id, …)
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“Tech-learning” notebooks – get parameters 
for script- or hand calculations
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Examples: agile “work mode” in Spyder
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Examples: waterfall “work mode” in Spyder
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ST design – sizing 1/2
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ST design - sizing 2/2
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ST design – implementation & TB

Outlook: use just a SPICE representation instead of 
an programmatic API for instances & connections.

(this API will be anyhow used in the background by
the SPICE reader…)
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ST design – verification (simple DC)

It is obvious, this code can be easily re-used for many purposes of I/O diagram simulation/extraction…
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ST design – verification (PVT DC)

We do a nice normalisation, so we can compare results between
technologies with different supply voltages….
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ST design – verification (simple timing)
Again, one can see that this is easy to extend for PVT runs as well…

Later, one can “copy over” this notebook into a Python asset class for verification of any basic digital I/O block…
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Outlook
• Potential use of CCC for layout generation - not for release yet
• Own (PhD) work on layout ongoing with same philosophy as CCC
• A very simple “analogbase” approach (like BAG) is shown as example:

CCC can place 
& configure
PCells

CCC can place 
& connect
Paths, Vias, …

CCC can also
extract all
relevant
Pcell coords.
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