
Simulation Acceleration with ZeBu
to Speed IP and Platform Verification

1

Hillel Miller, Wei-Hua Han – Synopsys

• Customer stories and ZeBu simulation acceleration
technology overview (45 minutes) – Hillel Miller

• AXI example (25 Minutes) – Wei-Hua Han

• Q&A (10 Minutes)

Agenda

• My simulations, for my design verification environment are
very slow, next generation it will be much slower, even 2x
will help

• We will do anything for 2x

• My VP has given me an initiative to achieve 2x

Customer story one

• I am developing a graphics core as third party IP vendor
• I need to do power estimation of my graphics core with

Manhattan test case
• It takes more than 2 weeks to run the simulation to get

power estimation numbers in my SystemVerilog
environment

• I want to complete this effort in less than 24 hours

Customer story two

• My simulations are very slow
• My Top Level Verification (TLV) environment, uses

embedded C test cases running on our DSP core in RTL
simulation model. The C test cases are far more
successful then standalone UVM environments in finding
bugs

• Some of the test cases take weeks to run

Customer story three

• I have an IP level UVM environment, with custom UVM VIP. My
long test take days to run for number of packets in 10,000’s
range. My next generation IP will be 2x more complex and expect
simulation performance to degrade

• We are missing bugs found by SoC
• My current regression runs on 100 machines
• I need two things

– Run at least 100x faster so that I can match simulation regression running
on 100 machines

– Run millions of packets

Customer story four

• My SoC test cases take days to run. My next generation
will run even slower

• I have been using Synopsys tools SVT VIP, NLP, SVA,
URG, Verdi for as long as can tell

• I would like to use the ZeBu emulator under the hood
without any changes to speed up my simulations

Customer story five

Simulation Acceleration with ZeBu
Benefits
• Native integration with

VCS
• Fully automated compile

of testbench and design
• Industry leading VCS

and ZeBu performance
• Integrated, interactive

Verdi debug
• Coexistence of Signal

and Transaction-based
communication

• Low latency HW/SW
interface

• Acceleration VIPs for
additional acceleration

10-100x higher performance

VCS

Verdi Verdi Verdi

VIP Transactors

VCS ZeBu Low Latency

Acceleration VIP

1x ~10,000x10x-100x

SystemVerilog TB

DUT

Simulation

VCS

VCS

TB SB

SystemVerilog TB

DUT

Simulation Acceleration

VCS

ZeBu

TB SB

Transactor TB

DUT

Emulation

ZeBu + Host PC

ZeBu

TB TB

Continuous Simulation Acceleration
Ability to incrementally change and mix HW/SW communication capabilities

TB

DUT

X
T
O
R
1

X
T
O
R
2

TB

DUT

Original VCS
Simulation

TB

DUT

Partial SBA

TB

DUT

BC

Module Exclusion TBA

TB

DUT

X
T
O
R
1

TB

DUT

X
T
O
R
1

X
T
O
R
2

X
T
O
R
3

Profile

TB Opt
with

Profiler

TB

DUT

K

CLK

Clock Optimization

Low freq
sideband
signals/

flow
control

TB

DUT

Optimized

STB

X
O
R

Low freq
sideband
signals

Higher performance
Cycle accuracy

Simulation Acceleration
Customer Design Acceleration factor Type
Multimedia Sub-System 25x TBA

Sub-Systtem 80x SBA
Multimedia Block 18x SBA

SoC 14.5x SBA
Multimedia Sub-System 1.5x SBA

Sub-System 4.8x SBA
Sub-System 1.5x SBA

Processor Sub-System 6.0x SBA
Sub-System 8.0x SBA

Processor CPU Sub-System 6x SBA
GPU Sub-System 28x, 64x SBA

Sub-System 104x, 2091x TBA
Networking Block 62x TBA

Deployment Steps for UVM/SV
UVM/SV VCS

Simulation Only

Simprofile to
Extract Potential

Performance

V2VX to Validate
Readiness for
acceleration

Code
Modifications UTF Preparations

zCui Frontend
Compile

Code Modifications

zCui Backend
Compile

Code
Modifications

Run using Simv

Debug

Code
Modifications Profile

Code
Modifications

Cleanup

• Uses only VCS for both HW and SW compilation. Used for pipe
cleaning before moving to ZeBu compile

• VCS Compile option to enable V2VX mode: -Xhwcosimtest=v2vx
• VCS Compile option to specify HW top level instance: -

Xhdl_cosim_dut <hierarchical path to the HW instance> If module
is compiled as a top-level module, then it will be the name of the
module

• Run using existing simv options
• Debug using Verdi

VCS Options – V2VX mode

• Uses ZeBu for HW compilation and VCS for SW compilation
• UTF files is a list of commands specifying at a high level how to execute the compile
• ZeBu zCui tool will do the full compile with a UTF file as input and the UTF file pointing to the

VCS compile, using the UTF command VcsCommand
• Compile generates a zcui.work directory which is used at runtime to enable VCS to co-

simulate will the emulator
• For compile add the following UTF options and VCS compile options:

– UTF command to enable acceleration: simxl –enable true
– UTF command to specify HW top level instance

• simxl_set_hwtop -instance <hierarchical path to the HW instance>
• All logic from that instance and below will go into HW. If module is compiled as a top-level module than it

will be the name of the module.

• ZCUI compilation GUI is opened using: zCui -u project.utf
– Push the Make Target button in the ZCUI GUI to start the compile process

UTF Options – V2Z mode

• VCS additional compile option to generate diagnostic data
in current run directory

• -Xhwcosim=diag
• Run using SIMV additional runtime option to point to

zcui.work for HW database: +zcui.work=<zcui.work
directory generated by zCui>

VCS Compile/Runtime – V2Z mode

• Signal communication using the
following primitive data types for
signals:
– wire, wand, wor, tri, etc.
– reg
– logic
– enum
– byte
– integer
– int
– shortint
– longint
– Signed modifier can be applied to

any of the above data types.

Structural Signal Communication
• Signal communication using the following

aggregate data types:
– Packed arrays.
– Unpacked arrays.
– Multi-dimensional arrays.
– Packed structs.
– Unpacked structs.
– Unions.
– Any composition of the above data types.

• Signal communication using interface ports:
– Interface ports containing signals with any of the

above types.

Structural Signal Communication: Clocking

// Running in ZeBu
module HW(input wire clock, input logic reset);
endmodule

// Running in VCS
interface ift;
logic clock;
logic reset;
assign HW.clock = clock;
assign HW.reset = reset;
clocking cb @(posedge clock);

output clock;
output reset;

endclocking
endinterface
module SW;
ift m_if();

Endmodule

Structural Signal Communication: Datatype

typedef struct {
integer source;
integer destination;

} descriptor;
module HW(input wire clock, input logic reset,
input wire descriptor d[100]);
endmodule
interface ift;
descriptor m_d[100];
genvar i;
for (i=0; i<100; i++)
assign HW.d[i] = m_d[i];

endinterface
module SW;
ift m_if();

endmodule

Behavioral Signal Communication

module hw(input a);
reg b;
endmodule
module sw;
reg c;
initial
hw.b = c;

endmodule

Force/Release HW from SW

module hw(input a);
reg b;
endmodule
module sw;
reg c;
initial begin
force hw.b = c;
wait(my_event.triggered);
release hw.b

endmodule

Assertion and Coverage in HW
To enable functional coverage and assertions at compile time, use the following UTF
commands:
coverage -enable true // Enables covergroups specified in HW
assertion_synthesis -enable ALL // Enables assertions and coverage
properties specified in HW

To activate functional coverage and assertions at runtime, add the following options to
the simv command:
-simxl=enable_dut_fcov,enable_dut_sva

Coverage data is generated in the simv.zebu.vdb file.
No special options are required to enable functional coverage and assertions in SW.
To merge coverage data from HW with coverage data from SW, use the following URG
command:
urg -dir simv.vdb simv.zebu.vdb

Preloading HW memory using SW
interface ift;
logic [0:255] mem [4096];

endinterface
module dut;
endmodule
module HW;
ift m_if();
dut dut();

endmodule
module SW;
initial

begin
$readmemh(“data.hex”,
HW.m_if.mem);

$writememh(“data_copy.hex”,
HW.m_if.mem);

end
endmodule

interface ift;
task task1(output o1);

begin
o1 = 1;

end
endtask
function integer calculate();

return(0);
endfunction

endinterface
module HW();
ift m_if();

endmodule
module SW();
logic a;
initial

begin
HW.m_if.task1(a);
$display(“A: %d, CALC: %d”, a,
HW.m_if.calculate());

end
endmodule

Export Subroutine Call

class C;
function void observe(input integer i1);

$display(“I: %d”, i1);
endfunction
endclass
interface ift;
bit configure_done = 0;
C m_handle;
function void configure(C handle);

m_handle = handle;
configure_done = 1;

endfunction
initial begin

wait (configure_done == 1);
m_handle.observe(4);

end
endinterface
module HW();
ift m_if();

endmodule

Import Subroutine Call
module SW();
C c1 = new();
initial

begin
HW.m_if.configure(c1);

end
endmodule

Moving HW module to SW
• Reasons to moving HW module to SW

– HW module has constructs that are non-synthesizable
– Instance of HW module is being accessed from SW in a non-supported way\
– HW module is causing a compile bottleneck
– Instance of HW module is causing runtime failures

• Add the following VCS option for V2VX flow
-Xhdl_cosim_etb <module name>

Must be specified for each module that is moved from HW to SW
• Add the following UTF command for V2Z flow:

simxl_move_to_tb -module {<module name list>}

All Modules specified above will execute in SW, using their HW context.

Moving clocks from SW to HW
• Reasons for moving clocks from SW to HW

– Clocks toggling in SW increase HW/SW interaction slowing down performance.
– #-delays executing in HW avoid all kinds of issues related to semantics, synchronization, race

conditions, etc.
• Changes required to support clocks in HW

– Add new wrapper module that will instantiate the design and clocks.
– Wrapper module will be instantiated instead of DUT and should have same ports as DUT except for

clocking ports. All XMRs will need to be updated to add wrapper segment.
– Create clock generator module that will contain implementation of a clock using #-delay. See

example below.
– Add following commands to UTF file

clock_delay <name of clock generator module> -tolerance auto
clock_config –accuracy 32
// Needed when there is not enough bits to scale all clock frequencies

– Try maintain single timescale throughout the parsed database.
• Validate changes by running representative test cases in simulation only.

• Usage of #-delays in SW
– #-delays should not be used in SW
– Price of usage is very high as HW needs to sync with SW every event clock
– There is a feature in VCS that identifies all #-delays

• Compile option for VCS is: -simprofile.
• Runtime option for SIMV is: -simprofile delay

– Event clock granularity is determined by smallest precision of timescales in
HW

• For example, if SW has #1 for timescale 1ns/1ns and HW has timescale 1ns/1fs, then
there will be 1, 000, 000 synchronization points.

– Use events that are originated from HW to control synchronization on SW
side

Guidelines: Time synchronization

• Simplify RTL or SW clocks
– Try keep clocks with whole unit ratio’s between clocks
– Complex clocks in SW will slow down simulation significantly
– Do not use decimal point for clock implementations
– Minimize the number of clocks used, eliminate all unnecessary clocks

(e.g. test clocks, random delayed clocks, etc)
– For RTL clocks use tolerance feature to reduce number of clock events

• Clock events are synchronization events that are used to determine the next time
stamp.

Guidelines:Time synchronization

• Simplify usage of timescale
– Do not use decimal point in #-delays which requires needing timescale precision

• Waveform calculation uses timescale finest precision as calculate rate. Finest precision may be
an overkill

– Coordinate single usage of timescale directive across the project
– Validate changes to timescale using simulation test case

• Waiting for HW clock cycles on SW side
– Do not call export task to wait for clock cycles

• The same export cannot be called simultaneously during acceleration
– Use an XMR to the clock in the HW side and repeat statement to wait for a finite number

of clocks cycles (e.g. repeat @(posedge vif.clock))

Guidelines: Time synchronization

• Avoid explicit initialization of memory or registers to Zero
– Many wasted cycles, those elements are initialized to zero by default
– Use +vcs+initreg+random at vcs elaboration time and +vcs+initreg+0 at runtime, for VCS

simulation only
• Avoid calling tasks from always block for cycle update of variables.

– Inline the update
– Synthesis doesn’t handle this well

• Avoid doing 100k’s backdoor to explicit memory addresses or registers from SW
– This is not as fast as VCS simulation
– Updates should be done in HW through Transactors

• May contain a lot of additional overhead in gate count.

• Bring up in the shortest running test available
– Full vision is usually only achievable with a short run
– Identify partial test and run till first point of failure

General Guidelines

• Initiate all actions from HW as much as you can.
– Bind transactors to HW that initiate transactions.
– Try to make actions non-time consuming.
– Avoid scheduling on SW side, to reduce SW overhead.
– HW synchronization is better over synchronization in SW.

• Implement transactor as BFM as much as you can
– Runs on HW, needs to be synthesizable and not behavioral

code, to achieve maximum performance.
– Use a thin layer of behavioral code.

General Guidelines (Cont’d)

• Incremental compilation is implemented in the simulation acceleration flow
– -Xhwcosim=incr_comp

• VCS detects if the second compilation interface database is subset of previous database
– Avoid new ZeBu compilation
– Examples

• Changes are completely local to testbench
• Removing port connections or SW to HW XMRs from second compilation

• User can force TB only compilation if he is sure there is no change in HW and SW/HW
communications
– UTF command: simxl_tb_compile_only -enable true

• Incremental compilation diagnostics
– -Xhwcosim=incr_diag
– “IncrDiag.txt” dumped with info about if TB and DUT communications changed or not

Incremental Compilation

INTERACTIVE DEBUG WITH VERDI

32

Invoking Verdi
Invoke simulation acceleration option in Verdi command line
verdi -simBin simv -i -emulation -lca -simXL --root (ztdbHwRoot) -simDelim
+zcui.work=zcui.work/zebu.work +zebu.verbose +vcs+lic+wait
+define+NVS_SNPS_LICENSE

– (Green part is Verdi option; blue part is runtime option; use “-simDelim” to separate them)
Invoke simulation acceleration using preference dialog in Verdi

Verdi Interactive Debug Toolbar

 Run
 Stop
 Next
 Step in
 Step out
 Step in thread
 Next in thread
 Step in TB
 Step in Constraint Solver
 Restart
 Dump emulation file
 Breakpoint manager
 Go to active file/line
 Quit simulation

Verdi Interactive Debug Views
• Instance/Declaration/Signal List
• Stack/Local
• Class/Object/Member
• Source
• Watch
• Dump
• Waveform
• Console

Verdi Interactive Debug Views

Verdi Source and Watch

• View HW and SW source code
• Set breakpoint
• Add signal to watch
• Add signal to dump file

Dump Emulation File

• Add emulation Dump file with type
• Add hardware value set into file
• Add software signal/instance into file
• Dump on/off
• Dump close

• No inter.fsdb dump by default, use emulation dump dialog to dump ztdb file.

Open ZTDB file in Waveform
Unify dumping. HW and SW signals are in one ztdb file

Open ZTDB file in Waveform (cont’d)

Console View
• Display simulation acceleration output in console window

• Simulation acceleration uses many Zebu debug methodologies
– zRun can be used to run and dump waveforms and control Zebu normally

• zRun –testbench “./simv <Run_Time_Switches>” …

• Functional Debug using UCLI preferred to zRun
• UCLI for VCS is enhanced to create simulator like interface for Verification Engineers
• The UCLI will provide following functionality

– Dumping waveforms using dynamic_probe/FWC/QIWC
– Able to force/deposit/watch/get signal in HW.
– Able to set breakpoint on signal change values in HW.
– Dumping/Reading from Zebu Memory.

• Performance Debug
– VCS Profiler to optimize time spend in testbench.

• ./simv -simprofile <other switches>
• profrpt -view time_all -format all simprofile_dir/ -dut hw_top
• profileReport/TimeSummary.txt

– User readable profile file is generated(shows DUT% & other TB components)

– Simulation acceleration profiler
• For SIGNAL acceleration It will be primarily used to find communication overhead.
• It can help identify active channels which can benefit from AVIPs.

Debugging/Profiling

• Enabling UCLI signal control from UTF file
– zforce -rtlname <Zebu_mapped_signal>

• This will enable force/release from command line
– zinject -rtlname < Zebu_mapped_signal>

• This UTF command will make transformations to enable deposit signal values.
– probe_signals -type dynamic -rtlname < Zebu_mapped_signal>

• This UTF command will allow Reading/Watching signal values in UTF commands.

• Value Sets for QIWC/FWC are defined similar to Zebu Flow
– (*fwc*) $dumpvars(0, hw_top.DUMP.GRP2);
– (*qiwc*) $dumpvars(0, hw_top.DUMP.GRP6);

• zSelectProbes
– zSelectProbes is used to select signals for dynamic probing(ReadBack)
– No change from regular Zebu flow

Compiling for Debug (UTF file)

• Simulation acceleration supports TestBench/DUT waveform dumping at same time.(New capability)
– HW Waveforms are captured in ZTDB and Testbench in fsdb file concurrently.
– Verdi provide ways to view the waveforms together with a aligned timestamp.

• dump -file <FILE> -type fwc|dynamic_probe -driverClk
– It will create a waveform database directory named <FILE> and also create a test bench side waveform simxl.fsdb inside <FILE>.
– Without –driverClk option, It uses tickClk for sampling.

• dump -add <list_of_nids> -fid <FID>
– Add signals into test bench side simxl.fsdb when the given FID is ZTDB FID

• dump -add_value_set <value_set> -fid <FID>
– Add <value_set> to a given <FID>. Multiple value set can be added

• dump -enable/-disable -fid <FID>
– Enable/Disable dumping

• dump -close <FID>
– Close the Dump file

• dump -flush <FID>
– Flush data to dump file

• dump -load_selection
– Loads the zSelectProbes before enabling dump for readback.

UCLI Commands

• Command: run
– Supports running for relative or absolute time.

• run 20ns
• run –absolute 5us

– Supports running till a HW/SW trigger.
• run –change tb_signal

– No special compile time directive required
• run –change dut_signal

– Must be enabled using probe_signals command.

• Command : show
– show -value tb_signal

• No special compile time directive required
– show -value hw_signal

• Must be enabled using probe_signals command at compile time in UTF file.

UCLI Commands (cont’d)

• force <sw_signal> <value>
– No special directive required for forcing SW signal.

• force <hw_signal> <value>
– HW force must be enabled by “zforce” UTF command.

• release <sw_signal>
– No special directive required for releasing SW signal.

• release <hw_signal>
– HW force/release must be enabled by “zforce” UTF command

• force –deposit <sw_signal> <value>
– No special directive required for depositing SW signal.

• force –deposit <hw_signal> <value>
– HW deposit must be enabled by “zinject” UTF command.

UCLI Commands (cont’d)

• get u_duv.ctrl -radix b
– Get Signal with –radix b(binary)/d(decimal) or h(hex)

• memory -read|-write -file <fname> [-radix <radix>] [-start start_address] [-end
end_address]
– Load/write memory values from/to files, or initialize memory with given value

• restart
– Restart tool execution; UCLI will return to time zero

• senv value_sets
– returns all value sets existing in design compilation.

• senv driver_clk_frequency
– returns driver clock frequency in kHz

UCLI Commands (cont’d)

• VCS communication profiler
– ./simv -simxl=profile <Other options>
– Enables communication profiling and dumps simxlProfile.txt at the end of test.
– It reports Elapsed Time/Driver Clock Cycles/Active Signals/Memory Read-Write Calls/TimeStamp

Synchronization/DPI-Verilog task calls.
– The purpose if to reduce synchronizations between TB-DUT by moving towards a TBA(Transaction Based

Acceleration) and identify active interactions.
• Communication overhead in transferring signal/memory values etc.
• Enabling dumping of detailed continuous I/O communication between HW/SW.
• ./simv -simxl=translog, translog_file:hwlog.txt

Profiler and Translog Dump

[F] [ImportStart] [id=77] gpu_test_pkg::\gpu_test::write_memory_merge …
{address logic Input [63:0] 'h2b89202000000000} …

Import Function Call StartsFunction

TF Id

Function path and name

Argument name Type Direction Value

Increasing Acceleration Performance

• Usage of HW clock signals in SW can be optimized under the hood to reduce communication
overhead.
– When waiting for a fixed number of cycles from many different places.
– For example, usage of 50 difference places in testbench of (repeat (N) @(posedge top.chip.clk))
– Even though communication is at signal level implementation is optimized to communicate when

exceeding the repeat count.

• Signals that change infrequently, should be kept at signal communication over
communicating them through a code implementation.
– Signals between HW and SW are only communicated when they change their values. Therefore it

is worth keeping the communication at signal level and let the tool handle when appropriate to
communicate

AXI EXAMPLE

50

A Typical UVM Environment
• Signal based connection (through virtual interfaces) in UVM

– Driving and sampling functionalities are usually implemented in bus
functional model (BFM) tasks inside drivers or monitors

class xbus_master_driver extends uvm_driver #(xbus_transfer);

// The virtual interface used to drive and view HDL signals.
virtual xbus_if xmi;

// get_and_drive
virtual protected task get_and_drive();
@(negedge xmi.sig_reset);
forever begin
@(posedge xmi.sig_clock);
seq_item_port.get_next_item(req);
…
xmi.sig_addr <= trans.addr;
…
xmi.sig_size <= 2'bz;
…

end
endtask : get_and_drive

Moving BFM to Interfaces/Modules
• Isolating transaction generation/post-processing (scoreboards, etc) from transaction

driving/sampling
• BFMs can be behavioral level code (for simulation) or RTL code (for synthesis)
• Transactions are passed between testbench and interfaces using the method calls

Design TOP

DUT UVM
components
(driver, monitor)

Method
call

Data interface
DUT TOPTestbench TOP

DUT

ready

ack

data

UVM
components
(driver, monitor)

Signal-based connection Transaction-based connection

Method
call

Signal-based vs. Transaction-based
• Simulation acceleration supports both usages
• Transaction based connection provides better performance

– Less communication events between simulator and emulator

Design TOP

DUTUVM
components
(driver, monitor)

Signal-based connection Transaction-based connection
ZeBu ZeBu

UVM
components
(driver, monitor)

Data interface
HW TOPTestbench TOP

DUT

ready

req

data

VCS VCS

Method Call: Export/Import
• Export call

– testbench calls interface through virtual interface
• vif.write(transaction)

• Import call
– interface calls testbench (UVM component) methods through object

handle
• master_handle.get(transaction)

Data Class: Transaction or Configuration
• For objects to be

passed between
VCS and ZeBu we
need to convert
them to a struct
type.

typedef struct {
logic[3:0] in1;
logic[3:0] in2;
logic[4:0] out1;

} data_s;
class data_c;

rand logic[3:0] in1;
rand logic[3:0] in2;
rand logic[4:0] out1;

function void copy_to_item(input data_s data_t);
this.in1 = data_t.in1;
this.in2 = data_t.in2;
this.out1 = data_t.out1;

endfunction
function void copy_to_struct(output data_s data_t);

data_t.in1 = this.in1;
data_t.in2 = this.in2;
data_t.out1 = this.out1;

endfunction
function void print();

$display($stime,,"in1: %x in2: %x",this.in1,this.in2);
endfunction

endclass

Driver/Monitor Class

• The driver/monitor
is running inside
VCS but the object
handle will be
passed to data
interface so data
interface can call
the driver/monitor
method
– import call

class mst_c;
data_c data;
virtual data_itf vif;
function void connect();

vif.xtor_register(this); //register this xtor to
data interface

endfunction
//data interface will call this task to get a

transaction
task get(output data_s data_t);

seq_item_port.get_next_item(req_t);
…
req_t.copy_to_struct(data_t);

endtask
task put(input data_s _rsp);

data_c rsp_t;
…
rsp_t.copy_to_item(_rsp);….
seq_item_port.item_done(rsp_t);

endtask
endclass

Data Interface
• The data interface gets/puts

transactions from/to UVM
driver/monitor
– As in the typical UVM environment, the

driver still pulls transactions from UVM
sequence and the monitor still puts the
transactions to analysis components

• The interface has other methods for
the communication with testbench,
for example to register a
driver/monitor to this interface
instance
– xtor_register

interface data_itf(
input logic clk,
input logic reset,
output logic data_ready,
output data_s data,
input logic data_req
);

mst_c mst; //xtor handle
function void xtor_register(input mst_c

mst_t);
mst = mst_t;

endfunction
always @(posedge clk) begin

if(reset) begin
data_ready <= 1'b0;
next_state <= ST_GET_DATA;

end
else begin

case(current_state)
ST_GET_DATA:

begin
mst.get(data);
data_ready <= 1'b1;
if(data_req) begin

endinterface

BFM Module
• BFM module is a synthesizable module to drive the transaction to

DUT or collect the transaction from DUT
– BFM is optional since users can also implement driving/ monitoring

methods inside data interface
• Data interface puts/gets the data to/from BFM module

– Same data interface instance will be connected to driver/monitor virtual
interface

BFM Module
module mst_bfm(

input logic data_ready,
output logic data_req,
input data_s data,
//DUT
itf itf_p

);
always @(posedge itf_p.clk) begin

if(itf_p.reset) begin
next_state <= ST_DRIVE;
data_req <= 1'b0;…

end
else begin

case (current_state)
ST_DRIVE:

begin
if(data_ready) begin //data ready, drive data to DUT

itf_p.valid <= 1'b1;
itf_p.in1 <= data.in1;
itf_p.in2 <= data.in2;
if(itf_p.ack) begin //dut ack, get next data

next_state <= ST_DRIVE;

Behavioral Compilation
• UVM driver/monitor BFM tasks are usually implemented with

“behavioral code”
• Behavioral Compilation

– Hardware synthesis of behavioral code

class xbus_master_driver extends uvm_driver #(xbus_transfer);

// The virtual interface used to drive and view HDL signals.
virtual xbus_if xmi;
// get_and_drive
virtual protected task get_and_drive();
@(negedge xmi.sig_reset);
forever begin

@(posedge xmi.sig_clock);
seq_item_port.get_next_item(req);
…
xmi.sig_addr <= trans.addr;
…
xmi.sig_size <= 2'bz;
…

end
endtask : get_and_drive

Behavioral Compilation
• Initial block and # delay

• Bounded and Unbounded loops

bit aclk;
bit aresetn;
initial begin
aresetn = 1'b0;
#5000;
aresetn = 1'b1;

end
initial begin
aclk <= 1'b0;
forever begin
aclk <= 1'b1;
#1000;
aclk <= 1'b0;
#1000;

end

while (1) begin
@(posedge clk1)
c <= c + 1;

end

for (i=0;i<128;i=i+1) begin
@(posedge clk);
mem[i] = 0;

end

Behavioral Compilation
• Multiple clocks or edge expressions in the same process
• Wait statement
• Named events

always @(posedge clk) begin
a = 0;
@(negedge reset);
a = 1;
@(negedge clk);
a = 2;

end

initial begin
wait(reset==1'b0);

event my_event;
initial -> my_event;
always begin
@(my_event);
a <= b;

end

Behavioral Compilation
• Clocking blocks

• Fork/Join
– fork/join
– fork/join_none
– fork/join_any

fork
do_A();
do_B();

join

clocking cb @(posedge aclk);
input aresetn ;
input awaddr ;

endclocking
initial begin
@(cb);
A <= cb.awaddr;

end

AXI 3/4 VIP Environment
• Transaction based connection in a UVM based environment

– UVM testbench (running with VCS)
– Interface and BFM (running with ZeBu)
– UVM drivers/monitors communicate with ZeBu through method call

UVM components
(driver, monitor) Method call

Data
interface

ZeBuVCS

DUT

VIP

BFM(RTL)
ready

req

data

AXI Master/Monitor

AW Channel buffer

W Channel buffer

BRESP Channel buffer

AR Channel buffer

R Channel buffer

DATA
INTF

MASTER_BFM

AXI signals FSMs

AXI Slave

AW Channel buffer

W Channel buffer

BRESP Channel buffer

AR Channel buffer

R Channel buffer

MEMORY

DATA
INTF

SLAVE BFM

AXI signals FSMs

Data Interfaces
• Get AXI transactions from AXI UVM master component
• Put AXI transactions to AXI UVM slave or monitor components
• When needed, testbench code can also pass the configuration data to data interface through

the xtor_register call
//slave data interface
function void xtor_register(input axi_slave_drv slv_t,input axi_common_pkg::slave_cfg
_slave_cfg_data);

slv = slv_t;
slave_cfg_data = _slave_cfg_data;

endfunction
always @(posedge clk) begin

if(reset!=0) begin
if (write_mem_tran_in_done) slv.put(write_mem_tran_in,0);

…
end

//master data interface
always @(posedge clk) begin

…
else begin

if(data_req==1'b1) begin
mst.get(data_is_valid,data_new);

Parameterized Buffer Size
• BFM module has a parameter to specify how many outstanding

transactions can be processed in parallel
module slave_bfm #(

parameter bit[3:0] depth=1 //how many transactions can be
processed in same time

…
)

endmodulue

module hw_top;
slave_bfm #(buffer_size,…)

slave_bfm_inst(.slave_cfg_port(slave_cfg_data),.*);
…
endmodule

Single and Burst Read/Write
Sequence Tasks

virtual task read(input bit [`AXI_MAX_AW-1:0] addr,
output logic [`AXI_MAX_DW-1:0] data,
output logic [1:0] rresp,
input uvm_sequencer_base seqr,
input bit[(`AXI_ID_WIDTH - 1):1] arid=0,
input int tr_size_in_bytes =

`AXI_MAX_DW/8,
input bit[1:0] burst_type = 2'b01,
input uvm_sequence_base parent =

null);
virtual task read_burst(input bit [`AXI_MAX_AW-1:0] addr,

output logic [`AXI_MAX_DW-1:0] data [],
input int burst_length,
output logic [1:0] rresp [],
input uvm_sequencer_base seqr,
input bit[(`AXI_ID_WIDTH - 1):1] arid=0,
input int tr_size_in_bytes =

`AXI_MAX_DW/8,
input bit[1:0] burst_type = 2'b01,
input uvm_sequence_base parent

= null);

Single and Burst Read/Write
Sequence Tasks

virtual task write(input bit [`AXI_MAX_AW-1:0] addr,
input logic [`AXI_MAX_DW-1:0] data,
output logic [1:0] bresp,
input uvm_sequencer_base seqr,
input bit[(`AXI_ID_WIDTH - 1):1] awid=0,
input axi_delay_vars_struct delay_vars=axi_delay_vars_struct'{default:0},
input int tr_size_in_bytes = `AXI_MAX_DW/8,
input bit[1:0] burst_type = 2'b01,
input uvm_sequence_base parent = null);

virtual task write_burst(input bit [`AXI_MAX_AW-1:0] addr,
input logic [`AXI_MAX_DW-1:0] data [],
input int burst_length,
output logic [1:0] bresp,
input uvm_sequencer_base seqr,
input bit[(`AXI_ID_WIDTH - 1):1] awid=0,
input axi_delay_vars_struct delay_vars=axi_delay_vars_struct'{default:0},
input int tr_size_in_bytes = `AXI_MAX_DW/8,
input bit[1:0] burst_type = 2'b01,
input uvm_sequence_base parent = null);

Write and Read Test Example
wr_seq = axi_master_write_seq::type_id::create("wr_seq");
rd_seq = axi_master_read_seq::type_id::create("rd_seq");

//SIMPLE WRITE READ, one byte each transfer
for(int i = 0; i < 16; i++) begin

wr_seq.write(32'h00000100+(i*bytelane_num), i+1, resp, env.u_axi_master_agt.sqr,1,,1);
end
repeat(30) @(posedge master_vif.clk);
for(int i = 0; i < 16; i++) begin

rd_seq.read(32'h00000100+(i*bytelane_num), rd_data_single, resp, env.u_axi_master_agt.sqr,1,1);
end
repeat(30) @(posedge master_vif.clk);

//BURST WRITE and READ
begin

burst_length=5;
wr_data = new[burst_length];
foreach(wr_data[ii]) begin

wr_data[ii]=ii+5;
end
wr_seq.write_burst(32'h1000, wr_data, 5,bresp, env.u_axi_master_agt.sqr,1,,2);
repeat(10) @(posedge master_vif.clk);
rd_seq.read_burst(32'h1000, rd_data,5, rresp, env.u_axi_master_agt.sqr,1,2);
repeat(10) @(posedge master_vif.clk); //unaligned address
wr_seq.write_burst(32'h1001, wr_data, 5,bresp, env.u_axi_master_agt.sqr,1,,2);
repeat(30) @(posedge master_vif.clk);
rd_seq.read_burst(32'h1001, rd_data,5, rresp, env.u_axi_master_agt.sqr,1,2);

end

Memory Access Debug Message
• AXI slave BFM module puts the received write transaction (both AW channel info and WDATA channel

info), received read transaction(AR channel info) and transaction after reading memory (byte enable for
each transfer, data read from memory) to AXI slave UVM driver/monitor for the debug purpose.

//slave_data_if
always @(posedge clk) begin

if(reset!=0) begin
if (write_mem_tran_in_done) slv.put_transaction(write_mem_tran_in,0);
if (read_mem_tran_in_done) slv.put_transaction(read_mem_tran_in,1);
if (read_mem_tran_out_done) slv.put_transaction(read_mem_tran_out,2);

end
end

//class axi_slave_drv
function void put_transaction(input axi_seq_item_struct tran_struct, input bit[1:0] which_tran);

read_mem_tran_out=axi_seq_item::type_id::create("read_mem_tran_out");
read_mem_tran_out.copy_to_item(tran_struct);
`uvm_info(get_full_name(),$sformatf("%p",read_mem_tran_out),UVM_DEBUG)

endfunction

UVM_INFO /slowfs/vgzebucae10/whan/MYAXI/0507/myaxi_0628/src/dv/axi_slave/axi_slave_drv.sv(47) @
50315000: uvm_test_top.env.u_axi_slave_agt.drv [uvm_test_top.env.u_axi_slave_agt.drv] …
m_leaf_name:"read_mem_tran_out"
addr:'he0000150, data:'{'h7, 'hc, 'h11, 'h16, 'h1b} , burst_length:5, burst_type:1,
byte_en:'{'hf, 'hf, 'hf, 'hf, 'hf} , tr_size_in_bytes:4,

ZeBu Model Instantiation
• Hardware top module

module hw_top();
master_data_itf

master_data_itf_inst(aclk,aresetn,data_ready,data,data_req,…);
master_bfm#(buffer_size) master_bfm_inst(data_ready, data, data_req,

wr_data_valid,…, .*);
slave_dut slave(.*); //AXI signal connections
initial begin

aclk = 1'b0;
forever #5 aclk = ~aclk;

end

initial begin
aresetn = 1'b0;
repeat(10) @(posedge aclk);
aresetn <= 1'b1; //reset deassertion should be synchronous on the

rising edge of aclk
end

endmodule

AXI Example Capabilities
• Different burst types, transfer size, burst lengths
• Separate address/control, data and response phases. Separate read and write channels.
• Support for burst-based transactions with only start address issued.
• Write strobe support to enable sparse data transfer on the write data bus
• Narrow transfer support
• Unaligned address access support.
• Ability to issue multiple outstanding transactions.
• Out of order transaction completion support.
• Support for Write data phase before Write address phase (negative AWVALID to WVALID delay)
• Write data and read data interleaving support.
• Configurable write and read interleave depth.
• Slave and Master support fine grain control of response per address or per transaction (OKEY or

SLVERR)

AXI Example Profile

75

SBA TBA

AXI Example Profile
• Other profile information

76

Summary
• Simulation acceleration provides flow for VCS users to take

advantage of ZeBu for accelerating their UVM regressions

• VCS supports signal-based and transaction-based acceleration

• By moving UVM driver/monitor BFM tasks to interfaces/modules
we can setup a UVM-based emulation friendly environment

	Simulation Acceleration with ZeBu �to Speed IP and Platform Verification
	Agenda
	Customer story one
	Customer story two
	Customer story three
	Customer story four
	Customer story five
	Simulation Acceleration with ZeBu
	Continuous Simulation Acceleration�Ability to incrementally change and mix HW/SW communication capabilities
	Simulation Acceleration
	Deployment Steps for UVM/SV
	VCS Options – V2VX mode
	UTF Options – V2Z mode
	VCS Compile/Runtime – V2Z mode
	Structural Signal Communication
	Structural Signal Communication: Clocking
	Structural Signal Communication: Datatype
	Behavioral Signal Communication
	Force/Release HW from SW
	Assertion and Coverage in HW
	Preloading HW memory using SW
	Export Subroutine Call
	Import Subroutine Call
	Moving HW module to SW
	Moving clocks from SW to HW
	Guidelines: Time synchronization
	Guidelines:Time synchronization
	Guidelines: Time synchronization
	General Guidelines
	General Guidelines (Cont’d)
	Incremental Compilation
	interactive debug with Verdi
	Invoking Verdi
	Verdi Interactive Debug Toolbar
	Verdi Interactive Debug Views
	Verdi Interactive Debug Views
	Verdi Source and Watch
	Dump Emulation File
	Open ZTDB file in Waveform
	Open ZTDB file in Waveform (cont’d)
	Console View
	Debugging/Profiling
	Compiling for Debug (UTF file)
	UCLI Commands
	UCLI Commands (cont’d)
	UCLI Commands (cont’d)
	UCLI Commands (cont’d)
	Profiler and Translog Dump
	Increasing Acceleration Performance
	AXI Example
	A Typical UVM Environment
	Moving BFM to Interfaces/Modules
	Signal-based vs. Transaction-based
	Method Call: Export/Import
	Data Class: Transaction or Configuration
	Driver/Monitor Class
	Data Interface
	BFM Module
	BFM Module
	Behavioral Compilation
	Behavioral Compilation
	Behavioral Compilation
	Behavioral Compilation
	AXI 3/4 VIP Environment
	AXI Master/Monitor
	AXI Slave
	Data Interfaces
	Parameterized Buffer Size
	Single and Burst Read/Write �Sequence Tasks
	Single and Burst Read/Write �Sequence Tasks
	Write and Read Test Example
	Memory Access Debug Message
	ZeBu Model Instantiation
	AXI Example Capabilities
	AXI Example Profile
	AXI Example Profile
	Summary

