
SimpleLink™ MCU Platform: IP-XACT to UVM Register Model -
 Standardizing IP and SoC Register Verification

“UVM is a perfect start”

Jasminka Pasagic (j-pasagic@ti.com)

Frank Donner (f-donner@ti.com)

© Accellera Systems Initiative 1

Contents

• Abbreviations and Common Terms

• Platform Project and Challenges

• Why changing from manual to automation?

• Flow

• Register Requirements

• UVM Register Model Updates

• Effort Savings - UVM_REG Time Reduction Comparison

• Conclusions

• Further Work

© Accellera Systems Initiative 2

Abbreviations and Common Terms

SoC System on Chip

IP Intellectual Property

MRV Memory Register Verification

UVM Universal Verification Methodology

GIT means unpleasant person in British English slang

DesignSync Data Management tool

© Accellera Systems Initiative 3

https://en.wikipedia.org/wiki/British_English

Platform Project and Challenges

© Accellera Systems Initiative 4

Multi-site project

High amount of reuse and standardization

High amount of automation

Planning and execution to be shared

Automotive

Ensure specification
and verification data

consistency and
accuracy

Reduce time spent in
developing register

verification

Use industry standards:

IP-XACT register description

UVM register generators

UVM RAL
(indirect registers, lock, shadow, alias,
alternate register, interrupts, counters,
FIFOs, wider registers, atomic registers,

register arrays, etc.)

Why changing from manual to automation?

© Accellera Systems Initiative 5

Flow

© Accellera Systems Initiative 6

Register Requirements

© Accellera Systems Initiative 7

UVM Access policies

TI access field polices

Optional Bit Coverage

Optional Register Coverage

Optional Address Coverage

Naming Options

Addressing Options: base +
offset vs absolute
addressing

UVM process of
describing custom
access policies

Develop/Implement
ti_reg_field/
ti_uvm_reg_cb

UVM factory: function
set_type_override_type,
limitations,
workarounds

Location

TI access field polices and
naming convention

Location of PSD – PDF
translation to XML
document for all

Base addresses definition
and location

Register IP/SoC

Requirements

TI Access Field

Polices

Standardizing

Peripheral

Rules

IPXACT

Rules

Optional UVM
generator/preferences

Addressing Options

Naming conventions

Location

Access polices of the registers

Custom access field polices

UVM Register Model Updates

© Accellera Systems Initiative 8

UVM

Register

 Memory

Model

Verification findings: incidents or
bugs

Exceptions on custom register
access polices

Script/templates updates

Long/Short Term Consequences

Simulation time

UVM_REG updates

Outcomes/Goals

Data Management (GIT/DS)

Specification Updates

Software findings

Custom register access polices
description

Tool limitations

Tool versions

XML input

Integration and Aggregation of
Data

Base address offsets

UVM Generator Preferences

GIT Repository

IPXACT UVM generator UVM Register Model

Effort Savings

© Accellera Systems Initiative 9

UVM_REG manual
written

Manual Generation Generation Generation Generation+Manual

Always Effort 1st time Effort 2nd time 3rd time 2nd time

Input preparation

Generation scripts

Output update

Input preparation

Generation scripts

Conclusions

 labor intensive task

 introduces range of potential
problems and flaws

difficult to maintain specification
change cycles

difficult to add central changes

error prone

© Accellera Systems Initiative 10

 ensures specification consistency
 standardizing inputs and outputs

allows data reproducibility,
reusability and allows cross
industry convergence (eg. if you
stay within IEEE 1685 standard but
internal reuse of custom register is
supported)

 faster cycle time to simulateable
register framework

 incremental development

Manually developed

UVM register Model

Automated/Semi-Automated

UVM REGISTER Model

Further Work
 SoC register model testing

Update loops: tool versions

Optimization of simulation time

Checkers improvement for generator and TI register access polices

Capture speed factor from manually to automated or semi-automated
register model generation for our project

UVM factory type override limitations and workarounds

Auto generation of register verification plan

© Accellera Systems Initiative 11

Thank you!!

Questions ??

© Accellera Systems Initiative 12

BACKUP

© Accellera Systems Initiative 13

What is UVM_REG? What is IP-XACT?
What is UVM_REG?
UVM_REG is an abstract SystemVerilog model for registers and memories from the DUT. It is built
using the UVM methodology.

Ramp-up on UVM_REG model by reading :
- Verification Academy’s Registers : https://verificationacademy.com/cookbook/registers
- Advanced features of the UVM Register model:

http://www.verilab.com/files/litterick_register_final_1.pdf

What is IP-XACT?
IEEE 1685, “Standard for IP-XACT, Standard Structure for Packaging, Integrating and Re-Using IP
Within Tool-Flows,” describes an XML Schema for meta-data documenting Intellectual Property
(IP) used in the development, implementation and verification of electronic systems and an
Application Programming Interface (API) to provide tool access to the meta-data.

© Accellera Systems Initiative 14

https://verificationacademy.com/cookbook/registers
https://verificationacademy.com/cookbook/registers
https://verificationacademy.com/cookbook/registers
http://www.verilab.com/files/litterick_register_final_1.pdf
http://www.verilab.com/files/litterick_register_final_1.pdf
http://www.verilab.com/files/litterick_register_final_1.pdf

What to consider for selecting generator?

1. Scalability - designs may include large numbers of registers and scalability

is an important consideration.

2. Support for a standard input format

3. Ability to replace the generator as needed

4. Debug-ability and self-checking of the generated code

© Accellera Systems Initiative 15

Examples of industry UVM register model
generators?

1. Cadence iregGen is a native IPXACT to UVM generator (supports registers

as well as memories, wide range of registers such as immediate, fifo,

shared and more, and automatically creates functional coverage)

2. Magillem UVM Generator

3. Synopsis genSys

4. AgniSys

5. Etc.

© Accellera Systems Initiative 16

UVM Custom Field Access Policy Example

© Accellera Systems Initiative 17

class zeroToSet_cbs extends uvm_reg_cbs;
 `uvm_object_utils(zeroToSet_cbs)

 function new(string name = "zeroToSet_cbs");
 super.new(name);
 endfunction

 virtual function void post_predict(input uvm_reg_field fld,
 input uvm_reg_data_t previous,
 inout uvm_reg_data_t value,
 input uvm_predict_e kind,
 input uvm_path_e path,
 input uvm_reg_map map);
 if (kind == UVM_PREDICT_WRITE && fld.get_access() == "RWOS" && value == 0)
 value = 1;
 endfunction
endclass

class zeroToSet_reg_field extends uvm_reg_field;

 `uvm_object_utils(uvm_reg_field_ext)

 local static bit m_rwos = define_access("RWOS");

 //Cunstructor
 function new(string name = "zeroToSet_reg_field");
 super.new(name);
 endfunction
endclass

class <IP/SoC>_reg extends uvm_reg;

 `uvm_object_utils(zts)

 rand uvm_reg_field field1;
 rand zeroToSet_reg_field field2;

 //Cunstructor
 function new(string name = "<IP/SoC>_reg");
 super.new(name);
 endfunction

 virtual function void build();
 field1 = uvm_reg_field::type_id::create("field1");
 field2 = zeroToSet_reg_field::type_id::create("field2");

 field1.configure(this, 16, 16, "RW", 0, 0, 1, 1, 0);
 field2.configure(this, 16, 0, "RWOS", 0, 0, 1, 1, 0);

 // register callback
 zeroToSet_cb field2_cbs = new("rwos_cbs");
 uvm_reg_field_cb::add(field2, rwos_cbs);
 ...
 endfunction

endclass

