
Single Source System to Register-Transfer Level 
Design Methodology Using High-Level Synthesis

Petri Solanti, Mentor Graphics Deutschland GmbH
Thomas Arndt, COSEDA Technologies GmbH

© Accellera Systems Initiative 1



Motivation
• Complex multi-domain SoC requires multiple parallel design paths
• Each paths uses the modeling language and methodology best suited 

for the domain (Digital, Analog, Software, etc.)
• Validation of the models often disregarded
• Growing demand for simulation models for different purposes

• New design methodology that minimizes the number of different 
models and modeling languages is needed

© Accellera Systems Initiative 2



Agenda
• Problems of traditional design flows
• Languages for multi-abstraction modeling
• Single language System-to-RTL flow
• Design example
• Conclusions

© Accellera Systems Initiative 3



Problems of Traditional Design Process
• Multiple abstraction levels of models written in different languages
• Validation of the models throughout the design process
• Growing demand for different simulation models, e.g.

– IP model for automotive system simulator or digital twin
– Virtual Platforms for SW development
– HW verification models
– Rapid prototyping 

© Accellera Systems Initiative 4



Requirements for Modeling Language
• Advanced type system supporting arbitrary width and abstract data 

types and polymorphism
• Support for parallel processes
• Concept of time and simulation environment capable of handling 

multiple scheduling schemes
• Compiler support for different target environments (SW) 
• Timing abstractions: untimed, cycle-based, continuous time
• Automatic generation of gate-level netlist (HLS or RTL synthesis)

© Accellera Systems Initiative 5



Languages for Multiple Abstraction Modeling
Feature Java Python C++ SystemVerilog SystemC

Bit-true types External library External library External library Yes Yes

Parallel 
processes Yes Yes Yes Yes Yes

Concept of time No No No Yes Yes

SW Development Yes Yes Yes No Yes

Compiler 
support No No Yes No Yes

Modeling analog 
behavior No No No VerilogAMS Yes

RTL generation No MyHDL, PyMTL HLS Integrated 
Verilog HLS

© Accellera Systems Initiative 6



Single Source System-to-RTL Methodology
• Using high abstraction level SystemC for modeling hardware, software 

and analog functionality and block-level architecture
• Generating RTL from SystemC model drops one abstraction level
• Simulation and virtual platform models extracted from SystemC model

© Accellera Systems Initiative 7



Creating an Executable Specification
• Iterative process to create a simulation model that

– represents full functionality of the system in abstract level
– has initial split to hardware, software and analog functionalities

• All functionalities are written in C++ or SystemC
– Analog using SystemC AMS
– Digital in SystemC or C++
– Software in C++

• Abstracted interfaces between the subsystems model the real 
communication between the domains

• System performance analysis using Matchlib (Interconnect bw, etc.)

© Accellera Systems Initiative 8



Creating SystemC Testbench
• System testbench has two purposes:

– Validation of executable specification against 
requirements and paper spec

– Ensuring that all corner cases are modeled correctly

• Should be developed parallel to the simulation 
model
– Bring verification knowledge into modeling phase
– Find and fix bugs earlier
– Second pair of eyes to reference model development

• Reuse testbench in RTL verification

© Accellera Systems Initiative 9

Spec ReqsAlgo

Simulation 
Model (FP)

SystemC 
Testbench

Refining 
HLS Model

High-Level 
Synthesis

RTL 
Verification

SystemC 
Testbench



Analyzing HLS Implementation Bottlenecks
• Find coding style issues preventing efficient parallelism may require 

major code or algorithm changes, e.g.
– Loop dependencies
– Array access
– Module hierarchy

• Run high-level synthesis to uncover problems as early as possible
– Using floating-point variables
– Focus on desired architecture, not performance or area

• Starting at leaf/block level

© Accellera Systems Initiative 10



Quantizing the Design
• Defining fixed-point attributes for all internal and external signals and 

variables
– Number of integer and fractional bits
– Signedness
– Rounding and overflow handling schemes

• Requires value range analysis of signals and variables
– Use SystemC traces
– Tool support for extracting abs max and non-zero abs minimum

• Sophisticated type definition scheme to enable switching between 
floating-point and fixed-point

© Accellera Systems Initiative 11



Exploring HW Architectures Using HLS
• Run HLS with different constraints

– Iterate towards desired hardware architecture
– Hierarchical or flat synthesis
– Optimize synthesis constraints

• Analyze Power, Performance and Area
• Eventually fine tune SystemC code

© Accellera Systems Initiative 12



Generating and Verifying RTL
• Freeze synthesis constraints into a build script
• Verify generated RTL against the SystemC code

– RTL Co-simulation
– Formal C-to-RTL equivalence checking

• Reuse SystemC testbench in RTL verification
– Functional test using SystemC testbench
– Generated functionalities must be tested with randomized tests

• Reset behavior
• Generated state machines

© Accellera Systems Initiative 13



Creating Example Design and Testbench

© Accellera Systems Initiative 14

Data Path

Frequency Domain Analysis

Mathematical 
SystemC model



Restructuring HW Model for HLS

© Accellera Systems Initiative 15

Data Path

Frequency Domain Analysis

Digital Filter - HLS

Simuli re-use

Analysis re-use
• Models and test bench are usually structure hierarchically for optimal re-use
• Float vs. fixed point model comparison

HLS Compliant 
SystemC model

Analog part
On/Off-chip



Quantizing HW Model
• Pre-quantized input to the ADC bit width limits the value range
• Dump all internal signal and variable values to file with sc_trace
• Analyze value ranges of the signals

– Maximum absolute value
– Minimum non-zero absolute difference between two samples

• Analyze required fixed-point attributes
– Dynamic analysis based on simulation data (Notch filter)
– Static analysis based on input data types and arithmetic operations (FIR)

• Run simulation with fixed-point types and compare results

© Accellera Systems Initiative 16



Floating-Point vs. Fixed-Point Comparison
• Many automated and manual methods available

– Automatic difference analysis with assert threshold
– Visual or frequency analysis based analysis

© Accellera Systems Initiative 17



Exploring HW Architectures Using HLS 
• Example design synthesized with different synthesis constraints

– Notch filter is SC_METHOD  forced unrolling and pipelining
– FIR filter is SC_THREAD  Loop transformations can be explored

© Accellera Systems Initiative 18



Conclusions
• SystemC AMS and High-Level Synthesis enable a single source language 

design flow from abstract Analog-Mixed-Signal system model to RTL 
• Graphical SystemC design platform improves productivity 
• Using High-Level synthesis enables higher abstraction level throughout 

the digital HW flow
• Key benefits of the SystemC Single Source AMS Flow

– Only one model to be developed and maintained
– No validation problems between different models
– Supports agile design methodology and continuous integration

© Accellera Systems Initiative 19



Questions

© Accellera Systems Initiative 20


	Single Source System to Register-Transfer Level Design Methodology Using High-Level Synthesis
	Motivation
	Agenda
	Problems of Traditional Design Process
	Requirements for Modeling Language
	Languages for Multiple Abstraction Modeling
	Single Source System-to-RTL Methodology
	Creating an Executable Specification
	Creating SystemC Testbench
	Analyzing HLS Implementation Bottlenecks
	Quantizing the Design
	Exploring HW Architectures Using HLS
	Generating and Verifying RTL
	Creating Example Design and Testbench
	Restructuring HW Model for HLS
	Quantizing HW Model
	Floating-Point vs. Fixed-Point Comparison
	Exploring HW Architectures Using HLS 
	Conclusions
	Questions

