

Simulation Guided Formal Verification

with “River Fishing” Techniques

 Bathri Narayanan Subramanian, Mentor-A Siemens Business, Bangalore, India

(bathri_subramanian@mentor.com)

 Ping Yeung, Mentor-A Siemens Business, Fremont, USA (ping_yeung@mentorcom)

Abstract
Formal verification has been used successfully to verify today’s SOC designs. Traditional formal verification, which

starts from time 0, is good for early design verification, but it is inefficient for hunting complex functional bugs.

Based on our experience, complex bugs happen when there are multiple interactions of events happening under

uncommon scenarios. Our methodology leverages functional simulation activity and starts formal verification from

interesting “fishing spots” in the simulation traces. In this paper, we are going to share the interesting fishing spots

and explain how formal engine health is used to prioritize and guide the bug hunting process using the simulation

trace.

Introduction
Formal verification has been used successfully by a lot of companies to verify complex SOCs [2] and safety-critical

designs [3]. The ABCs of formal has been used extensively as described in [5]:

 Assurance: to prove and confirm the correctness of design behavior.

 Bug hunting: to find known bugs or explore unknown bugs in the design.

 Coverage closure: to determine if a coverage statement/bin/element is reachable or unreachable.

Using formal verification to uncover new bugs is emerging as an efficient verification approach when functional

simulation regression is stabilized and is not finding as many bugs as before. Traditional formal verification, which

starts to explore the design from time 0, is good for early design verification. As more blocks are being integrated,

the state space of the design increases exponentially, making traditional formal verification approaches inefficient

for bug hunting. As we have observed, complex bugs happen under combinations of events and scenarios.

Sophisticated approaches such as waypoints [4], coverpoints and goal-posting[5] have been proposed and used

successfully to find bugs buried deep in the design, especially post-silicon bugs.

Figure 1. Waypoints, coverpoints and goal-posting methodology

The essence of these approaches is that instead of focusing on the targets that are hard to reach, formal verification

targets coverpoints, goals, or waypoints that are found deep in formal analysis. Once those coverpoints are hit, they

are used as initial states to explore further into the design, as illustrated in Figure 1. Using this approach, formal ver-

ification can leap from goal to goal, exploring deeper and deeper until the final targets are achieved.

River Fishing Approach
We have expanded these approaches further. “River fishing” [1] is a good metaphor for our methodology: by identi-

fying some good “fishing spots,” we can significantly increase the number of fish we catch. Instead of using one

initial state to start formal verification, we pick out interesting states from functional simulation traces, as depicted

in Figure 2, and start formal verification from those fishing spots.

Figure 2. Interesting fishing spots

The major difference between this approach and goal-posting is that instead of targeting the coverpoints or goals to

explore deep into the design, we are leveraging simulation traces, as in Figure 3, to explore interesting initial states

close to the final targets. If functional simulations have exercised the coverpoints or goals already, we have an initial

state as good as goal-posting. Also, if some targets require specific pre-conditions to happen ahead of time, we can

take advantage of the different functional tests and identify different fishing spots for those targets. Effectively, the

river fishing approach leverages what has already been performed by functional simulations and starts formal verifi-

cation as close to the targets as possible.

Figure 3. Launching formal verification from interesting fishing spots

We encountered one problem with this approach, however. In a simulation regression environment, there were just

too many fishing spots, and there was no reliable way to tell whether a spot would be fruitful or not. As a result,

there was not enough time to try many of these fishing spots, and servers were stalled on spots that did not yield any

result. We learned that it is insufficient to find just good fishing spots; it is also important to make sure it is easy to

catch fish at those spots.

As formal verification users become more mature, they are requesting more transparency to understand how formal

verification is doing on their designs. Based on our experience, formal engine health is one of the best indicators. It

can be used to measure the progress made by formal verification. Also, formal engine health is a matrix that can be

used to estimate, prioritize, and monitor formal verification runs. Using formal engine health, we evaluate the fruit-

fulness of fishing spots, screen out the low-quality ones, and prioritize the rest for formal verification. By continuing

to monitor formal engine health during these subsequent formal verification runs, we can terminate the unfruitful

ones early to save resources for new runs.

Figure 4. Formal verification using “river fishing” techniques

To summarize, the “river fishing” formal bug hunting methodology consists of three major steps:

1. Identify and extract a set of good fishing spots from the simulation traces

2. Screen and prioritize the fruitfulness of these fishing spots using formal engine health

3. Launch multiple formal engines concurrently on a server farm environment

In the following sections, we describe each of these steps in more detail.

Identifying “Fishing Spots”
River fishing experts [1] have suggested that the interesting fishing spots are special sections of the river where there

are unusual activities. Picking interesting spots from simulation traces for formal verification is similar. Our ap-

proach is based on the patent, Selection of Initial States for Formal Verification [6], with some variations.

Figure 5. Identifying interesting fishing spots

A quick and comprehensive two-tier approach is used to pick out the interesting fishing spots. The primary criteria

are:

1. Interface interactions

Inter-module communication and standard protocol interfaces are infamous for design issues. As protocol

monitors are commonly used to instrument these on-chip buses and common interfaces, we can capture in-

teresting fishing spots based on activities on these interfaces. Functional simulation is already generating tons

of bus transactions; formal verification can leverage them to explore new corner cases.

2. Control and interrupts

These are FSMs, bus controllers, memory controllers, flow charts, algorithmic controls, and so on represent-

ing critical control logic in design. It may not be trivial for formal to traverse all the possible or even some

of the deep state sequences. Hence, every new state or transition exercised by simulation are potentially

interesting fishing spots for formal verification.

3. Concurrent events

These are the arbiters, schedulers, switches, multiplexing logics, etc in a design. The timing and sequence

of events are important. Functional simulation may exercise the same sequence of events repetitively. In-

stead, formal verification can leverage the setup, but change the ordering of the events to ensure the design

is robust.

4. Feedback, loops, and counts

These are the FIFOs, timers, counters, and so forth handling the data transfers, bursting, and computations

in a design. Functional simulation exercises the non-stressful situations well. By leveraging the simulation

activities, formal verification can explore the stressful corner case scenarios; such as starting, stopping,

overflow, underflow, and stalling.

5. User-defined assertions and coverage properties

The fan-in cones of the user-defined properties are great coverpoints and sub-goals for formal verification.

If they have already been covered by simulation, they will be good fishing spots for formal verification to

verify the target properties.

Secondary criteria are related to the inclusion or exclusion of the primary ones as described in the patent [6].

 Inclusion criteria

When gathering the primary fishing spots, we want to mark the high-value ones; such as states that satisfy

multiple criteria, states with the low frequency of change, and states with new activities.

 Exclusion criteria

At the same time, we want to filter out poor-value fishing spots; such as duplicate states, error states that

lead to misleading results, and states during the power-up, reset, initialization, or configuration sequence.

Screening with Engine Health
Formal verification is different from the simulation. Simulation runs are predictable and will finish. When running

formal verification on a large set of assertions, it is difficult to predict when and if it will finish. Hence, it is

important to understand formal engine health and leverage it to measure the progress made by formal verification.

Based on our experience, formal engine health is a good matrix to estimate, prioritize, and monitor formal verifica-

tion runs.

The concept of engine health helps us determine if, and to what degree, formal engines are contributing to the pro-

gress made on a given set of targets. We define formal engine health with a set of parameters:

1. Formal targets concluded (proven/fired/covered/uncoverable)

2. Sequential depth explored or cone of influence analyzed

3. Formal knowledge and engine setting acquired

Targets concluded and sequential depth explored are two well-established metrics that have been used regularly to

determine the overall progress of a formal run.

On the other hand, if we want to understand how formal is doing on an individual property or target, we have to go

deeper to examine the cone of influence and the formal knowledge acquired on those targets. A formal setup may

work extremely well on a few targets, but not so well on the others. Cone of influence provides more information

about the depth explored per target. Cone of influence provides detailed information on the fan-in logic and their

dependence concerning the targets. It highlights the “rocks” in the fan-in logic where formal gets hung up, spending

a lot of time analyzing. These difficult design elements can be identified, and users can determine whether it is nec-

essary to intervene. Adding cutpoints, abstracting the design elements, or enabling some special engines are a few

approaches to enable the “rock” to be analyzed more efficiently.

As mentioned before, it is insufficient to have just good fishing spots. It is also important to make sure it is easy to

catch fish at those spots. From our experience, a good simulation environment will yield a lot of interesting fishing

spots.

Traditionally, formal engine health was used to monitor computational intensive formal runs. Until a recent project,

it did not occur to us that it can also be a good approach to screen fishing spots. With a lot of formal runs to perform

on limited compute resources (and licenses), we found ourselves constantly terminating runs with potentially un-

fruitful fishing spots. The formal engine health parameters (described above) were used to determine whether com-

pute servers were allocated to explore the spots thoroughly.

Figure 6. Screening fishing spots with engine health

The process goes like this. As the goal is to screen and prioritize the effectiveness of the fishing spots, a quick run

with a set of explorative formal engines is performed. An initial fishing spot is used to establish the initial values of

the formal engine health parameters, as in (Proof, Depth, Knowledge):

 F(Spot0) = (P0, D0, K0)

 ΔF(Spotn) = (Pn, Dn, Kn) - (P0, D0, K0)

 = Δ(Pn, Dn, Kn)

Then the subsequent fishing spot is compared with the initial one. If the delta, ΔF, is low, we drop the spot from fur-

ther investigation. By doing this we can screen the fishing spots accordingly and launch formal runs with only the

differentiating and fruitful spots. At the same time, we also cache the formal knowledge during the screening pro-

cess, so CPU resources are not wasted. Subsequent formal runs will be faster.

Monitoring Engine Health
With a prioritized list of fishing spots, extensive formal runs can be launched concurrently on a server farm environ-

ment. A master server will manage and monitor all the formal processes. It will collect the formal engine health pa-

rameters from each of the formal runs continuously.

Figure 7. Formal targets proved or satisfied snapshot

Figure 7 shows the distribution of the formal targets at the beginning of a formal run. It lets users know how much

progress has been made. Initially, most of the 33 targets were inconclusive (I). With multi-cores running concur-

rently, formal verification gradually verified the targets into one of the following catalogs: firing (F), vacuous (V),

uncoverable (U), covered (C), and proof (P).

A comprehensive formal tool, such as [7], has a set of formal engines to handle designs with different structures. As

the formal run progresses, we can examine the status of the engines to understand which ones are finding results and

which ones are not being productive. If an engine is not contributing to any of the current set of results, we can swap

out that engine to save resources and focus the other engines on the task at hand. Figure 8 shows a snapshot of the

engines in the middle of a distributed formal run.

Figure 8. Formal engine knowledge snapshot

In figure 8, the “Proven/Unsatisfiable” columns show which engines solve the safety/liveness/vacuity/cover type

checks. The “Fired/Satisfied” columns show which engines generate the counterexamples. Engine 7 is very

productive in finding a lot of proofs and firings. Engine 0 (the housekeeping engine) and Engine 10 have found

some proofs. On the other hand, Engines 12 and 17 (designed for some difficult problems) haven’t been contributing

to the results although they have been working on the problems. The “Inconclusive Targets” columns (Good, Fair,

Poor) show the individual engine health for the work-in-process targets. Engine 12 is working on 75 targets that

have good health; in other words, it is making good progress. There are three targets with fair and poor health. Simi-

larly, Engine 10 is working well on 51 properties but is not effective on more targets.

Caching the Formal Knowledge
Experienced fishermen remember the specifics about a river and the techniques used to catch fish. They learned the

river, so to speak. The same applies to formal verification. Once formal has worked through a design element or

solved a problem, it is marked as an acquired knowledge. This knowledge will be cached and stored for future use.

Besides benefiting future formal runs, formal knowledge can help the current run immediately. Typically designs

have a few common design structures and interfaces. Once formal has learned how to handle one of these effi-

ciently, it can be applied to all of the similar ones right away. Hence, just-in-time knowledge sharing between differ-

ent formal engines that run on different processors/servers is essential.

Results
Table 1 summarizes the results of applying the “river fishing” methodology on three IP blocks. Block De is a small

design with 12 user-written properties. Block Pc and Cp have more user-written assert and cover properties. As

Block De is small and formal verification was able to handle it comprehensively, the quality of the fishing spots did

not make any difference in this case. Fishing spot S0 was the design state after initialization and configuration. It

was used to establish the initial formal engine health. Fishing spot ∑ SP was the centralized database that had been

aggregating all the results together.

For Block Pc, the formal run from S0 was able to conclude 66 targets PF/CU (proven/fired/covered/uncoverable)

with 5 inconclusive targets after 24 hours. By providing more interesting initial states, the subsequent fishing spots

were able to help formal verification complete all targets (0 inconclusive). The results for Block Cp was more

significant. The fishing spots helped formal verification reduce the number of inconclusive targets from 21 down to

2 (with 19 more fired or covered targets).

Table 1. Block-Level Results

Block Targets Fishing Spot S0 Fishing Spot ∑ SP

Block De 12 12 PF, depth 23 12 PF, depth 23

Block Pc 71 66 PF/CU + 5 I, depth 134 71 PF/CU + 0 I, depth 256

Block Cp 81 60 PF/CU + 21 I, depth 65 79 PF/CU + 2 I, depth 161
PF/CU: proven/fired/covered/uncoverable. I: inconclusive targets

Table 2 summarizes the results from two sub-system level runs. Each sub-system has multiple IP blocks with inter-

connected buses (such as AXI). The properties are from various sources: some are user-written properties from the

IPs; some are from assertion-based interface monitors; some are derived assertions from interconnectivity specifica-

tion; some are extracted assertions (on FSMs, counters, FIFOs, etc.) via automatic formal verification. Each of these

sub-systems is a good representation of a formal regression in which the targets have a wide range of complexity

levels. Within the first 15 minutes of the formal run, the majority of the targets (98+%) had already been proven or

fired. This was a pleasant surprise to us. As a result, the “river fishing” technique was deployed after the first 15

minutes when the tool had concluded and cached the easy targets. Again, fishing spots helped reduce the number of

inconclusive targets significantly. For Design Ct, it was reduced from 37 inconclusive to 7 inconclusive targets. For

Design Pb, it was reduced from 79 inconclusive to 44 inconclusive targets.

Table 2. Sub-System Level Results

Design Targets First stage Fishing spot S0 Fishing spot ∑ SP

Design Ct 2356 2319 PF/CU + 37 I

15 min

2338 PF/CU + 18 I,

24 hours

2349 PF/CU + 7 I,

24 hours

Design Pb 15205 15126 PF/CU + 79 I

15 min

15154 PF/CU + 51 I

24 hours

15161 PF/CU + 44 I

24 hours
PF/CU: proven/fired/covered/uncoverable. I: inconclusive targets

We have captured two representative bug situations below. They were successful only after we started formal verifi-

cation from fishing spots deep in the simulation traces. Formal engine health screening was also used to eliminate a

lot of potential unsuccessful formal runs from the beginning or during the process.

Figure 9. Ratio-synchronized data transfer interface

Case1: To save power, today's designs have a lot of ratio synchronous clocks that run each component as slowly as

possible. As a result, ratio synchronous interfaces are common. At one of these interfaces, the fast clock domain was

designed to sample the data at the end of a slow clock period when the data valid condition was asserted. However,

under some corner-case situations (unknown to the design team initially), the data was sampled even when the valid

condition was not asserted. As a result, corrupted data was registered and passed on within the system. The fishing

spots were determined based on activities on the two interfaces, counters, and control logic. Several fishing spots

were picked after the design had been initialized and also after data had been flowing correctly for hundreds of cy-

cles between these two interfaces. Formal verification exposed the incomplete handshake between these two inter-

faces which caused the data to be sampled invalidly.

Figure 10. Data transfer controller

Case 2: In this data transfer controller, dynamic transfer channels were set up to handle data packets with different

priorities. In this case, when more than one channel finished the transfer at the same time, one set of address pointers

was de-allocated twice while the other set was not de-allocated, causing memory leaks and data corruption. The fish-

ing spots were determined based on activities on the concurrent events, counters, and complex control logic. In this

type of design, it is very difficult for formal verification to set up these data transfers. However, they are readily

available in the simulation regression. By leveraging multiple fishing spots deep in the simulation runs and prioritiz-

ing them based on engine health, formal verification was able to expose the weakness in the channel de-allocated

logic and synchronized two channels to complete the transfer at the same time.

Summary
We firmly believe that simulation and formal methodologies can be used together to accelerate the verification of

intricate designs. Some companies have already made organizational changes to facilitate this approach. The idea is

to leverage what has been learned or achieved in one methodology as stepping stones for the other methodology. In

this paper, we have described a river fishing technique. It leverages the functional simulation activities and starts

formal verification from interesting fishing spots in the simulation traces. As described, it consists of three major

steps:

1. Identify and extract a set of good fishing spots from the simulation traces

2. Screen and prioritize the fishing spots using formal engine health

3. Launch and monitor multiple formal runs on the computing servers

To identify a set of fishing spots, we have highlighted several criteria, including interface interactions, control and

interrupts, concurrent events, feedback loops and counts, user-defined assertions, and coverage properties. Then the

fishing spots are screened and prioritized based on the formal engine health. We define formal engine health with

parameters consisting of formal targets proven or fired, sequential depth explored, and formal knowledge acquired.

Then the set of fishing spots are used to initialize multiple formal runs while a centralized database is aggregating all

the results together. Based on the results presented and the complex bugs found, we can conclude that the river fish-

ing technique does help improve the quality of the results in a formal regression environment.

References
[1] Takemefishing.org, www.takemefishing.org/freshwater-fishing/types-of-freshwater-fishing/river-fishing

[2] M. Achutha KiranKumar V, et al., “Making Formal Property Verification Mainstream: An Intel® Graphics Ex-

perience,” DVCon 2017

[3] Mandar Munishwar, Vigyan Singhal, et al., “Architectural Formal Verification of System-Level Deadlocks,”

DVCon 2018

[4] Richard Ho, et al., “Post-Silicon Debug Using Formal Verification Waypoints,” DVCon 2009

[5] Blaine Hsieh, et al., “Every Cloud - Post-Silicon Bug Spurs Formal Verification Adoption,” DVCon 2015

[6] Andrew Seawright, Ramesh Sathianathan, Christophe Gauthron, Jeremy Levitt, Kalyana Mulam, Richard Ho,

Ping Yeung, “Selection of initial states for formal verification,” US7454324.

[7] Questa PropCheck, https://verificationacademy.com/courses/Formal-Assertion-Based-Verification

[8] Jin Hou, et al., “Handling Inconclusive Assertions in Formal Verification.” DVCon China 2018

http://www.takemefishing.org/freshwater-fishing/types-of-freshwater-fishing/river-fishing
https://verificationacademy.com/courses/Formal-Assertion-Based-Verification

