
Single Source Register Sequencing
Toolkit and Methodology for

FW and Verification Co-Development
Josh Loo, Anthony Cabrera, Kiel Boyle, Scott R. Nelson

Non-Volatile Memory Solutions Group
Intel Corporation

1

Agenda

2

What is SSRS?

SSRS Infrastructure

Cross-Domain Register Access Handshaking

Results

Extended Verification Features

2

What is SSRS?

3

What is SSRS?
The Problem:

• Modern SoC productization requires FW for production releases and
RAL sequences for pre-silicon verification

• FW and verification teams commonly access registers using different
techniques and source languages (ex. C++ vs. SystemVerilog/UVM)

• This leads to effort duplication and discrepancies between sequences
make it difficult to replicate exact behavior on different test platforms

4

What is SSRS?

5

The Solution:

• Single Source Register Sequencing (SSRS)

– A toolkit that includes a pair of support libraries with associated execution
kernels, one in C++ and the other in SystemVerilog

– Enables FW C++ register sequences to be run against RTL simulations
without needing a CPU simulation model

– C++ register sequences are executed on an x86 thread that runs parallel to
the simulator

5

What is SSRS?
The Benefits:

• Earlier FW/HW integration testing against standalone IP modules
• Faster simulations due to less RTL
• Verbatim re-use of FW
• Pre-silicon verification scoped to actual FW use cases
• Accurate behavior replication on all test platforms

6

class ssrs_test extends uvm_test;
...
fork
m_env.m_uvc.m_svek.run_c_sequence("path/to/cpp_collateral.so",

"function1");

m_uvm_sequence.start(m_sequencer);

m_env.m_uvc.m_svek.run_c_sequence("path/to/cpp_collateral.so",
"function2");

join
...
endclass

What is SSRS?

7

SSRS Infrastructure

8

SSRS Infrastructure

Bidirectional
Communication

Channel

C++ Infrastructure

Firmware HAL

C++ Sequences

Drivers

Register Headers

Register Monitoring Classes

C++
Execution

Kernel
(CEK)

SystemVerilog Infrastructure

UVC

SystemVerilog
Execution Kernel

(SVEK)

Design Under Test
(DUT)

Register
Interface

Register
Transaction

Adapter

DPI
C++

Sequence
Controller

UVM
Testcase

Register
Abstraction
Layer (RAL)

DPI

9

SSRS Infrastructure

• C++ Sequences – orchestrate driver calls to perform a series of register accesses

Bidirectional
Communication

Channel

C++ Infrastructure

Firmware HAL

Drivers

Register Headers

Register Monitoring Classes

C++
Execution

Kernel
(CEK)

SystemVerilog Infrastructure

UVC

SystemVerilog
Execution Kernel

(SVEK)

Design Under Test
(DUT)

Register
Interface

Register
Transaction

Adapter

DPI
C++

Sequence
Controller

UVM
Testcase

Register
Abstraction
Layer (RAL)

DPI

C++ Sequences

10

SSRS Infrastructure

• Drivers – stateless FW modules that implement accessors to registers

Bidirectional
Communication

Channel

C++ Infrastructure

Firmware HAL

Register Headers

Register Monitoring Classes

C++
Execution

Kernel
(CEK)

SystemVerilog Infrastructure

UVC

SystemVerilog
Execution Kernel

(SVEK)

Design Under Test
(DUT)

Register
Interface

Register
Transaction

Adapter

DPI
C++

Sequence
Controller

UVM
Testcase

Register
Abstraction
Layer (RAL)

DPI

C++ Sequences

Drivers

11

SSRS Infrastructure

• Register Headers – contain data type definitions that describe the address map
and access policies of registers

Bidirectional
Communication

Channel

C++ Infrastructure

Firmware HAL

Register Monitoring Classes

C++
Execution

Kernel
(CEK)

SystemVerilog Infrastructure

UVC

SystemVerilog
Execution Kernel

(SVEK)

Design Under Test
(DUT)

Register
Interface

Register
Transaction

Adapter

DPI
C++

Sequence
Controller

UVM
Testcase

Register
Abstraction
Layer (RAL)

DPI

C++ Sequences

Drivers

Register Headers

12

SSRS Infrastructure

• Register Monitoring Classes – class objects for registers are allocated in memory
and operator overloading is used to monitor register accesses by drivers

Bidirectional
Communication

Channel

C++ Infrastructure

Firmware HAL

C++
Execution

Kernel
(CEK)

SystemVerilog Infrastructure

UVC

SystemVerilog
Execution Kernel

(SVEK)

Design Under Test
(DUT)

Register
Interface

Register
Transaction

Adapter

DPI
C++

Sequence
Controller

UVM
Testcase

Register
Abstraction
Layer (RAL)

DPI

C++ Sequences

Drivers

Register Headers

Register Monitoring Classes

13

SSRS Infrastructure

Bidirectional
Communication

Channel

C++ Infrastructure

Firmware HAL

C++
Execution

Kernel
(CEK)

SystemVerilog Infrastructure

UVC

SystemVerilog
Execution Kernel

(SVEK)

Design Under Test
(DUT)

Register
Interface

Register
Transaction

Adapter

DPI
C++

Sequence
Controller

UVM
Testcase

Register
Abstraction
Layer (RAL)

DPI

C++ Sequences

Drivers

Register Headers

Register Monitoring Classes

14

class ssrs_test extends uvm_test;
...
fork
m_env.m_uvc.m_svek.run_c_sequence("path/to/cpp_collateral.so",

"function1");

m_uvm_sequence.start(m_sequencer);

m_env.m_uvc.m_svek.run_c_sequence("path/to/cpp_collateral.so",
"function2");

join
...
endclass

SSRS Infrastructure

15

SSRS Infrastructure

SVEKCEK
Shared
Object
Library

(.so) 4. Control Returns to SVEK

2. Dynamically Load
.so Library

4. Fork C++
Sequence

Execution on
x86 Thread

1. Initiate C++ Sequence

DPI

C++ Domain

SystemVerilog Domain

3. Obtain Function Pointer
to C++ Sequence

16

Cross-Domain
Register Access Handshaking

17

Cross-Domain Register Access Handshaking

 RUN BLOCKED RUN

Bidirectional
Communication

Channel

 DPI

C++ → SV Message Queue SV → C++ Message Queue

Register Access By
Driver Observed

x86 Thread

SVEK Tries
to Dequeue

New
Message
from CEK

Perform
UVM

Register
Transaction

on DUT

SVEK Sends
Completion
Message to

CEK

@Posedge
Clock

CEK

SVEK

Get a
Handle to
Register
from RAL

Message
Received

Empty

18

Initiating a Register Access from C++

• Driver accesses to reg objects in memory are observed by reg monitoring classes

• Overloading read and write operators triggers the CEK to convert the memory
address of a register being accessed to its equivalent address from the RAL

• Register Access Message (C++ → SV)

– RAL address of register being accessed

– Access type (e.g. read or write)

– Value to update DUT register with (writes only)

Cross-Domain Register Access Handshaking

19

Cross-Domain Register Access Handshaking

 RUN BLOCKED RUN

Bidirectional
Communication

Channel

 DPI

C++ → SV Message Queue SV → C++ Message Queue

Register Access By
Driver Observed

x86 Thread

SVEK Tries
to Dequeue

New
Message
from CEK

Perform
UVM

Register
Transaction

on DUT

SVEK Sends
Completion
Message to

CEK

@Posedge
Clock

CEK

SVEK

Get a
Handle to
Register
from RAL

Message
Received

Empty

20

• Completion Message (SV → C++)

– Value to return to C++:

• Read accesses return the value read from the DUT

Cross-Domain Register Access Handshaking

21

Cross-Domain Register Access Handshaking

 RUN BLOCKED RUN

Bidirectional
Communication

Channel

 DPI

C++ → SV Message Queue SV → C++ Message Queue

Register Access By
Driver Observed

x86 Thread

SVEK Tries
to Dequeue

New
Message
from CEK

Perform
UVM

Register
Transaction

on DUT

SVEK Sends
Completion
Message to

CEK

@Posedge
Clock

CEK

SVEK

Get a
Handle to
Register
from RAL

Message
Received

Empty

22

Bidirectional Communication Channel
• Encapsulates two message queues: C++ → SV and SV → C++
• Implemented in C++ and allocated in memory by CEK
• Message queues hold entries of type message_t, a user-defined struct that is

identically defined in both language domains

Message Queue
Accessor Function

Action Blocking? Accessible via DPI
Import?

put() En-queues a
message

No Yes

get() De-queues a
message

Yes Yes

tryget() Attempts to de-
queue a message

No Yes

Cross-Domain Register Access Handshaking

23

Cross-Domain Register Access Handshaking
DUT UVM Testbench SVEK C++ SequenceC++ -> SV Queue SV -> C++ Queue

Run C++ Sequence

alt

Create x86 Thread to Run C++ Sequence (DPI call to CEK)

x86 Thread Joined
Run C++ Sequence (Return)

[C++ Sequence Executes a Register Access]

5. Get Register from RAL
6. Register Access in DUT

7. Register Access in DUT
(Return) 8. Get Register from RAL

(Return)

2. get() Completion
Message

3. tryget() Register Access Message

4. tryget(): Received

10. get() Completion
Message (Return)

1. put() Register Access Message

9. put() Completion Message

B
L
O
C
K
E
D

24

Cross-Domain Register Access Handshaking
DUT UVM Testbench SVEK C++ SequenceC++ -> SV Queue SV -> C++ Queue

Run C++ Sequence

alt

Create x86 Thread to Run C++ Sequence (DPI call to CEK)

x86 Thread Joined
Run C++ Sequence (Return)

[C++ Sequence Executes Auxiliary Operations]

3. @(posedge clk)

1. tryget() Register Access Message

2. tryget(): Empty

25

Results

26

Results
Portability

• SSRS is easily portable to existing UVM testbenches due to its RAL interface

Multi-Platform Code Re-use

• Scope of pre-silicon verification was focused on actual FW use cases as
defined by the common sequences

• Sharing common FW drivers and sequences reduced code redundancy and
ensured behavior replicability across different test platforms

27

Results
Flushing Out FW/HW Interaction Bugs Earlier

• Example:

– FW sequence appeared to be passing in post-silicon testing

– When re-running the FW sequence in an RTL simulation, we noticed IO
glitches that could trigger undefined behavior on external components

Cross-Team Collaboration

• Verification experts should be able to easily notice errors in FW drivers or
sequences since they are experts in SoC design specifications

28

Continuous Integration

• Changes to shared FW code triggered rigorous reviews across multiple
disciplines resulting in higher quality code

• Modifications were automatically regressed against different test platforms

• Regressing FW in simulation provided prompt quality feedback to FW
developers without requiring detailed knowledge about UVM environments

• SSRS provided greater debug visibility into FW interactions with the RTL by
reproducing behavior in simulation

Results

29

Extended Verification Features

30

Extended Verification Features
Constrained Random Parameter Generation

• Existing constraint constructs within a UVM test environment can be used
to generate constrained-random values for C++ Sequences

• Effectively reduces manual effort for test creation while increasing
functional coverage of the DUT and FW source code

• Currently exploring how to share SystemVerilog generated parameters with
other test platforms

31

Extended Verification Features
Inter-Environment Communication

• Existing message passing mechanisms can also be used to trigger custom
SystemVerilog or UVM functionality from C++

• Example use-cases:

– Converting assertion and print statements in C++ to UVM report macros

– Generating backdoor register accesses to accelerate run time

– Generating burst register accesses in simulation

32

Conclusion
Single Source Register Sequencing (SSRS)

• Enables FW execution against RTL simulations without a CPU model

• Portable to lower-level verification environments due to RAL interface

• Provides developers with greater debug visibility into FW/RTL interactions

• Verbatim reuse of FW enables trivial behavior replication in RTL simulation

• Allows for extension to trigger custom functionality between C++ and
SystemVerilog

33

Questions?

34

	Single Source Register Sequencing�Toolkit and Methodology for �FW and Verification Co-Development
	Agenda
	What is SSRS?
	What is SSRS?
	What is SSRS?
	What is SSRS?
	What is SSRS?
	SSRS Infrastructure
	SSRS Infrastructure
	SSRS Infrastructure
	SSRS Infrastructure
	SSRS Infrastructure
	SSRS Infrastructure
	SSRS Infrastructure
	Slide Number 15
	SSRS Infrastructure
	Cross-Domain�Register Access Handshaking
	Cross-Domain Register Access Handshaking
	Cross-Domain Register Access Handshaking
	Cross-Domain Register Access Handshaking
	Cross-Domain Register Access Handshaking
	Cross-Domain Register Access Handshaking
	Cross-Domain Register Access Handshaking
	Cross-Domain Register Access Handshaking
	Cross-Domain Register Access Handshaking
	Results
	Results
	Results
	Results
	Extended Verification Features
	Extended Verification Features
	Extended Verification Features
	Conclusion
	Questions?

