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The Meeting
• University of Minnesota has a graduate level digital verification course
• Eldon did a guest lecture speaker one day in late 2017

2



Review 2017 Paper

Improving Constrained Random Testing
by Achieving Simulation Design Goals
through Target Functions, Rewinding

and Dynamic Seed Manipulation
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Thoughts on Stimulus
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2017 Paper Deficiencies
• A stimulus path is taken based of an entirely random approach to find 

solutions for the DUT that are proven to improve coverage 
(completeness)

• The problem is the “entirely random approach”
• A way to improve the odds of finding stimulus solutions for the DUT?
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Quake III Arena Capture the Flag
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• 2 versus 2 capture the flag



Capture the Flag 2018
• Google Deepmind project
• An approach for sequences

8https://deepmind.com/blog/capture-the-flag/

“Agents operate at two timescales, 
fast and slow, which improves their 
ability to use memory and generate 
consistent action sequences.”



Useful Stimulus Odds Improvement

If a deficiency of the 2017 paper was too large of a state-space and its 
pure random approach, is there a way to improve the odds of navigating 
that state-space?
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Ambalakkat Master 
Thesis Paper
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Generate training set data that 
contains positive and negative 

stimulus
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Take the ML model of 
stimulus and plug it into 

the simulation to 
dynamically update the 

constraints
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Example DUT (comparator)

dut #(parameter width)
width-1:0

width-1:0

c

b

a

clk

clk

 covergroup objective_cg
   coverpoint match;
 endgroup
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2017 Summary for DUT Width of 5
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50% success of finding a 
combination of stimulus 
after 4000 iterations



Optimization of the Test Environment using Machine 
Learning Algorithms

1
5

1. Generating the Training Sets
2. Training the Machine 

Learning Model
3. Updating the Constraints



OPTIMIZATION OF THE TEST ENVIRONMENT

1. Generating Training Sets (TS)

– Structures used to define the training sets
– Less Error Prone
– Addressing training sets easier
– Function used for generating necessary number of valid 

training sets and track output bins hit
– no_of_TS_required made configurable

1
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17http://tcl-fann.sourceforge.net



OPTIMIZATION OF THE TEST ENVIRONMENT USING ANN

2. Training the Machine Learning Model (ANN): Using TCL extension, fann
for implementing the ANN.

1
8

TCL Commands used to define the 
number of layers, number of neurons 
per layer, activation functions, 
connectivity, etc. of the neural network. 
For example:



OPTIMIZATION OF THE TEST ENVIRONMENT

3. Updating the Constraints: Function to update the constraints, 
update_constraint called every iteration once beta_ready
is asserted.
• Efficient runtime update of constraints: Recompilation of environment not required after update

• Ideally, coverage should improve every iteration, converging to 100% coverage goal much faster.



OPTIMIZATION OF THE TEST ENVIRONMENT USING ANN

2
0

Training Machine Learning Model Update Constraints



21

Width of 
Comparator

No of Iterations

1 3
2 60
3 261
4 or more Segmentation Fault

Width of Comparator No of Iterations

1 5
2 14
3 24
4 26
5 78
6 96
7 144

Width of Comparator No of Iterations

1 3
2 16
3 24
4 29
5 96

2017 Experimental Data 2019 Experimental Data Linear Regression Model

2019 Experimental Data ANN Model



22

Width of 
Comparator

No of Iterations

1 3
2 60
3 261
4 or more Segmentation Fault

2017 Experimental Data

Why does the 2019 approach 
improve the odds so much? 

never mind this is not a statistical 
sample, but a discrete data set
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Future Work
• Deeper looks at Machine Learning models that can predict stimulus with 

state
• Is there a role of Formal to help generate deeper stimulus with this 

approach?
• Configuration space problem
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Conclusion
• Improving the search for interesting stimulus using machine learning 

techniques
• Promising results for example test case by informing the randomization 

based off of previous automated learning
• Automated in terms of approach as it is based off of coverage
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Questions

Please Vote at
http://vote.dvcon.org
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Backup Slides
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OPTIMIZATION OF THE TEST ENVIRONMENT USING A 
LINEAR REGRESSION MODEL

• Simulation Results using Linear Regression Model:

2
7

1. Generating Training Sets 2. Training Machine Learning Model

3. Update Constraints
4. Converges to 100% coverage goal in 24 
iterations as opposed to 261 iterations in prior 
work



OPTIMIZATION OF THE TEST ENVIRONMENT USING A 
LINEAR REGRESSION MODEL

2. Training the Machine Learning Model (Linear Regression Model): TCL 
library, math::linearalgebra, used to solve the linear regression 
problem

2
8

– Efficient techniques used to ‘get’ training 
set values from SV environment.

– Compute the parameters, beta_a and 
beta_b using the training sets.

– Computed parameters along with a flag 
beta_ready indicating that the ML model 
has been trained, forced on variables in SV 
environment.



Updating Constraints

function void update_constraint(integer beta_value);
num_inside_queue = {};
i = 0;
repeat(2**width) 
if(!(OUT_HIT.exists(i))) begin
num_inside_queue.push_back(i++/beta_value);
break;

end
else i++;

endfunction
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UVM_INFO sv/env_pkg.sv(171) @ 80: reporter@@uvm_sequence_item [ENV_PKG] Updating
Constraints
UVM_INFO sv/env_pkg.sv(196) @ 80: reporter@@uvm_sequence_item [ENV_PKG] AFTER UPDATE
num_inside_queue contain: '{'h2}
UVM_INFO sv/dut.sv(26)@ 80: reporter [dut_if] AFTER drive regs a: 2 b: 2
UVM_INFO sv/env_pkg.sv(28) @ 86: reporter [ENV_PKG] A and B matching; Generate training
sets; Track output bins hit
------------------------- START eval_loop
DEBUG current simulation time is ctime : 87 ns
INFO STATUS : TCL : LOCAL ACCEPTED seed: 619 at time: 77 ns
INFO STATUS : TCL : 87 ns : GOOD : 75.000000 > 62.500000
------------------------- END eval_loop
UVM_INFO sv/env_pkg.sv(171) @ 90: reporter@@uvm_sequence_item [ENV_PKG] Updating
Constraints
UVM_INFO sv/env_pkg.sv(196) @ 90: reporter@@uvm_sequence_item [ENV_PKG] AFTER UPDATE
num_inside_queue contain: '{'h3}
UVM_INFO sv/dut.sv(26)@ 90: reporter [dut_if] AFTER drive regs a: 3 b: 3
UVM_INFO sv/env_pkg.sv(28) @ 96: reporter [ENV_PKG] A and B matching; Generate training
sets; Track output bins hit
------------------------- START eval_loop
DEBUG current simulation time is ctime : 97 ns
INFO STATUS : TCL : LOCAL ACCEPTED seed: 619 at time: 87 ns
INFO STATUS : TCL : 97 ns : GOOD : 87.500000 > 75.000000
------------------------- END eval_loop
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