

MUNICH, GERMANY OCTOBER 15-16, 2024

Harnessing the Strength of Statistics and Visualization in Verification Olivera Stojanovic, Uri Feigin

info@thevtool.com thevtool.com

Objectives

- Improve verification techniques with statistics and visualization
- Highlight their untapped potential in simplifying processes
- Address challenges of managing large-scale data in verification
- Emphasize the need for high-quality Big-Data techniques
- Introduce new transaction paths and visualization methods
- Demonstrate the practical benefits in solving data challenges

Methodology

Typical verification challenges

- 1. Vast amounts of data from multiple sources make analysis and conclusions immensely time-consuming and error-prone
- 2. Repeated processes lack a consistent methodology, making them inefficient
- 3. Distribution of transaction, for qualifying test and verification environment
- 4. Utilization of outstanding transactions, for improved performance
- 5. Pre-existing code not written by the verification engineer
- 6. Detection of repetitive transaction patterns irregularity, for measuring throughput and detection of transfer timeouts
- 7. Stress and performance test quality assessment

Data Field Correlation and Distribution

Transaction data field correlation

Transaction path data field correlation

This visualization reveals the density and trends of outstanding transactions, highlighting the link between errors and peak transaction levels.

Exposed Constraints Issues

Transition probability matrix

• Expected command life cycle:

 $command_desc \rightarrow data_desc \rightarrow data_pointers_fetch \rightarrow multiple single_transfers \rightarrow cycle complete or new data_desc$

- Before fixing the bug constraint (left): The transition probability data_desc → data_desc was 0.26, indicating an illegal transition not aligned with the specification
- After fixing the bug constraint (right): Correct transitions were observed.

Pre-Written Code from Other Developers

RISC-V Example

//Sim	Time,	Cycle	:	#inst	hart		pc	opcode	reg=value		mnemonic	
//	3575,	30	:	#	1 (3	20000000	f14022f3	t0=00000000	;	csrrs	t0,csr_f14,zero
	3675,	31	:	#	2 6	3	20000004	00004301	t1=00000000	;	c.li	t1,0
	3775,	32	:	#	3 (3	20000006	00628263		;	beq	t0,t1,0x2000000a
	6275,	57	:	#	4 6	3	2000000a	00000e97	t4=2000000a	;	auipc	t4,0x0
	7775,	72	:	#	5 6	3	2000000e	00ce8e93	t4=20000016	;	addi	t4, t4, 12
	7875,	73	:	#	5 6	3	20000012	000e8067		;	jalr	zero, t4, 0x200000
	10475,	99	:	#	7 6	3	20000016	400019b7	s3=40001000	;	lui	s3,0x40001000
	10575,	100	:	#	B (3	2000001a	10498993	s3=40001104	;	addi	s3, s3, 260
	11975,	114	:	#	9 6	3	2000001e	30199073		;	CSPTW	zero,csr_301,s3
	12075,	115	:	#1	3 6	3	20000022	00013c97	s9=20013022	;	auipc	s9,0x13000
	12175,	116	:	#1	1 (3	20000026	192c8c93	s9=200131b4	;	addi	\$9, \$9, 402
	12175,	116	:	#1	2 (3	2000002a	0000a997	s3=2000a02a	;	auipc	s3,0xa000
	13475,	129	:	#1	3 (3	2000002e	f2698993	s3=20009f50	;	addi	s3, s3, -218
	13575,	130	:	#1	4 6	3	20000032	0019e993	s3=20009f51	;	ori	s3, s3, 1
	13675,	131	:	#1	5 (3	20000036	30599073		;	csrrw	zero, csr_305, s3

Assessment of open-core RISC-V DV solution

Visualization and statistics simplified the quality evaluation of the opensource solution, particularly:

- Randomization level of SW for CPU verification
- Distribution of instruction
- Instructions with highest execution time

Correlation between instructions and their duration

Stress Test Quality Assessment

Transaction flow overlaid with outstanding transactions count

Statistical analysis allowed us to zoom in on the crucial performance bug, which prevented the module from working at its full capacity after reaching the maximum threshold.

Conclusion

Statistics helps with understanding random test scenarios, identifying constraint issues, and uneven data distribution.

Statistics and visualization improve the analysis and reliability of SoC behavior by processing Big-Data from simulation results

Visualization helps uncover correlations between errors, simulation data, and potential design issues

Viewing simulation as a **Big-Data set offers engineers macro-level insights,** making it easier to pinpoint specific problems

With the rise of **open-source and AI-generated code**, statistics and visualization are set to become **vital tools for verification and diagnostics**.

Questions

