
Solving verification challenges for complex devices
with a limited number of ports using Debugports

Shyam Sharma, Cadence Design Systems
Shravan Soppi, Cadence Design Systems

Agenda
• Background and User requirement.
• Solution :

• Debugports Overview and advantages.
• Debugports for Hierarchal VIPs for SV

• Additional Complexity of hierarchical VIP device instances in systemc
• Results and Customer feedback

Background and user requirements
• Complex Verification IP models needs internal signal and logic block visibility

for
• View command and data flow
• Debug/isolate design and stimulus errors.

• It should be viewable on simulator waveform
 viewer.
• Should be simulator independent and work
 with XM/VCS/QuestaSim as well as open source
 simulators like OSCI SystemC when applicable.
• User should be able to access the change events in simulator debugger.
• Internal component signal representation should have similar look and feel to

rest of the port signals.

What is a debugport?
• A debugport is an HDL object that accurately reflects internal model state

• Signal Debugports: Represents an internal signal of the model that is not a port.
a) Show Components of a VIP that contains other VIP instances. These are usually standard

Component Specification defined pins.
b) Board Delay signals where the signal at VIP port is not the same as VIP usage as there is a

transmission delay from Port connector to the internal signal that Device/Initiator/Target
actually use.

c) Internal signals that are useful to see for user like Internal Write Leveling pulses, Internal
clocks etc.

• Variable Debugports: Represents an internal logic block of the model.
Typically used to display variables that model already tracks.
a) Commands
b) Read/Write latencies
c) Composite timing parameters or equations.
d) Per bit setup/hold/pulse windows or errors.

Debugports Advantages

• Easy to Use
• Available in the Design hierarchy
• Easy to generate using PV (batch
 command or using GUI)

• Supports SV, SV-UVM, SystemC
• Simulator independent (works with
 VCS/XM/MTI).
• Small performance impact

• We saw ~4% performance impact with one
 of the test with signal debugports enabled.

• Users can treat a debugport just
 like any other HDL object
• Send it to the waveform viewer
• Add it to an event control of an always block
• Print its value from a $display

Debugports Example: DDR5 DIMM component signal display in SV
• Modify the VIP SV wrapper to add the logic

variables representing the internal
component ports in same hierarchical
structure.

• Update the wrapper logic variable.
• VPI apis provide very easy access to

the variables and update them.

Complexity of hierarchical VIP devices instances in systemC

• Complexity of representation of hierarchical VIP devices in wrapper
• Creation of wrappers representing the multi-layered sub-components can be confusing.

• Complexity of Data Update with similarly named sub-components.
• Multiple Dram and Data buffer sub-components are present under each DIMM. Each having pins with

same names. It can be difficult to identify which pin belongs to which instance if not properly grouped and
named.

• Each sub-instance does not get any connection from any region as they
can be just re-presentative instances with no actual drivers. As those
instances are internal to VIP.

• There can be multiple instances of same kind with same signal names.
Mapping systemC wrapper instances with correct internal instance of VIP
is a challenge.

Solution
• Create wrapper for each sub-instances with

same naming convention as VIP internal
instances. (This is auto generated by our
wrapper generator tool)

• A unique identifier for each instance is
generated based on its full hierarchical path
name.

• The main VIP instance holds a list of all the
sub-instances created within its hierarchy. And
are created before VIP instance is instantiated.

• While creating VIP internal instances, the
library references the wrapper instance and
map the unique identifiers to internal VIP
instances using full path names.

Solution – sub-instance wrappers

Results for systemC

Debugports is being
used by several of our
customers who has
provided positive
feedback on
improvements in
debuggability of their
tests.

Questions

