
Simulation Runtime Optimization of
Constrained Random Verification

using Machine Learning Algorithms

1

Sarath Mohan Ambalakkat M.S.
Eldon Nelson M.S. P.E.

The Meeting
• University of Minnesota has a graduate level digital verification course
• Eldon did a guest lecture speaker one day in late 2017

2

Review 2017 Paper

Improving Constrained Random Testing
by Achieving Simulation Design Goals
through Target Functions, Rewinding

and Dynamic Seed Manipulation

3

0%

7

1%

7

1%

7

2%

9

3%

9

4%

9

Obj Fcn%

seed

Obj Fcn%

seed

Rewind to last Interval
and try new seed

Interval seed did not
increase the Objective
Function

Interval seed did
increase the Objective
Function

6%

9

22%

9

22%

9

1%

6

1%

3

0 ns 10 ns 20 ns 30 ns 40 ns 50 ns 60 ns 70 ns10 ns

Simulation Time Intervals

Ite
ra

tio
ns

Start

4

Thoughts on Stimulus

5

2017 Paper Deficiencies
• A stimulus path is taken based of an entirely random approach to find

solutions for the DUT that are proven to improve coverage
(completeness)

• The problem is the “entirely random approach”
• A way to improve the odds of finding stimulus solutions for the DUT?

6

Quake III Arena Capture the Flag

7

• 2 versus 2 capture the flag

Capture the Flag 2018
• Google Deepmind project
• An approach for sequences

8https://deepmind.com/blog/capture-the-flag/

“Agents operate at two timescales,
fast and slow, which improves their
ability to use memory and generate
consistent action sequences.”

Useful Stimulus Odds Improvement

If a deficiency of the 2017 paper was too large of a state-space and its
pure random approach, is there a way to improve the odds of navigating
that state-space?

9

Ambalakkat Master
Thesis Paper

10

Start Simulaton

Run Limited Number of
Random Iterations

Coverage 100%
?

Machine Learning Model

Identify Output Bin NOT
previously hit

End Simulation

Update Constraints
and Drive DUT

Output Bin NOT hit

Minimum
Number of

Training Sets
Generated

No

No

Yes

Train Machine
Learning Model

Implemented with TCL Commands

Yes

For reference only,
we will go through this

on the next slides

Generate training set data that
contains positive and negative

stimulus

11

Start Simulaton

Run Limited Number of
Random Iterations

Coverage 100%
?

Machine Learning Model

Identify Output Bin NOT
previously hit

End Simulation

Update Constraints
and Drive DUT

Output Bin NOT hit

Minimum
Number of

Training Sets
Generated

No

No

Yes

Train Machine
Learning Model

Implemented with TCL Commands

Yes

Take the ML model of
stimulus and plug it into

the simulation to
dynamically update the

constraints

12

Start Simulaton

Run Limited Number of
Random Iterations

Coverage 100%
?

Machine Learning Model

Identify Output Bin NOT
previously hit

End Simulation

Update Constraints
and Drive DUT

Output Bin NOT hit

Minimum
Number of

Training Sets
Generated

No

No

Yes

Train Machine
Learning Model

Implemented with TCL Commands

Yes

Example DUT (comparator)

dut #(parameter width)
width-1:0

width-1:0

c

b

a

clk

clk

 covergroup objective_cg
 coverpoint match;
 endgroup

13

2017 Summary for DUT Width of 5

14

50% success of finding a
combination of stimulus
after 4000 iterations

Optimization of the Test Environment using Machine
Learning Algorithms

1
5

1. Generating the Training Sets
2. Training the Machine

Learning Model
3. Updating the Constraints

OPTIMIZATION OF THE TEST ENVIRONMENT

1. Generating Training Sets (TS)

– Structures used to define the training sets
– Less Error Prone
– Addressing training sets easier
– Function used for generating necessary number of valid

training sets and track output bins hit
– no_of_TS_required made configurable

1
6

17http://tcl-fann.sourceforge.net

OPTIMIZATION OF THE TEST ENVIRONMENT USING ANN

2. Training the Machine Learning Model (ANN): Using TCL extension, fann
for implementing the ANN.

1
8

TCL Commands used to define the
number of layers, number of neurons
per layer, activation functions,
connectivity, etc. of the neural network.
For example:

OPTIMIZATION OF THE TEST ENVIRONMENT

3. Updating the Constraints: Function to update the constraints,
update_constraint called every iteration once beta_ready
is asserted.
• Efficient runtime update of constraints: Recompilation of environment not required after update

• Ideally, coverage should improve every iteration, converging to 100% coverage goal much faster.

OPTIMIZATION OF THE TEST ENVIRONMENT USING ANN

2
0

Training Machine Learning Model Update Constraints

21

Width of
Comparator

No of Iterations

1 3
2 60
3 261
4 or more Segmentation Fault

Width of Comparator No of Iterations

1 5
2 14
3 24
4 26
5 78
6 96
7 144

Width of Comparator No of Iterations

1 3
2 16
3 24
4 29
5 96

2017 Experimental Data 2019 Experimental Data Linear Regression Model

2019 Experimental Data ANN Model

22

Width of
Comparator

No of Iterations

1 3
2 60
3 261
4 or more Segmentation Fault

2017 Experimental Data

Why does the 2019 approach
improve the odds so much?

never mind this is not a statistical
sample, but a discrete data set

Width of Comparator No of Iterations

1 5
2 14
3 24
4 26
5 78
6 96
7 144

Width of Comparator No of Iterations

1 3
2 16
3 24
4 29
5 96

2019 Experimental Data Linear Regression Model

2019 Experimental Data ANN Model

Future Work
• Deeper looks at Machine Learning models that can predict stimulus with

state
• Is there a role of Formal to help generate deeper stimulus with this

approach?
• Configuration space problem

23

Conclusion
• Improving the search for interesting stimulus using machine learning

techniques
• Promising results for example test case by informing the randomization

based off of previous automated learning
• Automated in terms of approach as it is based off of coverage

24

Questions

Please Vote at
http://vote.dvcon.org

25

Backup Slides

26

OPTIMIZATION OF THE TEST ENVIRONMENT USING A
LINEAR REGRESSION MODEL

• Simulation Results using Linear Regression Model:

2
7

1. Generating Training Sets 2. Training Machine Learning Model

3. Update Constraints
4. Converges to 100% coverage goal in 24
iterations as opposed to 261 iterations in prior
work

OPTIMIZATION OF THE TEST ENVIRONMENT USING A
LINEAR REGRESSION MODEL

2. Training the Machine Learning Model (Linear Regression Model): TCL
library, math::linearalgebra, used to solve the linear regression
problem

2
8

– Efficient techniques used to ‘get’ training
set values from SV environment.

– Compute the parameters, beta_a and
beta_b using the training sets.

– Computed parameters along with a flag
beta_ready indicating that the ML model
has been trained, forced on variables in SV
environment.

Updating Constraints

function void update_constraint(integer beta_value);
num_inside_queue = {};
i = 0;
repeat(2**width)
if(!(OUT_HIT.exists(i))) begin
num_inside_queue.push_back(i++/beta_value);
break;

end
else i++;

endfunction

29

UVM_INFO sv/env_pkg.sv(171) @ 80: reporter@@uvm_sequence_item [ENV_PKG] Updating
Constraints
UVM_INFO sv/env_pkg.sv(196) @ 80: reporter@@uvm_sequence_item [ENV_PKG] AFTER UPDATE
num_inside_queue contain: '{'h2}
UVM_INFO sv/dut.sv(26)@ 80: reporter [dut_if] AFTER drive regs a: 2 b: 2
UVM_INFO sv/env_pkg.sv(28) @ 86: reporter [ENV_PKG] A and B matching; Generate training
sets; Track output bins hit
------------------------- START eval_loop
DEBUG current simulation time is ctime : 87 ns
INFO STATUS : TCL : LOCAL ACCEPTED seed: 619 at time: 77 ns
INFO STATUS : TCL : 87 ns : GOOD : 75.000000 > 62.500000
------------------------- END eval_loop
UVM_INFO sv/env_pkg.sv(171) @ 90: reporter@@uvm_sequence_item [ENV_PKG] Updating
Constraints
UVM_INFO sv/env_pkg.sv(196) @ 90: reporter@@uvm_sequence_item [ENV_PKG] AFTER UPDATE
num_inside_queue contain: '{'h3}
UVM_INFO sv/dut.sv(26)@ 90: reporter [dut_if] AFTER drive regs a: 3 b: 3
UVM_INFO sv/env_pkg.sv(28) @ 96: reporter [ENV_PKG] A and B matching; Generate training
sets; Track output bins hit
------------------------- START eval_loop
DEBUG current simulation time is ctime : 97 ns
INFO STATUS : TCL : LOCAL ACCEPTED seed: 619 at time: 87 ns
INFO STATUS : TCL : 97 ns : GOOD : 87.500000 > 75.000000
------------------------- END eval_loop

30

