
Single Source Register Sequencing
Toolkit and Methodology for 

FW and Verification Co-Development
Josh Loo, Anthony Cabrera, Kiel Boyle, Scott R. Nelson

Non-Volatile Memory Solutions Group
Intel Corporation

1



Agenda

2

What is SSRS?

SSRS Infrastructure

Cross-Domain Register Access Handshaking

Results

Extended Verification Features

2



What is SSRS?

3



What is SSRS?
The Problem:

• Modern SoC productization requires FW for production releases and 
RAL sequences for pre-silicon verification

• FW and verification teams commonly access registers using different 
techniques and source languages (ex. C++ vs. SystemVerilog/UVM)

• This leads to effort duplication and discrepancies between sequences 
make it difficult to replicate exact behavior on different test platforms
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What is SSRS?
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The Solution:

• Single Source Register Sequencing (SSRS)

– A toolkit that includes a pair of support libraries with associated execution 
kernels, one in C++ and the other in SystemVerilog

– Enables FW C++ register sequences to be run against RTL simulations 
without needing a CPU simulation model

– C++ register sequences are executed on an x86 thread that runs parallel to 
the simulator
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What is SSRS?
The Benefits:

• Earlier FW/HW integration testing against standalone IP modules
• Faster simulations due to less RTL
• Verbatim re-use of FW
• Pre-silicon verification scoped to actual FW use cases
• Accurate behavior replication on all test platforms
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class ssrs_test extends uvm_test;
...
fork
m_env.m_uvc.m_svek.run_c_sequence("path/to/cpp_collateral.so",

"function1");

m_uvm_sequence.start(m_sequencer);

m_env.m_uvc.m_svek.run_c_sequence("path/to/cpp_collateral.so",
"function2");

join
...
endclass

What is SSRS?
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SSRS Infrastructure
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SSRS Infrastructure
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SSRS Infrastructure

• C++ Sequences – orchestrate driver calls to perform a series of register accesses
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SSRS Infrastructure

• Drivers – stateless FW modules that implement accessors to registers
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SSRS Infrastructure

• Register Headers – contain data type definitions that describe the address map 
and access policies of registers 
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SSRS Infrastructure

• Register Monitoring Classes – class objects for registers are allocated in memory 
and operator overloading is used to monitor register accesses by drivers
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SSRS Infrastructure
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class ssrs_test extends uvm_test;
...
fork
m_env.m_uvc.m_svek.run_c_sequence("path/to/cpp_collateral.so",

"function1");

m_uvm_sequence.start(m_sequencer);

m_env.m_uvc.m_svek.run_c_sequence("path/to/cpp_collateral.so",
"function2");

join
...
endclass

SSRS Infrastructure
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SSRS Infrastructure
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Cross-Domain
Register Access Handshaking
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Cross-Domain Register Access Handshaking
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Initiating a Register Access from C++

• Driver accesses to reg objects in memory are observed by reg monitoring classes

• Overloading read and write operators triggers the CEK to convert the memory 
address of a register being accessed to its equivalent address from the RAL

• Register Access Message (C++ → SV)

– RAL address of register being accessed

– Access type (e.g. read or write)

– Value to update DUT register with (writes only)

Cross-Domain Register Access Handshaking

19



Cross-Domain Register Access Handshaking
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• Completion Message (SV → C++)

– Value to return to C++:

• Read accesses return the value read from the DUT

Cross-Domain Register Access Handshaking
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Cross-Domain Register Access Handshaking
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Bidirectional Communication Channel
• Encapsulates two message queues: C++ → SV and SV → C++
• Implemented in C++ and allocated in memory by CEK
• Message queues hold entries of type message_t, a user-defined struct that is 

identically defined in both language domains

Message Queue 
Accessor Function

Action Blocking? Accessible via DPI 
Import?

put() En-queues a 
message

No Yes

get() De-queues a 
message

Yes Yes

tryget() Attempts to de-
queue a message

No Yes

Cross-Domain Register Access Handshaking
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Cross-Domain Register Access Handshaking
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Cross-Domain Register Access Handshaking
DUT UVM Testbench SVEK C++ SequenceC++ -> SV Queue SV -> C++ Queue

Run C++ Sequence

alt

Create x86 Thread to Run C++ Sequence (DPI call to CEK)

x86 Thread Joined
Run C++ Sequence (Return)

[C++ Sequence Executes Auxiliary Operations]

3. @(posedge clk)

1. tryget() Register Access Message 

2. tryget(): Empty
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Results
Portability

• SSRS is easily portable to existing UVM testbenches due to its RAL interface

Multi-Platform Code Re-use

• Scope of pre-silicon verification was focused on actual FW use cases as 
defined by the common sequences

• Sharing common FW drivers and sequences reduced code redundancy and 
ensured behavior replicability across different test platforms
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Results
Flushing Out FW/HW Interaction Bugs Earlier

• Example:

– FW sequence appeared to be passing in post-silicon testing

– When re-running the FW sequence in an RTL simulation, we noticed IO 
glitches that could trigger undefined behavior on external components

Cross-Team Collaboration

• Verification experts should be able to easily notice errors in FW drivers or 
sequences since they are experts in SoC design specifications
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Continuous Integration

• Changes to shared FW code triggered rigorous reviews across multiple 
disciplines resulting in higher quality code

• Modifications were automatically regressed against different test platforms

• Regressing FW in simulation provided prompt quality feedback to FW 
developers without requiring detailed knowledge about UVM environments

• SSRS provided greater debug visibility into FW interactions with the RTL by 
reproducing behavior in simulation

Results
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Extended Verification Features
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Extended Verification Features
Constrained Random Parameter Generation

• Existing constraint constructs within a UVM test environment can be used 
to generate constrained-random values for C++ Sequences

• Effectively reduces manual effort for test creation while increasing 
functional coverage of the DUT and FW source code

• Currently exploring how to share SystemVerilog generated parameters with 
other test platforms
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Extended Verification Features
Inter-Environment Communication

• Existing message passing mechanisms can also be used to trigger custom 
SystemVerilog or UVM functionality from C++

• Example use-cases:

– Converting assertion and print statements in C++ to UVM report macros

– Generating backdoor register accesses to accelerate run time

– Generating burst register accesses in simulation
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Conclusion
Single Source Register Sequencing (SSRS)

• Enables FW execution against RTL simulations without a CPU model

• Portable to lower-level verification environments due to RAL interface

• Provides developers with greater debug visibility into FW/RTL interactions

• Verbatim reuse of FW enables trivial behavior replication in RTL simulation

• Allows for extension to trigger custom functionality between C++ and 
SystemVerilog
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Questions?
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