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Motivation
• Complex multi-domain SoC requires multiple parallel design paths
• Each paths uses the modeling language and methodology best suited 

for the domain (Digital, Analog, Software, etc.)
• Validation of the models often disregarded
• Growing demand for simulation models for different purposes

• New design methodology that minimizes the number of different 
models and modeling languages is needed
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Agenda
• Problems of traditional design flows
• Languages for multi-abstraction modeling
• Single language System-to-RTL flow
• Design example
• Conclusions
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Problems of Traditional Design Process
• Multiple abstraction levels of models written in different languages
• Validation of the models throughout the design process
• Growing demand for different simulation models, e.g.

– IP model for automotive system simulator or digital twin
– Virtual Platforms for SW development
– HW verification models
– Rapid prototyping 
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Requirements for Modeling Language
• Advanced type system supporting arbitrary width and abstract data 

types and polymorphism
• Support for parallel processes
• Concept of time and simulation environment capable of handling 

multiple scheduling schemes
• Compiler support for different target environments (SW) 
• Timing abstractions: untimed, cycle-based, continuous time
• Automatic generation of gate-level netlist (HLS or RTL synthesis)
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Languages for Multiple Abstraction Modeling
Feature Java Python C++ SystemVerilog SystemC

Bit-true types External library External library External library Yes Yes

Parallel 
processes Yes Yes Yes Yes Yes

Concept of time No No No Yes Yes

SW Development Yes Yes Yes No Yes

Compiler 
support No No Yes No Yes

Modeling analog 
behavior No No No VerilogAMS Yes

RTL generation No MyHDL, PyMTL HLS Integrated 
Verilog HLS
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Single Source System-to-RTL Methodology
• Using high abstraction level SystemC for modeling hardware, software 

and analog functionality and block-level architecture
• Generating RTL from SystemC model drops one abstraction level
• Simulation and virtual platform models extracted from SystemC model
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Creating an Executable Specification
• Iterative process to create a simulation model that

– represents full functionality of the system in abstract level
– has initial split to hardware, software and analog functionalities

• All functionalities are written in C++ or SystemC
– Analog using SystemC AMS
– Digital in SystemC or C++
– Software in C++

• Abstracted interfaces between the subsystems model the real 
communication between the domains

• System performance analysis using Matchlib (Interconnect bw, etc.)
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Creating SystemC Testbench
• System testbench has two purposes:

– Validation of executable specification against 
requirements and paper spec

– Ensuring that all corner cases are modeled correctly

• Should be developed parallel to the simulation 
model
– Bring verification knowledge into modeling phase
– Find and fix bugs earlier
– Second pair of eyes to reference model development

• Reuse testbench in RTL verification
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Analyzing HLS Implementation Bottlenecks
• Find coding style issues preventing efficient parallelism may require 

major code or algorithm changes, e.g.
– Loop dependencies
– Array access
– Module hierarchy

• Run high-level synthesis to uncover problems as early as possible
– Using floating-point variables
– Focus on desired architecture, not performance or area

• Starting at leaf/block level
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Quantizing the Design
• Defining fixed-point attributes for all internal and external signals and 

variables
– Number of integer and fractional bits
– Signedness
– Rounding and overflow handling schemes

• Requires value range analysis of signals and variables
– Use SystemC traces
– Tool support for extracting abs max and non-zero abs minimum

• Sophisticated type definition scheme to enable switching between 
floating-point and fixed-point
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Exploring HW Architectures Using HLS
• Run HLS with different constraints

– Iterate towards desired hardware architecture
– Hierarchical or flat synthesis
– Optimize synthesis constraints

• Analyze Power, Performance and Area
• Eventually fine tune SystemC code
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Generating and Verifying RTL
• Freeze synthesis constraints into a build script
• Verify generated RTL against the SystemC code

– RTL Co-simulation
– Formal C-to-RTL equivalence checking

• Reuse SystemC testbench in RTL verification
– Functional test using SystemC testbench
– Generated functionalities must be tested with randomized tests

• Reset behavior
• Generated state machines
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Creating Example Design and Testbench
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Restructuring HW Model for HLS
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Quantizing HW Model
• Pre-quantized input to the ADC bit width limits the value range
• Dump all internal signal and variable values to file with sc_trace
• Analyze value ranges of the signals

– Maximum absolute value
– Minimum non-zero absolute difference between two samples

• Analyze required fixed-point attributes
– Dynamic analysis based on simulation data (Notch filter)
– Static analysis based on input data types and arithmetic operations (FIR)

• Run simulation with fixed-point types and compare results
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Floating-Point vs. Fixed-Point Comparison
• Many automated and manual methods available

– Automatic difference analysis with assert threshold
– Visual or frequency analysis based analysis
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Exploring HW Architectures Using HLS 
• Example design synthesized with different synthesis constraints

– Notch filter is SC_METHOD  forced unrolling and pipelining
– FIR filter is SC_THREAD  Loop transformations can be explored
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Conclusions
• SystemC AMS and High-Level Synthesis enable a single source language 

design flow from abstract Analog-Mixed-Signal system model to RTL 
• Graphical SystemC design platform improves productivity 
• Using High-Level synthesis enables higher abstraction level throughout 

the digital HW flow
• Key benefits of the SystemC Single Source AMS Flow

– Only one model to be developed and maintained
– No validation problems between different models
– Supports agile design methodology and continuous integration
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Questions
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