
© Accellera Systems Initiative

UVM-SystemC is currently under standardization within Accellera with a first preview
release expected in 2015. Although, the UVM standard is getting more and more
language-agnostic with implementations available in e, SystemVerilog, and now
SystemC, features for transaction-based stimulus and verification environment
modeling still strongly rely on the underlying language. For example, packing,
copying, and randomization operations are implemented differently in each of these
languages; certain features such as aspect-oriented extensions of classes and methods
are currently only available in e.

This work therefore presents an add-on library for UVM-SystemC to facilitate the
easier creation of a UVM verification environment, with the goal to reduce the
amount of code to be written and thereby making creation less error prone and
tedious.

INTRODUCTION

Adding aspect-oriented features to UVM-SystemC

Template types for variable registration and randomization
• Variables of an object need to be 

registered for printing, packing, 
copying e.g. by the use of field 
macros

• New template types 
“uvm_phys_var” and 
“uvm_var” allow to register the 
member variables used in the 
current “uvm” object.

• This allows it to randomize 
member variables using 
randomization engines

• By deriving from a specialized 
base class it is also possible to 
provide standard implementations 
for methods such as “do_print” 
which the user has to implement. 

Adding method calls based on aspects

• The class packet is 
extended for the case 
that the randomization 
selects for the enum
“data_elem” the 
value SHORT.

• Method “my_method” 
is changed in a way 
that the method 
“make_to_short” is 
executed before the 
original method

• One of the main features of using the 
e language is the aspect-oriented 
extension of classes. Aspects cover 
features or concerns that cut across 
the system or parts of it, i.e. they do 
not only effect only one class but 
multiple ones. 

• An aspect can be used to extend 
existing classes by either introducing 
new or overwriting existing 
attributes, methods, etc. 

• In order to span up additional aspects 
later on in the implementation, an 
extendable type of enumerations is 
needed.

1 Fraunhofer IIS, Design Automation Division, Dresden, Germany 
2Bosch Sensortec GmbH, Dresden, Germany , 3COSEDA Technologies GmbH , Dresden, Germany

Thilo Vörtler1, Thomas Klotz2, Karsten Einwich3, Felix Assmann2

Simplifying UVM in SystemC

Example Conclusions

This paper described a C++ library on top of UVM-SystemC In particular, the examples 
showed the following features:
• Use of template based member variables to simplify randomization
• Extendable enumeration type (as a base for aspects later on)
• Aspect-specific extension of methods 
• Aspect-specific adaptions of constraints

This paper describes an ongoing work, the library implementation is subject to change. 
The proposed library is planned to be donated to the Accellera SystemC Verification 
Working Group and to be made available as open source.

class packet: public uvm::uvm_s_sequence_item {

public:

uvm_enum packet_kind;

uvm_phys_var<sc_dt::sc_uint<2> > address;

uvm_phys_var<sc_dt::sc_uint<6> > length;

uvm_enmum packet_length;

uvm_phys_var<uvm_vector> payload;

uvm_phys_var<sc_dt::sc_uint<8> > parity;

uvm_var<sc_dt::sc_uint<8> > packet_delay;

packet(const std::string& name = "packet");

};

namespace uvm_aspect_enums {

static const uvm_enum_elem SHORT(„SHORT“);

static const uvm_enum_elem LONG(„LONG“);

class uvm_enum {

bool extend (std::initializer_list<uvm_enum_elem>
);

std::vector<uvm_enum_elem> elements;

…

};

…

}

static const uvm_aspect_enums::uvm_enum data_elem;

UVM_ASPECT_CLASS(packet) {

UVM_ASPECT_CTOR(packet)

{

data_elem.extend({SHORT, LONG});

}

};

UVM_ASPECT_CLASS(packet)

{

uvm_method<bool(int&,std::string)> my_method;

bool check(int& val, std::string kind);

UVM_ASPECT_CTOR(packet) {

data_elem.extend({SHORT, LONG});

//point to actual method

my_method.is(check);

}

};

// add method extension for SHORT packet only

UVM_EXTEND_CLASS(packet, SHORT){

bool make_to_short(int& val, std::string kind);

UVM_EXTEND_CTOR(packet,SHORT) : uvm_aspect(data_elem==SHORT)

{

// for SHORT packet execute the make_to_short method first

my_method.is_first(make_to_short);

}

};

int sc_main(int argn,char* argc[])

{

//instantiates packet with all extensions

packet* my_packet=UVM_INSTANTIATE(packet);

my_packet->randomize(); //randomizes variables coresponding to the constraints

//calls methods corresponding to the randomized data_elem (the aspect)

my_packet->my_method(23,"ADR");

}

• A packet is instantiated, which gets randomized afterwards by calling the function 
“randomize()”

• When calling the member function “my_method”, depending on the aspect it is 
determined in which order the method calls are executed.


	Foliennummer 1

