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Abstract–Constrained random simulations play a critical role in design verification today. Analyzing and 

prioritizing the unverified features in the design significantly affects the engineering time taken to converge a 
design's coverage goal. This research focuses on optimization of constrained random verification using machine 
learning algorithms. Machine learning is used to modify randomization constraints during simulation runtime 
in response to instrumentation of the DUT. Simpler algorithms such as linear regression and more complicated 
algorithms such as artificial neural networks augment the simulation as it attempts to predict useful stimulus. 
The proposed enhanced environment resolves some limitations of the previous efforts proposed in a DVCon 
2017 paper by Nelson [1] optimizing the scalability of the environment and enhancing its compatibility at 
verifying complex combinatorial designs and sequential designs including finite state machines (FSMs). 

I. INTRODUCTION 
 

The DVCon San Jose paper from 2017 “Improving Constrained Random Testing by Achieving Simulation Design 
Goals through Target Functions, Rewinding and Dynamic Seed Manipulation” by Nelson [1] was extended to tackle 
some of its admitted deficiencies. The Nelson [1] paper used introspection of the DUT to see if the stimulus was 
making an impact in exploring the design; and if there was no impact of that stimulus, the simulation was rewound 
and new completely random stimulus was explored. 

The concept of the “Objective Function” is re-introduced here, which is a measure of a user-specified function 
queried from within the SystemVerilog environment. An “Objective Function” could simply be defined by the user 
as: calling the covergroup built-in function get_coverage() on a particular covergroup. A more ambitious goal would 
be adding the resultant get_coverage() values from a number of related covergroups and using that as the “Objective 
Function”. The “Objective Function” could be as general as calling the SystemVerilog built-in function 
$get_coverage(), which returns a floating point number between 0 and 100 representing the aggregate value of all 
covergroups in the design. The “Objective Function” could be any function that returns a number that increases in 
value as it approaches its goal. Therefore, it is possible that using something as abstract as line coverage of the DUT 
could be used as the “Objective Function”, which could be useful to demonstrate a particular stimulus is activating 
lines of code not yet exercised.  

This research adds different algorithms – and the concept of dynamic constraint modification - to the feedback 
loop of the Nelson [1] paper which results in efficiency improvements. This research optimizes constrained random 
simulations by automating the update of constraints during simulation runtime. The method employs machine learning 
algorithms to analyze and prioritize unverified features autonomously, by using predictions of input combinations that 
can generate unseen outputs to exercise these unverified features. This facilitates generating appropriate input stimulus 
targeting particularly hard-to-reach coverage holes. The optimization reduces the effort and time taken to manually 
update constraints and converge to the coverage goal. 
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FIGURE 1 COMBINING SEED MANIPULATION WITH SIMULATION REWIND FROM 2017 NELSON PAPER 

 
The provided verification environment has been equipped with multiple machine learning algorithms, including a 

linear regression model and artificial neural network that model the predictor. This approach improves the scalability 
of the environment, enhancing its capability at verifying varied designs with different behaviors. The data training 
sets, used for training the machine learning algorithms, are implicitly generated by the verification environment during 
the simulation, reducing the need for design-dependent information.  

 

II. DRAWBACKS OF PRIOR WORK 
 

Verification using the simulation environment defined in the prior work Nelson [1] can get stuck in a simulation 
loop, in which case the coverage function does not converge to the coverage goal. In such scenarios, the conventional 
UVM timeout mechanisms will no longer be effective at terminating a simulation, since it is based on simulation time 
and not the clock time. Therefore, in scenarios where we fail to achieve an improvement on the objective function, 
the simulation repeats the same simulation period and gets stuck in an infinite loop. 

The techniques mentioned in the prior work Nelson [1] look promising and work very well for small combinational 
designs. However, the scalability of the environment is most definitely questionable. This is because the framework 
of the testbench does not optimize the time taken to converge to the coverage goal. Though the simulation time is 
optimized using the techniques of objective function, rewinding and dynamic seed-manipulation, the clock time taken 
to converge to the coverage goal is similar to that of an unconstrained random simulation. As the complexity of the 
design being verified increases, the size of the state space defining it increases dramatically. Hence, the verification 
of the design using the unconstrained environment is unrealistically time-consuming. 

Rigorous testing was done to check the scalability of the environment, and the environment was experimentally 
shown to be inefficient to verify complex designs. The block diagram of the design being verified is given in the figure 
below: 
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FIGURE 2. DUT USED FOR TESTING THE ORIGINAL ENVIRONMENT (AFTER [1]) 

 
The Design Under Test (DUT) is a 2-input parameterized comparator is depicted in  
Figure 2. When the inputs A and B are equal, the output C is asserted. The internal signal match is assigned with A 
when C is asserted at a positive edge of the clock. Otherwise, it is assigned to be 0. A covergroup has been defined 
inside the DUT, with the internal signal match, as the coverpoint, in order to check if all possible matching values 
have been generated on A and B at the positive edge of the clock. The parameterized design is used to check the 
compatibility of the verification environment for varying input widths. A summary of the simulation results for 
comparators of different widths using the simulation environment is shown in 
Figure 3 (data is median of 11 trials for each width). 

 
 

Width of Comparator No of Iterations 

1 3 
2 34 
3 145 

4 786 

5 3967 

6 18958 

 

FIGURE 3. SIMULATION RESULTS (USING ENVIRONMENT IN [1]) 

 
These results show that the verification environment is incapable of verifying complex designs. As the width of 

the comparator increases, the number of iterations taken to converge to the coverage goal is increasing rapidly. The 
reason for this large increase in the time taken to converge to the coverage goal is that the simulation environment is 
similar to an unconstrained random simulation, in terms of the state space and the time taken to explore the state space. 
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III. OPTIMIZATION OF CONSTRAINED RANDOM VERIFICATION USING MACHINE LEARNING 
ALGORITHMS 

 
As the design complexity increases the state space defining the same increases rapidly. Hence, the probability of 

finding efficient stimuli diminishes. The aim of this research is to autonomously update the constraints during runtime 
in order to hit bins that have not been previously hit during the simulation, and hence converge to the coverage goal 
faster. This should ideally resolve the segmentation fault issue too since the simulation will converge much faster and 
eliminate the need for excess memory, which leads to the segmentation faults. There are multiple challenges that need 
to be addressed to efficiently implement the optimization proposed and to be able to converge to 100% coverage in 
one simulation run, including: 

 
1. Autonomous update of constraints to trigger efficient stimuli on the inputs that generate the necessary 

outputs, so as to achieve an improvement in the objective function. 
2. Develop design-independent, efficient techniques to update the constraints during runtime without having to 

recompile the updated environment. 
3. Synchronize the enhancements with the other optimization techniques, including Objective Function, 

Rewinding and Dynamic Seed Manipulation, and integrating the environment. 
 
All of the above-mentioned challenges have been efficiently resolved in the research work. 
Machine Learning, as stated earlier, is the science of getting a computer to act without explicit programming. It 

uses training sets, which represent the relationships between inputs and outputs in the state space, to model a design. 
It is this property that we are going to exploit to resolve the scalability issue of the environment. Machine Learning, 
as the name suggests, learns the design, irrespective of what the design is, i.e. the algorithms are design-independent, 
resolving one of the challenges inherently. So, the next big challenge is employing the Machine Learning algorithm 
efficiently to autonomously update the constraints.  

Functional coverage provides essential feedback for knowing what was tested, the device configuration used and, 
perhaps most importantly, what still has not been tested. The idea is to pass this information to the trained machine 
learning models, in order to identify the inputs that generate outputs that hit the previously missed bins and update the 
constraints using the same to facilitate the generation of these inputs. Since the aim is to find the function that best fits 
the state space to make accurate predictions of input stimuli, it is a regression problem. In order to solve the problem, 
we are going to use supervised machine learning algorithms, using labeled training sets to train the model. The training 
sets contain information necessary to train the model, which include the inputs and the expected output for the 
corresponding set of inputs as the label. 

Presented below is a stepwise summary of the optimized constrained random simulation flow using machine 
learning as proposed in this research work: 

 
1. Run a limited number of random simulations. 
2. Generate valid training sets from the random simulations. 
3. Once the minimum number of training sets necessary to train the Machine Learning model have been 

generated from the random simulations, train the model. 
4. Identify an output bin that has not been hit previously during the simulation and feed the same as input to the 

Machine Learning model. 
5. Use the model to predict the input stimuli that can generate the output. 
6. Update the constraints such that the input stimuli identified may be generated and drive the inputs of the DUT 

with the same. 
7. Repeat steps (4), (5) and (6) until all the bins have been hit and the simulation converges to 100% coverage. 
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FIGURE 4. OPTIMIZED CONSTRAINED RANDOM SIMULATIONS USING MACHINE LEARNING 

Irrespective of the Machine Learning algorithm used to model the relationship, the flow in Figure 4 will remain 
the same. However, the accuracy of the prediction will greatly depend on the algorithm used. In order to demonstrate 
the method, we are going to use two models: a Linear Regression Model and an Artificial Neural Network (ANN). 

 

IV. OPTIMIZATION OF THE TEST ENVIRONMENT USING A LINEAR REGRESSION MODEL 
 

For demonstration purposes, we have chosen the design of the comparator having configurable input widths, 
discussed earlier, as the DUT. A covergroup has been defined inside the DUT, with the internal signal match as the 
coverpoint, to check if all possible matching values have been generated on A and B at the positive edge of the clock. 
When A equates to B at the positive edge of the clock, the output C is asserted and match is assigned with A. Hence, 
we can see that there is a linear relation between the output, match and the inputs A and B. In such a scenario, a simple 
Machine Learning algorithm, like a Linear Regression Model will meet the requirements. 
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V. GENERATING TRAINING SETS 
 

An intriguing feature about this approach is the fact that the environment generates the necessary training sets by 
itself, making the approach completely independent and mitigating the need for any design-dependent inputs to run 
the simulation.  

Structures defining the information to be contained in the training sets are defined in the environment package. 
These make addressing the training sets easier and also causes them to be less error-prone, assuring that the 
simultaneously sampled inputs and outputs are used for training the machine learning algorithm. For instance, training 
sets for modeling the relationships of the parameterized comparator contains information corresponding to the inputs 
A and B, the output, match, and a flag, TS_ready, indicating that the training set is ready, to train the model 
effectively. 

 

typedef struct {  
   bit [width-1:0] a; 
   bit [width-1:0] b; 
   bit [width-1:0] match; 
   bit TS_ready;  
} training_set; 

 
 
The simulation samples valid data, i.e. when the inputs A and B are equal, during the random simulations and loads 

the data into the training_set and asserts the corresponding TS_ready signal. We have defined a function in 
the environment, generate_TS_and_track_hit_bins (presented below) to generate the 
no_of_TS_required number of training sets, TS and to track the output bins hit. The output bins hit are tracked 
using an associative array, OUT_HIT [match]. 

 
 

function void generate_TS_and_track_hit_bins( 
                                      bit [width-1:0] a,  
       bit [width-1:0] b,  
       bit [width-1:0] match); 
    
   // Load TS with "no_of_TS_required" number of training sets 
   // [Input=0 and Match = 0] cannot be used for training  
   if(i<no_of_TS_required && (match!=0)) 
      begin 
       // Generating Training Sets 
        TS[i].a        = a; 

          TS[i].b        = b; 
        TS[i].match    = match; 
        TS[i].TS_ready = 1; 
          
         // Tracking Output Bins hit 
         OUT_HIT[match] = 1; 
         i = i+1;   
      end 
   else  
   begin  
      OUT_HIT[match] = 1; 
   end 
endfunction 

 
 
This function is called whenever the condition, A==B is met, to generate the necessary number of training sets and 

to keep track of the output bins hit. The number of training sets required to train a model can differ based on the 
design. To allow for this, the simulation is parameterized, with no_of_TS_required made to be configurable. 
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VI. TRAINING THE MODEL 
 

Now that the training sets are ready, we can use them to efficiently train the Linear Regression Model. We are 
using a TCL library, math::linearalgebra, in order to solve the linear regression problem and compute the 
parameters, beta_a and beta_b. Once the training sets are ready, i.e. once the TS_ready of 
no_of_TS_required number of training sets are all asserted, the eval_coeff function (presented below) from 
rclass.tcl is invoked to evaluate the coefficients. 

proc ::rclass::eval_coeff {} { 
    variable a0 
    variable b0 
    variable match0 
    variable beta_a 
    variable beta_b 
    # Get the Training Sets 
    set a0 [get top.dif.TS_a_0 -radix decimal] 
    set b0 [get top.dif.TS_b_0 -radix decimal] 
    set match0 [get top.dif.TS_match_0 -radix decimal] 
    # Solve Linear Equation 
    set beta_a [math::linearalgebra::solveGauss $a0 $match0] 
    set beta_b [math::linearalgebra::solveGauss $b0 $match0] 
    # Force Beta Values to SV Environment 
    force top.rseed_interface.beta_a $beta_a; 
    force top.rseed_interface.beta_b $beta_b; 
    force top.rseed_interface.beta_ready 1; } 

 
The computed parameters beta_a and beta_b, along with a flag beta_ready indicating that the Machine 

Learning model has been trained, are forced onto variables in the SystemVerilog environment and can now be used 
to update the constraints and generate inputs based on the expected outputs.  

VII. UPDATING THE CONSTRAINTS 
 

 Once the Machine Learning Model has been trained, i.e. beta_ready is asserted, we may use it to 
accurately predict the input stimuli and to use the same to update the constraints and generate outputs hitting previously 
missed bins. 

 We use queues to define in-line constraints, while randomizing the inputs feeding the DUT and dynamically 
update the queues during runtime to update the constraints. Presented below is the function rprint used for 
randomizing and printing the input num, with num_inside_queue used to define the inline constraints. 
 

 

// randomize and print 
function void rprint(); 
      this.randomize() with {(num inside num_inside_queue);}; 
      `uvm_info("CR", $sformatf("num is: %d", num), UVM_LOW) 
endfunction 

 

To identify the output bins that have not been previously hit we use the associative array keeping track of the 
output bins hit, OUT_HIT[match]. The inputs used for updating the queue, num_inside_queue, are computed 
from the identified expected outputs using the Linear Regression Model parameters i.e. the beta_value. The 
function used for updating the constraints, update_constraint is presented below: 
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function void update_constraint(integer beta_value); 
      num_inside_queue = {}; 
      i = 0; 
      repeat(2**width)  
        if(!(OUT_HIT.exists(i))) begin  
           num_inside_queue.push_back(i++/beta_value); 
           break; 
        end 
        else i++; 
endfunction 

 
 

This novel implementation used for updating the constraints comes with the advantage that it eliminates the need 
to recompile the environment every time the constraint is updated. Such an implementation overcomes all the 
challenges foreseen and hence, the simulation should efficiently converge to the coverage goal autonomously, in a 
single run. 

VIII. SIMULATION RESULTS FOR COMPARATOR DESIGN 
 

 The simulation results were promising and remarkably good in terms of the quality of input stimulus 
generated using the optimized constrained random simulations, which in turn translated to minimization of the time 
taken to converge to the 100% coverage.  

The simulation environment also maintains the capability of random simulations to invoke unpredicted bugs in the 
design. In order to achieve this, the simulation runs a configurable number of unconstrained random iterations in the 
beginning. The simulation is guided by a plusarg, +max_rand_sim_count that defines the number of random 
simulations run prior to employing the Machine Learning algorithm, even if an improvement is not observed in the 
Objective Function over the iterations. 

To demonstrate the simulation results, a comparator with width=3 is chosen. A Makefile, with adequate 
arguments, has been defined to configure the simulation environment efficiently. The simulation is run using: 

 

make simulation WIDTH=3 ML_ENABLED=1 

 

ML_ENABLED=1, enables the Linear Regression model as the machine learning algorithm. 
+max_rand_sim_count was set to 10. During the random simulations, the valid training sets are generated, and 
outputs bins hit are tracked (highlighted in the log below). The matching inputs A=4, B=4 will be used as the training 
set to train the Linear Regression Model. 

 

UVM_INFO sv/dut.sv(26)@ 20: reporter [dut_if] AFTER drive regs A: 4 B: 4 
UVM_INFO sv/env_pkg.sv(28) @ 26: reporter [ENV_PKG] A and B matching; Generate training sets; 

Track output bins hit 
rseed_interface.sv, 111 :             begin 
------------------------- START eval_loop 
DEBUG current simulation time is ctime : 27 ns 
INFO STATUS : TCL : LOCAL ACCEPTED seed: 2 at time: 17 ns 
INFO STATUS : TCL : 27 ns : GOOD : 12.500000 > 0.000000 
DEBUG stable_count == 0 
------------------------- END eval_loop 

 

The stable_count gives the number of iterations for which an improvement is not observed on the Objective 
Function. The machine learning algorithm is trained when this value equates to the max_rand_sim_count defined. 
Hence, when stable_count=10, the function, eval_coeff is called to evaluate the parameters (Highlighted 
in the log below). 
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------------------------- START eval_loop 
DEBUG current simulation time is ctime : 67 ns 
INFO STATUS : TCL : LOCAL REJECTED seed: 1067 at time: 57 ns 
INFO STATUS : TCL : 67 ns : NO PROGRESS : false: 50.000000 > 50.000000 REWINDING TO CHECKPOINT 

{2} at 57 ns 
All the Checkpoints created after checkpoint 2 are removed... 
DEBUG stable_count == 10 
######################### START eval_coeff 
INFO STATUS : TCL : Evaluating Coefficients for LR Model at time: 57 ns 
Training Sets: 
A0 = 4; MATCH = 4 
B0 = 4; MATCH = 4 
Evaluate Coefficients: 
BETA_A = 1.0; BETA_B = 1.0 
######################### END eval_coeff 
------------------------- END eval_loop 

 

Once the parameters, beta_a and beta_b, are evaluated using the training sets, every successive iteration of 
the SystemVerilog testbench updates the constraints using the parameters to guide the simulation to generate outputs 
hitting previously missed bins. Ideally, every iteration is expected to hit a previously missed bin, resulting in an 
improvement in the objective function. A snippet of the simulation log presenting two iterations is given below. The 
constraints are updated in every iteration, such that new matching values are generated on A and B every iteration, 
and hence, an improvement is observed in the objective function (Highlighted in the log), 

 

UVM_INFO sv/env_pkg.sv(171) @ 80: reporter@@uvm_sequence_item [ENV_PKG] Updating Constraints 
UVM_INFO sv/env_pkg.sv(196) @ 80: reporter@@uvm_sequence_item [ENV_PKG] AFTER UPDATE 

num_inside_queue contain: '{'h2}  
UVM_INFO sv/dut.sv(26)@ 80: reporter [dut_if] AFTER drive regs a: 2 b: 2 
UVM_INFO sv/env_pkg.sv(28) @ 86: reporter [ENV_PKG] A and B matching; Generate training sets; 

Track output bins hit 
------------------------- START eval_loop 
DEBUG current simulation time is ctime : 87 ns 
INFO STATUS : TCL : LOCAL ACCEPTED seed: 619 at time: 77 ns 
INFO STATUS : TCL : 87 ns : GOOD : 75.000000 > 62.500000 
------------------------- END eval_loop 
UVM_INFO sv/env_pkg.sv(171) @ 90: reporter@@uvm_sequence_item [ENV_PKG] Updating Constraints 
UVM_INFO sv/env_pkg.sv(196) @ 90: reporter@@uvm_sequence_item [ENV_PKG] AFTER UPDATE 

num_inside_queue contain: '{'h3}  
UVM_INFO sv/dut.sv(26)@ 90: reporter [dut_if] AFTER drive regs a: 3 b: 3 
UVM_INFO sv/env_pkg.sv(28) @ 96: reporter [ENV_PKG] A and B matching; Generate training sets; 

Track output bins hit 
------------------------- START eval_loop 
DEBUG current simulation time is ctime : 97 ns 
INFO STATUS : TCL : LOCAL ACCEPTED seed: 619 at time: 87 ns 
INFO STATUS : TCL : 97 ns : GOOD : 87.500000 > 75.000000 
------------------------- END eval_loop 

 

The simulation proceeds until the coverage goal is met. The simulator prints a final report once the simulation 
converges to the 100% coverage goal. 

 
 

INFO STATUS : TCL : WIDTH OF COMPARATOR = 3 
INFO STATUS : TCL : ITERATIONS TOTAL = 24 
INFO STATUS : TCL : final_report END 
UVM_INFO sv/rseed_interface.sv(143) @ 117: reporter [RS]  
COVERAGE GOAL MET coverage:  100    max_objective:  100 
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The simulation converges in 24 iterations (highlighted in the log) as opposed to 145 iterations in the case of the 
original environment. This represents significant improvement in terms of both the number of iterations required and 
the time taken to converge to the coverage goal. 

The simulation environment was tested using multiple inputs widths. The results are tabulated below, presenting 
the number of iterations taken to converge to the coverage goal as a function of the width of the comparator. 

 

# Width of Comparator No of Iterations 

1 1 5 

2 2 14 

3 3 24 

4 4 26 

5 5 78 

6 6 96 

7 7 144 

 

FIGURE 5: SIMULATION RESULTS (OPTIMIZED ENVIRONMENT EMPLOYING THE LINEAR REGRESSION MODEL) 

The optimized environment resolves the segmentation fault issues observed in the original environment. The 
increase in the number of iterations for higher widths is expected as it takes longer to generate valid training sets.  The 
technique clearly demonstrates marked advantages over the prior approach. However, a Linear Regression model can 
only model linear relationships between inputs and outputs. It is impractical to verify designs with non-linear behavior 
using the environment. 

IX. OPTIMIZATION OF THE TEST ENVIRONMENT USING AN ANN 
 

Artificial Neural Networks (ANN) are non-linear statistical data modeling tools that can model complex 
relationships between inputs and outputs in a state space. This ability may be exploited to optimize the scalability of 
our test environment to verify non-linear designs. Successfully integrating ANNs into the verification environment 
largely eliminates any design dependency and resolves most challenges pertaining to the capability of the test 
environment to make accurate predictions for complex designs. 

X. MODELING THE ARTIFICIAL NEURAL NETWORK 
 

We are using a TCL extension fann [2], to model the Artificial Neural Networks. This extension supports efficient 
implementations of Neural Networks with numerous knobs to configure the network. The free open source neural 
network FANN library supports: 

● Multilayer networks with configurable connections, enabling fully, sparse and shortcut type connected 
networks. 

● Backpropagation training which dynamically builds and trains the ANN, using multiple evolving topology 
training algorithms and configurations. 

● Numerous activation functions, including linear, sigmoid, Gaussian, etc. 
 

Depending on the complexity of the relationship between the inputs and outputs of the design, we may configure 
the ANN in terms of the number of layers, the number of neurons per layer, training algorithm, activation function of 
each neuron, etc.  
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fann create name layers layer1 layer2 .... 

 

The command above creates a new ANN named name with layers number of layers, and layer1, 
layer2,...., number of neurons per layer respectively, starting from the input layer and towards the output layer.  

 

name function layer <0,1,...> activation_function 

name function output activation_function 

 

These commands may be used to configure the activation function of each of the neurons in the ANN, except for 
those in the input layer. Each neuron in the hidden layers and the output layer will be assigned with an activation 
function. The activation function may be selected from the set of available functions. 

The FANN library also includes a framework for easy handling of the training sets. We can train the ANN using 
either of the two commands: 

 

name trainondata epochs error input output 

name trainonfile filepath epochs error 

 

Detailed information regarding the other commands required for advanced configuration of the ANN to model 
complex design may be found in [3].  Once trained, the neural network may be used on unseen inputs to predict 
outputs. To run the ANN on unseen inputs, we may use the command: 

 

name run input 

 

XI. SIMULATION RESULTS FOR NON-LINEAR DESIGN 
 

To demonstrate the efficiency of the environment using an Artificial Neural Networks at verifying non-linear 
designs, we have chosen the simple non-linear parameterized design shown in the figure below. The design has two 
inputs, A and B, with configurable sizes, corresponding to the parameter width. The output C is asserted when both 
the inputs have the same value. The internal signal product is assigned with the product of A and B, whenever C is 
asserted at a positive edge of the clock. Otherwise, it is assigned to be 0.   
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FIGURE 6. NON-LINEAR DUT USED FOR TESTING OPTIMIZED VERIFICATION ENVIRONMENT 

 
The covergroup is defined with the internal signal product as the coverpoint. The covergroup for a design with 

width = 4 is presented below. The bins defined check only the basic functionality of the design, since the purpose 
is to demonstrate the test environment. 

 
 

covergroup objective_cg; 
      coverpoint product { 
                    bins bin_1   = {1}; 
                    bins bin_4   = {4}; 
                    bins bin_9   = {9}; 
                    bins bin_16  = {16}; 
                    bins bin_25  = {25}; 
                    bins bin_36  = {36}; 
                    bins bin_49  = {49}; 
                    bins bin_64  = {64}; 
                    bins bin_81  = {81}; 
                    bins bin_100 = {100}; 
                    bins bin_121 = {121}; 
                    bins bin_144 = {144}; 
                    bins bin_169 = {169}; 
                    bins bin_196 = {196}; 
                    bins bin_225 = {225};  
}  
endgroup 

 
The design is simple but non-linear (since it effectively computes the square when the inputs are equal). 

Experimental results presented earlier in the report have shown that it is impractical to verify the non-linear design 
using a Linear Regression model. Hence, successfully verifying the design using the ANN, accentuates the role of 
ANNs in scaling the environment. 
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The Neural Network is trained after the initial random simulations, i.e. when stable_count equates to the 

specified max_rand_sim_count. When stable_count=10, the function train_ANN is called to load the 
trained ANN. The function loads the ANN trained using the trainonfile command. We are using a sigmoid 
activation function for the hidden layer, so that the ANN can deal with non-linear functions. Presented below are the 
TCL functions used to create, configure and train the ANN. 

 

fann create ANN 3 1 30 1 
ANN function output linear 
ANN function layer 0 sigmoid 
ANN trainonfile <filepath> 500000 0 

 
 
The trained ANN is loaded, when stable_count equates to 10, which indicates that the objective function has 

been stable for 10 continuous iterations. A snippet of the log presenting the same is given below. Highlighted is the 
function train_ANN used to train the ANN, called when stable_count equates to 10. 

 
 

------------------------- START eval_loop 
DEBUG current simulation time is ctime : 57 ns 
INFO STATUS : TCL : LOCAL REJECTED seed: 909 at time: 47 ns 
INFO STATUS : TCL : 57 ns : NO PROGRESS : false: 18.750000 > 18.750000 REWINDING TO CHECKPOINT 

{2} at 47 ns 
All the Checkpoints created after checkpoint 2 are removed... 
DEBUG stable_count == 10 
************************* START train_ANN 
INFO STATUS : TCL : TRAINING ANN at time: 47 ns 
INFO STATUS : TCL : ANN Trained using Training Set 
INFO STATUS : TCL : Trained ANN loaded 
INFO STATUS : TCL : Training DONE 
************************* END train_ANN 
------------------------- END eval_loop 

 
Once the trained ANN is loaded, ideally the ANN must be capable of predicting the inputs producing outputs 

hitting previously missed bins, such that every successive iteration of the SystemVerilog testbench updates the 
constraints using the neural network to guide the simulation to achieve an improvement in the objective function. We 
use the run command from the fann library for the same. Presented in the snippet below are two iterations using the 
run_ANN function which predicts the inputs, used to update the queues, from the output bin previously missed 
(highlighted). Also highlighted is the improvement in objective function on driving A and B with the predicted inputs. 
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UVM_INFO sv/env_pkg.sv(206) @ 120: reporter@@uvm_sequence_item [ENV_PKG] Updating Constraints 
(DNN) 

************************* START run_ANN 
INFO STATUS : TCL : RUNNING ANN at time: 120 ns 
INFO_STATUS : TCL : Output Bin NOT Hit: 64; Predicted Input to Update Constraint Queue: 8 
************************* END run_ANN 
UVM_INFO sv/env_pkg.sv(305) @ 121: uvm_test_top [ENV_PKG] AFTER UPDATE num_inside_queue 

contain: '{'h8}  
UVM_INFO sv/dut.sv(37)@121:reporter [dut_if] AFTER drive regs A: 8  B: 8 
UVM_INFO sv/env_pkg.sv(29) @ 126: reporter [ENV_PKG] Generate training sets; Track output bins 

hit 
------------------------- START eval_loop 
DEBUG current simulation time is ctime : 127 ns 
INFO STATUS : TCL : LOCAL ACCEPTED seed: 1141 at time: 117 ns 
INFO STATUS : TCL : 127 ns : GOOD : 62.500000 > 56.250000 
------------------------- END eval_loop 
UVM_INFO sv/env_pkg.sv(206) @ 130: reporter@@uvm_sequence_item [ENV_PKG] Updating Constraints 

(DNN) 
 
************************* START run_ANN 
INFO STATUS : TCL : RUNNING ANN at time: 130 ns 
INFO_STATUS : TCL : Output Bin NOT Hit: 81; Predicted Input to Update Constraint Queue: 9 
************************* END run_ANN 
UVM_INFO sv/env_pkg.sv(305) @ 131: uvm_test_top [ENV_PKG] AFTER UPDATE num_inside_queue 

contain: '{'h9}  
UVM_INFO sv/dut.sv(37)@131:reporter [dut_if] AFTER drive regs A: 9  B: 9 
UVM_INFO sv/env_pkg.sv(29) @ 136: reporter [ENV_PKG] Generate training sets; Track output bins 

hit 
------------------------- START eval_loop 
DEBUG current simulation time is ctime : 137 ns 
INFO STATUS : TCL : LOCAL ACCEPTED seed: 1141 at time: 127 ns 
INFO STATUS : TCL : 137 ns : GOOD : 68.750000 > 62.500000 
DEBUG stable_count == 0 
------------------------- END eval_loop 
 

 
The simulation proceeds until the coverage goal is met. Once the simulation converges to the 100% coverage, a 

final report is printed, presenting the number of iterations. 

 

INFO STATUS : TCL : ITERATIONS TOTAL = 29 

INFO STATUS : TCL : final_report END 

COVERAGE GOAL MET coverage:  100    max_objective:  100 

 

The simulation converges in 29 iterations (highlighted above). Simulations were carried out for multiple inputs 
widths. The results have been tabulated, presenting the number of iterations taken to converge to the coverage goal as 
a function of the width of the design. 
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# Input Width No of Iterations 

1 1 3 

2 2 16 

3 3 24 

4 4 29 

5 5 96 

 

FIGURE 7 SIMULATION RESULTS (OPTIMIZED ENVIRONMENT EMPLOYING ANN) 

Figure 7 shows that the ANN is capable of making good predictions even for non-linear designs. 
 

XII. SUMMARY 
 

This research addresses these challenges by introducing an efficient, design-independent technique to 
autonomously update the constraints using machine learning algorithms in order to converge to the coverage goal 
faster. The test environment expands previous technique including objective function, rewinding and dynamic seed 
manipulation. The SystemVerilog testbench, enhanced with multiple machine learning algorithms including a linear 
regression model and artificial neural networks, has been empirically shown to converge the previous research result 
from 2017 with fewer iterations. A GitHub repository [2] is provided with full source code for the examples provided. 

Though the design used to prove the technique is quite simple, the environment used to demonstrate the 
methodology should ideally be capable of handling much more complex combinational designs. However, for 
verifying sequential designs, the environment will have to be optimized by modelling the Machine Learning 
algorithms using languages like Python which has many modules, including numpy, scipy and scikit-learn, that can 
help programmers implement machine learning more efficiently. This has been left as future work. 
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