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Abstract— We discuss the development of a framework for modelling SoC Interconnect, chip-to-chip interconnect 

and other on-chip features of Graphcore’s reticle-limited 7nm Intelligence Processing Unit (IPU) Machine Intelligence 

Accelerator using python and the excellent SimPy package for Discrete Event Simulation (DES).  We review the 

advantages of this purely python approach versus more traditional approaches based on SystemC or similar, discuss 

extensions we have made to the default SimPy package that specializes it for modelling of ASIC designs, and show how 

we have applied this framework for performance modeling and for resolving issues such as head-of-line blocking and 

deadlocks both prior to and after tape-out, and how we extend our approach to clusters of many such devices. 

I. INTRODUCTION  

Architectural modelling and prototyping of ASIC hardware in high level languages is a common technique for 

chip design, for architectural exploration and validation and for verification of ASICs. Here we focus on the use 

of Python, and in particular the popular SimPy package for Discrete Event Simulation (DES), for use in 

architectural exploration and validation, both of chips, and systems built from 10’s or 100’s of chips. 

 

SystemC - or just plain C or C++ is also widely used for such purposes and various tools, libraries and frameworks 

for such tasks are available [1]. At Graphcore however, Python is widely used through the chip development 

process, and in general our engineers prefer to work in python where possible thanks to its easier learning curve, 

productivity and huge range of useful packages. As one might expect, Python has been employed for various chip 

design purposes such as modelling high speed SERDES [2] and for refinement from high level descriptions to 

RTL [3] to give just two examples. Our work by contrast is in the area of architectural exploration. 

 

In this brief review of existing work we found that while SimPy is a well-used and popular package for Discrete 

Event Simulation in various disciplines, there is no real evidence of its use for silicon chip architecture or design 

as yet.  

A. About SimPy 

The SimPy [4] package offers primitive components for events, storage components such as containers and queues 

(suitable for modelling FIFOs and other queuing elements) and shared resources with support for prioritization 

and pre-emption (suitable for use in representing arbiters). Its design is based upon python generator functions 

and the associated python yield statement. When a yield statement is hit, program execution is suspended and the 

yielded value is returned to the calling function. This built in functionality of python enables SimPy to implement 

a Discrete Event Simulation library using python’s built-in capabilities. By then building a simple simulation 

kernel and component library on top of this, SimPy offers an easy-to-use and easy-to-extend API for quickly 

building DES models of complex systems. 

 

SimPy was first released in 2002, and at the time of writing is at version 4.0.1 with wide usage in academia and 

industry and a good body of documentation. 

B. About the Graphcore Intelligence Processing Unit 

The IPU [5] consists of two parts: the Core and the SoC.  The Core is an homogenous array of thousands of 32-

bit Tile Processors each with their own locally attached SRAM memory and arithmetic units to accelerate ML 

compute tasks, plus a deterministic, stateless all-to-all interconnect that allows each Tile Processor to 

communicate with all its peers on the same device. 
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The SoC on the 2nd generation IPU (Mk2) consists of a ring surrounding the Core, comprising a large quantity of 

16 Gbps SerDes lanes for IPU to IPU connectivity, a PCI Endpoint Controller for attach to a local host system, 

sundry functions related to clock and reset generation, hardware synchronization between IPU devices, and 

proprietary interconnect solutions for control register access and data path traffic flow between Tile Processors 

on different chips.  When measured by die area the Core occupies most of the device, with the SoC relegated to 

the periphery of the die on all four edges. When measured by complexity the SoC architecture is at least as 

complex, if not more so, than the Core due to its heterogenous nature, complex standards-based third party IP and 

a queued rather than deterministic interconnect. In addition, there is a requirement to build full system models 

featuring many IPU devices and the high speed fabric (external switches) interconnecting them. 

 

The backbone of the SoC in the Mk2 IPU is a very high bandwidth packet-switched ring interconnect, sufficient 

to facilitate the array of Tile Processors to fully utilize the 1.6 Tbps of off-chip bandwidth. This on-die and chip-

to-chip interconnect plus its associated SerDes links are the main focus of our work to date. 

II. SIMPY BASICS 

The behavior of all SimPy components is modeled using processes, which exist within an environment. Processes 

are python generators, which both create events and yield events (e.g. to wait for an event). An example of a 

simple event is a timeout, which is triggered after some simulation time has passed, allowing any process to sleep 

for a fixed simulation time. 

A. Pipeline Example 

Figure 1 shows our implementation of a simple pipeline object. Objects inserted into the pipeline emerge from the 

other end a set number of simulation time ticks later.   

 

The put() method is used to send an 

item (any python object) through the 

pipeline into a downstream sink from 
where it can be retrieved only after the 

time to travel through the pipeline has 

passed. One process may be sending 

items through the pipeline while 

another process maybe retrieving 

them from the sink. Multiple objects 

may be in flight along the pipeline at 

any time and each such object will 

spawn an additional latency() process. 

  

The code in Figure 2 defines two such 

processes (as generator functions) and 

adds them to the environment before 

running it (the items in this case are a 

sequence of integers). Note that the downstream is a simple SimPy Store, which acts as a buffer for the incoming 

packets and it is connected to the pipeline by direct assignment to the downStream variable. 

 

 
Figure 2 

Figure 1 



 

3 

 

 

Running this code will result in the output in 

Figure 3, showing the event that happens at 

different timestamps (@). In this example, the 

pipe depth is 6 ticks, and it can be seen that the 

object is retrievable 6 ticks after being sent. Also 

note the wait time before starting to send another 

item over the pipeline after one item is sent, used 

to represent an object of non-zero size being 

placed into the pipeline over multiple time ticks. 

B. Flow Controlled Pipeline and Buffer 

A richer example given in Figure 4 , essential in 

any queuing system, is a credit-based flow 

controlled version of the above. Here the pipeline will not allow anything into it before knowing that the 

downstream can accept the item being sent. This is  involves the movement of data between buffers with a credit 

signal flowing in the opposite direction indicating the spare capacity in the receiving buffer; a widely used pattern 

of NoC interconnect design. 

 

 
Figure 4 

Note that the pipeline will block until it extracts a credit from its credit buffer before starting to send as it did in 

the basic pipeline. The putCredit() is the method that the downstream buffer uses to send a credit back whenever 

a packet is removed from it as shown by the updated fcRetrievalProcess().  

C. Simple Arbiter 

An arbiter is another vital element of any SoC design, for both interconnects and functional blocks. SimPy 

provides a Resource object that can be requested by multiple processes but only one requester is fulfilled at a 
time. Figure 5 shows a simple arbiter with 4 clients requesting the resource at constant intervals of time.  

 

Figure 3 
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Figure 5 

 

The output in Figure 6 shows the time at which each client 

makes request and the time at which its request is served. 

Note that the requests are served by the order of arrival. 

SimPy also provides a PriorityResource where each request 

can be assigned a priority. 

III. CUSTOMISATION OF SIMPY TO ADDRESS 

LIMITATIONS RELATED TO SOC MODELLNG 

While the preceding examples demonstrate the good fit of 

SimPy built in primitives for SOC modelling, we 

encountered a number of key limitations in terms of ease of 

use and performance. We have addressed these by making 

modifications to the SimPy package which we detail below. 

A. Delayed success of events 

In the default SimPy Event objects, Timeout is the only 

event that can be scheduled to succeed at a specific future 

time.  Other events can only succeed instantaneously. In chip 

design, it is common to have operations that take a specified 

duration and hence their associated event is required to 

succeed at a certain time in the future. As a result, in our first 

Mk1 IPU implementation, we resorted to generous use 

explicit timeouts to poll for some event to complete. In other 

words, to simulate the above, we defined a two-step process 

that waits for a Timeout event to be successful before 

triggering the event of interest. This hurts performance and is not in keeping with the event-driven philosophy 

SimPy tries to support, and which is necessary for performant models.  

 

To allow us to build a performant API that is suitable to validate large scale systems, we extended the native Event 

class (NewEvent) by changing its succeed() method to allow delayed scheduling of the success of an event. As 

an example, if writing a packet into a buffer is defined as an event and the time of finishing is known, the event 

can be directly scheduled to be successful at that point in time, without needing an associated timeout.  

 

This NewEvent class is used in our framework as the parent class for several custom-defined events, allowing all 

our models to benefit from this critical enhancement to SimPy. 

B. Limiting the use of processes 

While SimPy processes are a good way to bundle complicated events and adding them to the environment, they 

can make the program run slower due to the extra events that needs to be processed. Furthermore, it makes the 

API somewhat non intuitive. As an example, consider a buffer where it takes 4 ticks to write (put) into (for example 

writing a 128 bit flit into a 32-bit wide FIFO). Figure 7 is an example of building that buffer with the associated 

put method using a SimPy Store. 

 

Figure 6 
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In order to simulate the put delay, the put method is made to be a 

process rather than a simple event as in the original Store class. 

Consequently, using the put() method should always be through 

adding a process to the simulation, ie, 

env.process(buffer.put(item)) which can be hard to read and debug 

when errors happen. 

 

To reduce the use of processes, we modified SimPy to comprehend 

timing features and support complex events that are processed by 

these components in the background. As an example, our Buffer 

processes a BufferPut event in the background such that it is 

successful only after a space becomes available AND the time needed to prepare the buffer passes AND the time 

it takes to actually write the data (which depends on the size of the data and the width of the buffer) passes.  

 

IV. SOC MODELLING FRAMEWORK 

A. What we model 

We model the SoC interconnect and chip-to-chip fabric of the Mk1, Mk2 and future IPUs as a sequence of 

interconnected SimPy components wrapped within additional python code of our own devising to represent the 

routing, ingress and egress components of our interconnect plus a number of relevant SoC blocks such as the 

SerDes links and PCI Express Link, and a block that bridges between our queued SoC Interconnect and our 

stateless, synchronous and deterministic IPU Core interconnect. In addition we model at a much more abstract 

level the high level behavior of external components like PCI Express switches and the host CPU memory system 

and PCI Root Complex.  

B. Graphcore Modelling Framework: how we structure complex hierarchical systems 

Our IPUs are reticle-limited devices containing diverse functionality, and our models are now authored by 

multiple architects. We have defined a framework on top of SimPy so as to facilitate hierarchical composition of 

complex models from components authored by different individuals, and to facilitate building models of multiple 

such devices in order to simulate an IPU, a chassis, rack or multi-rack cluster of IPUs. 

 

Our models are constructed from an hierarchy of re-usable Components, as listed above plus function-specific 

components. Components may be  connected together into Units, and Units instancing multiple other Units or 

Components can be constructed in an arbitrary hierarchy to model a design, reflecting the hierarchy of typical 

chip design processes.  

 

Within our Components or Units, a standard set of handles allow access to the upstream and downstream instances 

(in terms of data flow) within the model. This standardisation of handles minimises re-work to individual Units 

when a model is restructured. Each Component or Unit has the following standard handles:  
 

FromUp{}/FromDn{} are dictionaries containing references within the unit from which upstream or downstream 

components can call API methods on this Component or Unit. In a simple component, the From* references point 

to the component itself.  

 

ToUp{}/ToDn{} are dictionaries containing references from which the Component can call API methods in the 

upstream or downstream components.  

 

Our Unit base class also supports a connect() method which allows internal connections of Components or Units 

to be made when a Unit is constructed, specifying the source Unit, destination Unit and the source and destination 

ports, in the case of Units with multiple upstream and/or downstream ports. The connect() method also allows for 

connections to the top level of the Unit to be established.  

 

When Units are instanced, the connections between the From handles of the Unit to the From handles of the sub-

units are made (marked A) and a record is kept of the required connections for the To handles (marked C). See 

Figure 8 for a depiction of this hierarchy. 

 

Figure 7 
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When the Unit itself is instanced and 

connected, the connections marked B 

are made and the method recurses 

down implementing the connection 

of the To handles (marked C). 
 

In addition to the standardised 

handles to communicate with 

adjacent Units, our Component APIs 

are also standardised, with consistent 

use of put() and get() methods for 

instance, meaning that changes to our 

Components or Units are not required 

when a model is restructured. When 

an Arbiter component issues a put() 

call to its downstream handle, it 

neither knows nor cares whether the 

downstream component is a Pipeline, a 

Buffer or even another Arbiter.  

 

This lego brick approach to system modelling, allows for quick and simple (and automated) restructuring of 

models. In addition, use of the python import x as y functionality allows different implementations of a given 

component or unit to be swapped in easily. The result of this is that experiments to determine the system-level 

performance of low level implementation choices such as arbitration schemes can be carried out quickly and 

efficiently.  

 

At the top level of a model, a Platform is constructed. This instances one or more units and allows stimulus 

scenarios to be defined for execution during simulation of the Platform. We do not cover the definition of stimulus 

in this paper but hope to present more of our work in this area in the future. 

 

C. Graphcore SimPy Component Library 

The following is a list of components that we are open sourcing as part of this paper, along with examples of 

simple systems built using them. 

 

BasePacket, a generic packet that can be customized to represent data that can be transmitted or stored. It includes 

a helper function that calculates the time it takes to send/write the packet based on the properties of the 

downstream. 

 

BaseComponent, a class that defines a unified set of variables common to all components and units and a common 

interface for logging and Component, the smallest connectable unit, extending the BaseComponent to include 

dictionaries of connections 

 

Unit, extending Component with a unified connect() method to connect components and units in a Recursive 

manner. 

 

Buffer, into which items can be written and read with customizable, data-dependent timings for how long each 

operation takes. Statistics are gathered about the access to the buffer. In addition to put and get methods, the buffer 

presents a peek method that can be used to block until a packet appears in the buffer without having to create a 

while loop of 1-tick-Timeout for as long as the buffer is empty, significantly improving performance and code 

efficiency.  FlowControlledBuffer extends the Buffer with the capability to transmit credits upstream. 

CreditBuffer is a store of credits that can be used to block operations until credits are available. 

StoreAndForwardBuffer customizes the basic Buffer to operate in a store and forward mode where an item 

cannot be read before being fully written, as opposed to the default cut-through behaviour of the base Buffer 

 

Pipeline, a basic pipeline that can be operated using the standard put method to send items that appear on the 

downstream after a specified time. Statistics are gathered about the operation of the pipeline (bandwidth). 

Figure 8 
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FlowControlledPipeline extends the basic pipeline with capability to receive credits from the downstream that 

are checked before initiating any send operation. This is essential for credit-based interconnects which are 

abundant in SoCs. 

 

Crossbar, a generic crossbar with a customizable number of input and outputs and arbitration between inputs 

wanting to access the same output port. The crossbar must be connected to buffers on the inputs and operates in a 

pull mode on the input; it peeks into the buffers and process the packets as they arrive. At the output, it can be 

operated in either pull mode using a get() method that abstracts all the arbitration and extract a packet from the 

correct input buffer (according to the arbitration schedule).  In push mode, the output is connected to a buffer and 

the Crossbar will automatically do the arbitration and push the packets on its output buffers as dictated by the 

arbitration schedule. The class provides easy way to customize routing packets from input ports to output ports 

along with a separate masking function that requires some event to be triggered before the packet can be presented 

for arbitration. Finally, it provides an arbitratePkts() method to customize the arbitration for a single output port. 

It assumes that all packets are ready to proceed on that port and choose one of them according to the details of 

this function. By default, this method performs a random arbitration. 

 

RoundRobinCrossbar inherits from Crossbar but instead of a random arbitration, implements a work-preserving 

round robin arbitration.  

 

V. USE OF OUR MODELS  

A. Architectural Validation and Debug of In-silico problems 

Design of SoC interconnects, especially ones which extend via high speed SERDES and external networks over 

multiple such devices is a complex task. System behaviors can be difficult to reason about reliably a-priori, and 

dangers such as deadlocks, livelocks, head of line blocking, buffer over-runs, undesirable under-utilization of 

resources and unfair arbitration are always lurking in wait for the unwary system designer. 
 

Prior to tape-out of the Mk1 IPU, our model enabled us to detect and resolve a number of head-of-line blocking 

defects in that architecture during early development. Later, a multi-IPU (Mk2) rack-level system model, 

combined with some of the visualization features described above, enabled us to quickly replicate deadlock 

situations that developed on real hardware running distributed machine learning applications over multiple IPUs. 

We were then able to devise a work around to re-configure the interconnect routing to avoid the cyclic 

dependencies causing the deadlock and to quickly resolve customer visible issues. 

 

More recently, in our work on future IPU architecture we have been able to find and address instances of unfair 

arbitration that lead to under-utilization of IO and memory resources. We have also been able to use our framework 

to create a mock-up of the scheduler contained within third party DDR memory controller IP so as to be able to 

optimize system performance and determine optimal access patterns for external memory which are now being 

fed into development of our software tools that compile applications that run on the IPU tile processors. 

B. Application Performance Modelling 

Our models are used to predict the performance of critical communication patterns that arise in multi-IPU machine 

intelligence applications. Such patterns typically involve collective operations such as all-gather, broadcast, 

reduce-scatter etc. Collective operations can be optimally performed on a ring of N nodes, using neighbor only 

communication. The result is bandwidth optimal since all links between nodes in the ring are fully utilized and no 

data is sent over the same link twice. This is a canonical pattern in Machine Intelligence applications. 

  

These collective operations form the basis for two basic types of partitioning, Data Parallelism and Model 

Parallelism, which are encountered in machine learning applications and affect communication intensity and 

overlap. 

  

Data Parallelism involves having multiple replicas of a model, each trained on separate sets of training data 

(batches) in parallel. This requires that each model replica periodically averages its learned parameters with the 

other replicas which requires an all-reduce collective operation between all the replicas.  

  

Model Parallelism involves partitioning a neural network across multiple IPUs, each of which handles part of the 

computation. This requires collective communications between the IPUs involved. The two main types of Model 
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Parallelism are Pipeline Parallelism and Distributed Tensor Computation [6]. Pipeline Parallelism involves 

assigning a subset of the overall network layers that perform a set of computations on their inputs on one node, 

with the results (activations) being sequentially sent to the next nodes in the pipeline that have different subsets 

of the layers of the neural network. Distributed Tensor Computation improves efficiency by splitting large tensors 

such as the inputs to or the parameters within a layer of the model across multiple devices. While there are different 

ways to define the tensor splits, once again, collectives are needed to obtain the final outputs for each layer in 

Distributed Tensor Computations and to forward them to the next stage in the model pipeline. 

  

Typically, a large complex application will use a combination of the aforementioned forms of parallelism, which 

overlap with each other. Our multi-node topology is essentially a torus in 1, 2 or 3 dimensions (ring based 

collective operations also map optimally onto n-dimensional torus structures) and the operations that are described 

above for model and data parallel partitioning may use some or all the dimensions of such a torus at once which 

may often lead to sharing of resources.  Our flexible chassis and rack level models have a vital component of our 

ability to understand the application use cases, the right trade-offs to make in the wider system and software 

architecture and the best partitioning of large models over multiple IPUs. 

VI. CONCLUSION 

Thanks to the intuitive API presented by SimPy and the superior engineer productivity offered by python versus 

possible alternatives, it was possible for a single architect to model the Mk1 IPU very quickly, and then to replicate 

this basic model of a single chip and its host system to build a model of first a 16 IPU cluster, and then a 64-IPU 

cluster. Since then as the team has grown and we have worked on new IPU technology generations against a 

background of a very fast moving application space we have been able to extend our framework to cope with large 

scale systems and quickly do what-ifs that can ask questions about large scale multi-node systems and provide 

explanations for their behavior based on a high fidelity underlying model of a single chip. 

 

In our work we have found a number of shortcomings of the default SimPy implementation for system on chip 

modelling and have developed key extensions to the SimPy framework to alleviate these that we are making 

available publicly along with implementations for typical system on chip functions such as queues, arbiter and 

packet-switching. 

 

Finally we have given some real world examples of the efficacy of such models for architectural validation, 

performance modelling and in-silico debug of large scale systems. 
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