

1

SimpleLink™ MCU Platform:

IP-XACT to UVM Register Model -

 Standardizing IP and SoC Register Verification
“UVM is a perfect start”

Jasminka Pasagic, Verification Engineer, Texas Instruments, Freising, Germany (j-pasagic@ti.com)

Frank Donner, Verification Engineer, Texas Instrumetns, Freising, Germany (f-donner@ti.com)

Keywords - UVM, Register-Model, Magillem,UVM Preferences, UVM_REG

Abstract

The register and memory model verification is stirring away from a manual development to an auto-generated

process where IP-XACT specification is converted to UVM Register Model. Emerging design and verification

technologies over the past period made it possible to standardize the process.

The data collected by Wilson Research Group Study from North American design engineers is revealing

continuing trend going back at least ten years a specifications errors rate of ~45% due to incorrect/incomplete

specifications. Moreover, 32% of those designs respins result in specifications changes.

In general, UVM based register model covers all verification elements like covergroups, coverpoints, coverbins

and illegal bins where user can specify arbitrary hierarchical paths for blocks, register files, registers, register array

and memories. IP-XACT is an XML format that defines and describes electronic components and their designs in

this case register and memory map of design.

This paper explains current verification practices and issues of verifying register models. It gives details how to

convert IP-XACT to UVM Register Model using Magillem UVM generator. It illustrates the verification productivity

gains by systematizing the process of IP-XACT to UVM Register Model and risk reduction in introducing

logic/functional flaws. It articulates the steps and issues that must be dealt with to have plug-and-play verification

component in this case UVM Register Model.

It concludes to remain competitive, organizations need to link Register Verification Methodology to device

development strategy, be sensitive to internal and external changes. The platforms with mix abstraction levels are

necessary to keep the verification environment stimulus flexible, configurable and reproducible. This is collaborative

work between different domain developers.

I. PROBLEM STATEMENT

Throughout the development cycle the IP-XACT specification change regularly. Respectively IP-XACT change is

channeled to verification of register and memory model. Manual process of porting specifications changes to register model

verification is time consuming and introduces logic/functional flaws. Additionally, every so often register access type is

company specific and as such needs custom set of rules and regulations on how to handle them.

The platforms with mix abstraction levels are necessary to keep the verification environment stimulus flexible and

configurable across multi-sites. The verification of register and memory model needs to ensure specification consistency,

well-timed and free of logic/functional flaws development cycle.

II. VERIFICATION ENVIRONMENT

The process of solving the problem was done in two phases. The phase I of solution process involved accelerated

integration and verification of standard interfaces (e.g.: APB/AHB) for register access. During this phase advanced UVM

register model including predictor, adapter, map and basic sequences were developed. The phase II was looking into solution

mailto:j-pasagic@ti.com
mailto:f-donner@ti.com

2

on generating, standardizing the UVM preferences and developing scripts to pull-push IP-XACT to UVM Register Model

for IP and SoC view.

A. Scope of Work

The work of this paper was embedded into a world-wide platform project with a high amount of reuse and

standardization. All IP and SoC register layouts were centrally defined within IP-XACT and reused by different domains and

sites. Examples for domain usage are IP verification, SoC verification, validation, design and design documentation as well

as software development. The project was a multi-site project involving more than 5 countries and 4 time zones.

The scope of the work was to make use of the centralized IP-XACT data inputs and generate a common UVM register

model for IP and SoC usage. The standardization of input data had been ensured by a common guideline document. Based

on the common guidelines the description of the complete register layout had been entered into a Magillem database using

the Magillem tool chain by the systems team. Majority of the data followed the IEEE-1685 standard. But there have been

company specific data as well.

Foremost motivation was to establish a flow to push-pull IP-XACT to UVM register model and provide register model

components to interact with rest of verification environment. The work included finding generator that converts the XML

input data of design automatically to equivalent register model in SystemVerilog code and enable potential cycles update.

The model contained both the standard IEEE-1685 data and vendor-specific data and provided automatic checks as well as

coverage information.

 A TI DMA device with APB standard bus interface and IP-XACT register description was selected to prototype the

solution. The template testbench and test suite with advanced UVM register model including predictor, adapter, map and

basic sequences where developed.

B. Flow of Standardazing IP-XACT to UVM Register Model

1) Standardizing Verification Components of Register Model

Collectively, new project verification development cycle challenge is simulatable TB framework in shortest amount of

time that ensures flexibility to incremental development and work toward functional milestones. The work lead to

standardizing our organizational UVM Register Model development, the look and feel of framework including the register

model, sequences and sequencer, file and class naming, including the place holders for source files.

A TI DMA device with APB standard bus interface and IP-XACT register description was selected to prototype the

solution. The template testbench and test suite of register model including predictor, adapter, map and basic sequences where

developed. This work enabled us to set the guidelines and framework for developing the UVM register model across IPs and

SoC. Further it enabled us to develop template for predictor, adapter, map and basic sequences of UVM register model. The

register model components templates are inputs to custom developed script that post-processed it for IP or SoC naming and

base address setting. Furthermore flow looked into the ways on how to handle custom field register polices or user-define

register access types and their verification.

a) UVM Register Modeling

In a verification context, a register model is a set of classes that model the memory mapped behavior of registers and

memories in the DUT in order to enable stimulus generation and functional checking (and optionally some aspects of

functional coverage). The UVM provides a set of base classes that can be extended to implement comprehensive register

modeling capabilities.

At first the simple versions of IP-XACT register model was described using Magillem tool. Its ‘generator’ was used to

automatically generate the equivalent register model in SystemVerilog code. Further the register layer components to interact

with rest of verification environment were developed as shown in Figure 1.

Figure 1: Verification Components of Register Model

uvm_reg_adapter converts between register model read and write methods and the

interface-specific transactions

uvm_reg_predictor updates the register model based on observed transactions

published by a monitor

uvm_reg_block register model that instantiates and builds the register model

uvm_sequence #(uvm_sequence_item) base sequence and common sequences

uvm_sequencer

3

After the structure is built, register access API methods like write() and read() called from sequence sent through

sequencer, then driver are used to inject stimuli to the DUT. The monitor picks up activity and sends it back to predictor. The

predictor sends data to the adapter where the bus data is converted to register model format for register model value to be

updated through a predict() method call.

Through template testbench we standardized register model components look, basic content and framework for extending

the classes and building IP/SoC exceptions. Moreover we decided on register sequence set that included the sequence for read

reset values in random order, write value 0x5A, write value 0xA5, write all 1’s, write all 0’s and read. Additionally we

standardize the name of class’s, instance and file names as elaborated in below table and figures.

The benefit of this work was prepared register model components, available integration steps enabling head start for test

cases development. Moreover all components are reproducible per IP or SoC and reusable for further integrations based on

the specific needs. This work resulted in templates development for register model components. The templates were post-

processed per IP or SoC IP-XACT input and registers model components per IP or SoC generated as summarized in Table 1.

 AGENT

S D

 M

V
IF

V
IF

APB uVC

ADAPTER

PREDICTOR

ENV

VS

SEQ

IN
T

E
R

F
A

C
E

DUT

REG MODEL

MEM

 R1

 R2

….

 Rn MAP

Class Type Class Name Class File name

uvm_reg_block <IP/SoC>_rm <IP/SoC>_rm.sv

uvm_reg_block <IP/SoC>_rm_model <IP/SoC>_rm_model.sv

uvm_sequence <name>_seq <IP/SoC>_rm_seq_lib.sv

uvm_sequencer < IP/SoC>_sequencer <IP/SoC>_rm_sequencer.sv

Figure 2: Block Diagram of Template Register Model [1] Table 1: Summary of Register Model Components Standardization

 class <IP/SoC>_env extends uvm_env;
 ……..
 // declare instances of register model
 <IP/SoC>_rm_model rm;
 <IP/SoC>_rm_adapter rm_adapter;
 uvm_reg_predictor #(<BUS_TYPE>) rm_predictor;

 virtual function void build();
 ………
 // create instances of Register Model
 rm = <IP/SoC>_rm_model::type_id::create("rm",this);
 rm.build();
 rm.lock_model();
 uvm_config_db# (<IP/SoC>_rm_model)::set(null, "*", "rm", rm);
 rm.default_map.set_check_on_read(1);
 rm_adapter = <IP/SoC>_rm_adapter ::type_id::create("rm_adapter", this);
 rm_predictor = uvm_reg_predictor #(cba4_vbus_xfer #(32))::type_id::create("rm_predictor", this);
 ………
 endfunction
 ………
 function void connect_phase(uvm_phase phase);
 ………
 // connect the register instances
 // <USER IP VIRTUAL SEQUENCER INSTANCE or LOCAL REGISTER SEQUENCER>
 // <USER PATH TO BUS MASTER AGENT INSTANCE>
 // <USER PATH TO BUS AGENT MONITOR PORT>
 ip_vir_seqr0.rm_seqr.rm = rm;
 rm_predictor.adapter = rm_adapter;
 rm_predictor.map = rm.default_map;
 rm.default_map.set_sequencer(env.mst0_agent.sequencer, rm_adapter);
 env.mst0_agent.monitor.beat_ap.connect (rm_predictor.bus_in);
 ………
 endfunction
endclass : <IP/SoC>_rm_model

...
class rm_por_seq extends reg_base_seq;
 `uvm_object_utils(rm_por_seq)
...
 task body;
 uvm_reg regs[$];
 uvm_reg_data_t ref_data;

 super.body();
 rm.get_registers(regs);
 regs.shuffle();

 foreach(regs[i]) begin
 ref_data = regs[i].get_reset();
 regs[i].read(status, data, .parent(this));
 end
 endtask
endclass
...
Figure 3: Register Model Sequence Library Basics

class <IP/SoC>_rm_sequencer extends uvm_sequencer;
 `uvm_component_utils(<IP/SoC>_rm_sequencer)

 <IP/SoC>_rm_model rm;

 // new - constructor
 function new (string name, uvm_component parent);
 super.new(name, parent);
 endfunction : new
endclass

Figure 4: Register Model Verification Instantiation Basics Figure 5: Register Model Sequencer Basics

Additionally, we looked into the bus protocols for accessing registers used across the platform. This work resulted in

developing uvm_reg_adapter classes for each bus protocol to support function of converting register model transactions to

the lower level bus transactions and vice versa. This enabled easy bus connectivity to register model. The verification work

focus changed to creating predictor of bus type in build_phase() and in connect_phase() to enable bus sequencer for register

map sequencer and predictor to bus monitor port in verification environment.

4

The Figure 6 demonstrates schematics of two kinds of bus protocols and their associated register models. In rear cases

the developed adapters had to be IP specific and in these cases local adapters respecting the naming conventions were

developed.

 AGENT

S D

 M

V
IF

V
IF

APB uVC

ADAPTER

PREDICTOR

ENV

VS

DUT

REG MODEL

MEM

 R1

 R2

….

 Rn MAP

 AGENT

S D

 M

V
IF

V
IF

BUS uVC

ADAPTER

PREDICTOR

VS

SEQ

INTERFACE

REG MODEL

MEM

 R1

 R2

….

 Rn MAP

INTERFACE

Figure 6: Block Diagram of Register Model Environment with Two Kinds of Bus Protocols and Register Models

Further, it was often the case where a register model can be accessed by one or more masters that have different

addresses. Solution to this case was handled in register block in build_phase() by assigning the register address offsets

according to the bus interface as shown in Figure 7 and Figure 8 .

The benefit of the approach comes from the high level of abstraction provided. As demonstrated the bus protocols for

accessing registers can change but register model components for verification of the registers doesn’t have to.

 AGENT

S D

 M

V
IF

V
IF

BUS uVC – M ID2

ADAPTER

PREDICTOR

ENV

VS SEQ

IN
T

E
R

F
A

C
E

 –
 M

a
st

e
r

ID
2

DUT

REG MODEL

MEM

 R1

 R2

….

 Rn MAP

 AGENT

S D

 M

V
IF

V
IF

BUS uVC – M ID1

IN
T

E
R

F
A

C
E

 –
 M

a
st

e
r

ID
 1

 virtual function void build();
 super.build();
 uart_reg = uart_reg_block::type_id::create("uart_reg",, get_full_name());
 uart_reg.configure(this, "");
 uart_reg.build();
 uart_reg.lock_model();

 bus_M_ID1_map.add_submap(uart_reg.default_map, 32’h4000000);
 bus_M_ID1_map.set_check_on_read(1);

 bus_M_ID2_map.add_submap(uart_reg.cpu_map, 32’h30000000);
 bus_M_ID2_map.set_check_on_read(1);
 endfunction : build

Figure 7: Block Diagram of Register Model with Two Masters Figure 8: Template Code of reg_block for build_phase() for

Register Model with Two Masters

b) UVM Custom Field Access Policies

After developing the register model components and standardizing naming conventions and basic content we had to look

into how to handle the custom field access polices in IP-XACT description and also UVM domain. In UVM domain

implementing custom policies can be done by defining the specific behavior for each register through extensions and

customization of the register itself and by defining a new access policy.

To illustrate the solution explored, we use an example of register which holds two fields. One field is RW, and the other

has custom access policy:

field1 standard register access type RW

field2 field sets itself if a write access of zero occurs

The solution includes class development of uvm_reg_field class and uvm_reg_cbs class associated to the custom access

policy as shown in below figures. The field2 was described as type zeroToSet_reg_field and having the RW0S access policy.

We added a callback to this field to actually implement the access policy. This is the only way UVM RAL allows us to

define custom field access policies. We've had to split our code into three sections: the callback class, the register field class

and the register class. This work opened question how to describe the custom field access policy in IP-XACT and it’s post-

5

processing by UVM Generator to output SystemVerilog code. Furthermore the SystemVerilog output then had to be post-

processed to describe custom class register field name and enable register callback.

class zeroToSet_cbs extends uvm_reg_cbs;
 `uvm_object_utils(zeroToSet_cbs)

 function new(string name = "zeroToSet_cbs");
 super.new(name);
 endfunction

 virtual function void post_predict(input uvm_reg_field fld,
 input uvm_reg_data_t previous,
 inout uvm_reg_data_t value,
 input uvm_predict_e kind,
 input uvm_path_e path,
 input uvm_reg_map map);
 if (kind == UVM_PREDICT_WRITE && fld.get_access() == "RWOS" && value == 0)
 value = 1;
 endfunction
endclass

Figure 9: Custom Field Access Policy - Call Backs Example

class <IP/SoC>_reg extends uvm_reg;

 `uvm_object_utils(zts)

 rand uvm_reg_field field1;
 rand zeroToSet_reg_field field2;

 //Cunstructor
 function new(string name = "<IP/SoC>_reg");
 super.new(name);
 endfunction

 virtual function void build();
 field1 = uvm_reg_field::type_id::create("field1");
 field2 = zeroToSet_reg_field::type_id::create("field2");

 field1.configure(this, 16, 16, "RW", 0, 0, 1, 1, 0);
 field2.configure(this, 16, 0, "RWOS", 0, 0, 1, 1, 0);

 // register callback
 zeroToSet_cb field2_cbs = new("rwos_cbs");
 uvm_reg_field_cb::add(field2, rwos_cbs);
 ...
 endfunction

endclass

class zeroToSet_reg_field extends uvm_reg_field;

 `uvm_object_utils(uvm_reg_field_ext)

 local static bit m_rwos = define_access("RWOS");

 //Cunstructor
 function new(string name = "zeroToSet_reg_field");
 super.new(name);
 endfunction
endclass

Figure 10: Custom Field Access Policy - UVM Register Field defining RWOS

policy Example

Figure 11: UVM_REG Memory Model - Example of

Register Description with Custom Field Access Policy

2) Standardizing IP-XACT Description

The systems team of TI uses Magillem tool to describe IP-XACT register models. The work involved consolidating the

PSD requirements and IP-XACT custom field access polices between verification and system team.

Platform included numerous IP-XACT descriptions. This indicates the scale of consolidations and work put behind to

achieve reproducible, reusable and automated register modelling.

a) Register Requirements for IP’s

To achieve a high degree of standardization TI put requirements in place that each IP had to follow to achieve the goal of

automation and providing a common set of definitions and look and feel on the register layout. Therefore common naming

rules, instance names, fields, register and register usage had been predefined and provide for implementation.

Standardization of functional register classes was provided to further streamline the usage. Examples are power, debug,

reset, interrupt and clock control. Having all of those standards in place supports the integration of standard set of

verification coverage when generating the UVM_REG classes. The reiteration of rules on IP’s allowed the definitions of rule

parameters that allow automated checked of them on reserved area, verification of reset values, and verification of CRC

calculation or retention. Overall TI developed 22 parameter rules for this automated checking. Adding them into the

UVM_REG implementation by a generator supports common checking methods, standard update and enhancements of

checks in a centralized manner and increased the quality of the checker over time.

Central Repository

IP UVM_REG IP UVM_REG

SoC UVM_REG

IP UVM_REGIP UVM_REG

Reset
value
check

Ret value
check

Reserved
check

Security
check

Figure 12: Overview of checking methods

6

b) Consolidating IP-XACT Custom Field Access Policies

The custom register access polices required implementation of database classes for uvm_reg_field and uvm_reg_cbs

detailing the specifics of each custom register access policy. The script was implemented to post-process output of

SystemVerilog code to replace the register field type of custom register access and all associated instances.

c) MRV Generator

As mentioned earlier platform involves multiple IPs and SoC and as such hundreds if not thousands of registers and tens

of thousands of register fields. Manually trying to write SystemVerilog code to represent those registers and register fields

would be a dreadful task. For this reason we looked into SystemVerilog generators whose job is to take the register

specifications of a design and automatically ‘generate’ the equivalent register model in SystemVerilog code. The system

team used Magillem tool to describe register specifications and for this reason we looked into Magillem tool generator -

UVM Register Model SystemVerilog generator. This generator was used to auto-generate IP-XACT register description to

UVM register model. The generator preferences were provided and were project specific. The UVM generation preferences

were identified and captured in template file. This template was used to create TCL script for its execution.

3) Standardizing the Placeholder for IP-XACT and UVM Register Model(s) Sources

a) Repository for IP-XACT Files

The IP-XACT repository is Bitbucket. It is organized per projects and each IP or SoC is a single project and a working

area for systems to deliver the IP-XACT description. The file naming convention was established and IP-XACT TI internal

standard requirements had been followed. To make use of them from bitbucket into our design environment we developed a

solution to integrate GIT repositories into DesignSync area and have direct access to a single source repository from GIT.

Figure 13: IP-XACT Repository Overview

The versioning of IP-XACT input data is controlled by reusing the configuration management system (DesignSync)

versioning mechanism and never risk outdated input data. Whenever an update happens on systems side also a release need

to go with it and these releases need to be selected by the uvm_reg generator. After generation also the UVM_REG classes

for the whole SoC get released and tagged to continue development without distracting ongoing verification work.

b) Repository for UVM Register Model Files

The DesignSync data management was used to store the various components of register modelling including the scripts,

IP-XACT, RAL source files and SystemVerilog classes for custom register access polices. The module imported bitbucket

ports for all relevant IP and SoCs. This enabled released versions of IP-XACT from BitBucket each time the central

repository is updated and ensured the data consistency from systems to verification.

Push-Pull Scripts & Templates PLACEHOLDERPush-Pull Scripts & Templates PLACEHOLDER

UVM Register Models PLACEHOLDERUVM Register Models PLACEHOLDER

IPXACT PLACEHOLDERIPXACT PLACEHOLDER

IP1.xmlmetadata

vipmmr

ip1name_rm.sv
Ip1name_rm_model.sv
ip1name_rm_seq_lib.sv
ip1name_rm_sequencer.sv
Ip1name_rm_TB_integration_steps.txt

scripts

sv ve

gobuild_rm

IPNname_PERI1.xml
IPNname_PERI2.xml

…
IPNname_PERIn.xml

ipNname_rm.sv
IpNname_rm_model.sv
ipNname_rm_seq_lib.sv
ipNname_rm_sequencer.sv
IpNname_rm_TB_integration_steps.txt

SoCNname_rm.sv
SoCNname_rm_model.sv
SoCNname_rm_seq_lib.sv
SoCNname_rm_sequencer.sv
SoCNname_rm_TB_integration_steps.txt

mmr ip1name

ipNname

SoCNname SoCNname.xml

companySpecific_P1_cbfs.svuvc_lib cfap_lib sv

companySpecific_P1_reg_field.sv

companySpecific_N_cbfs.sv

companySpecific_N_reg_field.sv

CUSTOM FIELD ACCESS POLICIES PLACEHOLDERCUSTOM FIELD ACCESS POLICIES PLACEHOLDER

set_UVMGenPref.txt

genProject.py

gobuild_cfap

template_rm_integration_steps.txt

template_rm_model.txt

template_rm_seq_lib.txt

template_rm_sequencer.txt

template_rm_companyBus_rm_adapter.sv

template_rm_apb_rm_adapter.sv

template_rm_ahb_rm_adapter.sv

Figure 14: File Organization of IP-XACT to UVM_REG Register Model

MMR

IP
MMR (GIT)

Design Data

(DesignSync)

DS controlled MMR UVM_REG

7

4) Custom Developed Scripts to Pull-Push IP-XACT to UVM Register Model

The flow of IP-XACT to UVM Register model was enabled by developing several scripts and enabling several modes of

auto-generation of UVM Register Model components as show in Table 2. Master script is “gobuild_rm” and has role of

selecting the IP-XACT file, generating the TCL file with UVM generator preference settings, post-processing template files

and producing IP or SoC SV files ready for TB further use or integration and post-processing of generated SystemVerilog
code for custom register access polices.

Script Type Script Name Description

Text set_UVMGenPref.txt Consolidated UVM generator

preferences settings

Python genProject.py Create Magillem project and

import XML file(s)

Perl gobuild_cfap Post-processing of generated

SV register map to ensure

custom field access policies

Perl gobuild_rm Main script calling all other

script to achieve pull-push IP-

XACT to UVM Register Model

==
WELCOME TO GOBUILD_RM: this script read's given XML file and produces SV register map.
==
==

NOTE: make sure you do not have active Magillem running in your workspace when executing this script!!!
The pitfall of having it active is that magillem_cl.sh commands in script will not be executed.

==
...Default defined UVM generator preferences used: <SimpleLink>/vipmmr/scripts/Set_UVMGenPref.txt
==
 USER COMMANDS

 NAME
 gobuild_rm - creates UVM_REG registar and memory map files
 SYNOPSIS
 gobuild_rm [OPTION] .. [FILE]...
 DESCRIPTION
 -ipxactfile - give IPXACT file name <.xml>
 -uvmpref - give preference file name and path </path/my_pref.txt>
 -all - SV register map will be created for all the IPXACT files in ~/vipmmr/metadata
subfolder
 -help - this menu
 EXAMPLE
 gobuild_rm -ipxactfile <my.xml>
 gobuild_rm -ipxactfile <my.xml> -uvmpref </path/my_pref.txt>
 gobuild_rm -all
 gobuild_rm -help

Table 3: Custom Developed Scripts to Pull-Push IP-XACT to UVM
Register Model

Figure 15: gobuild_rm Developed Script to Pull-Push IP-XACT
to UVM Register Model

III. APPLICATION

The technical contribution outlines the current complexity and problems of register model verification in multi-site

project settings. It calls out for best practices and formalization of verification methodology to ease the use of data in

automatic and straightforward way to ease the debug, optimize and enable multi-team collaboration. It illustrates process’s

involved in UVM register model that should be and can be standardized to achieve automation and gain time on verification

implementation.

IV. RESULTS

The main result of solution described in this paper is achieved by consolidating PSD IP-XACT requirements, UVM

generation preferences, templates of register model components and defining the source placeholder. Definition of source

placeholder included IP-XACT, UVM register model and its components, SystemVerilog classes for custom access polices

and custom developed scripts to enable pull-push IP-XACT to UVM Register Model for an IP and SoC view.

This work has enabled IP-XACT to UVM register model for any IP or SoC to be a work of script that executes in

seconds and is ready to be integrated to TB. The TB integration steps are semi-manual verification work of few minutes

before first successful simulatable test case. The speed factor from manual development to auto-generated development of

register model is outstanding.

Example, assume IP has ten registers they are mix of standard and custom register access policies. The verification

engineer work involved to arrive to first successful injection of register stimuli includes: writing UVM register description

for 10 registers, implementing register model components, integrating the register model to interact with rest of verification

environment, writing sequences and test cases, simulating and debugging. After the consolidation and automation of the

flow the verification engineer work focus changed to sequences and test cases writing, adding advanced register checkers,

simulating and debugging. The flow supports address aliasing using different addresses for the same physical register

locations.

In exceptional cases incremental development or extension of existing UVM register model to address rare cases of

register behavior still had to be done manually. The flow enabled reuse from IP to SoC or between SoCs by reusing input

data of IP-XACT and flow to reproducible SystemVerilog output of register model and its components.

8

Feedback

Central Repository

IP-XACT IEEE-1685 +
Vendor-specifics

IP IP

SoC

IP UVM_REG

IP UVM_REG

SoC UVM_REG

IP UVM_REG

IP UVM_REG
UVM_REG
custom generator script

.xml UVM_REG

UVM_REG magillem generator

Testcases

Figure 16: Consolidated Process's to Enable Pull-Push IP-XACT to UVM Register Model

V. CONCLUSIONS AND RELEVEANCE OF THE PAPER

In the past the UVM register map was written manually and updated manually per spec updates. If the IP or SoC

contained custom register access polices the implemented classes were local to the IP verification development and as such

introduced range of potential problems and flaws if reused or not updated per latest IP-XACT description. The process of

standardizing the register verification eliminated many issues of manual and non-centralized development of UVM register

map as well as the coordination and updates of the multi-site project.

It is concluded, the verification register and memory model needs to be auto generated to ensure specification

consistency, well-timed and free of logic/functional flaws development cycle. To assure the auto generation of register

model ensure various development phases are coordinated. In this case the architects, systems and verification. They all

coordinated and implemented single source PSD requirements and ensured all involved development teams follow it. This

work resulted in time reduction of implementation of UVM register map, faster cycle time to simulatable register

framework, stable flexible and incremental development.

The significance of the paper is identification of reproducible verification elements of testbench in this case register map

and identification of its links to input or output development cycles to achieve their optimization and best case automation.

We reused standard industry practices to auto-generate register map from IP-XACT to SystemVerilog which was simple and

straight forward but applied custom UVM preferences. Further we used UVM best practices to build verification

SystemVerilog database of company specific register access policies description and centralized it for further reuse.

Moreover we centralized the placeholder of the sources files for PSD requirements, IP-XACT, UVM register model and its

components, SystemVerilog custom register access polices database, scripts to auto generate and achieved push-pull flow of

IP-XACT to UVM register map for IP or SoC. Furthermore the custom developed scripts ensure automation and address

UVM conformity. After standardizing mentioned components and flow from IP-XACT to UVM register map verification

work focus changed from ensuring and locating latest IP-XACT description and manual developments and updates to

sequence development, debugging, and optimizing the coverage and simulation performance. Further work remains as we

plan to add checks for custom register access polices and custom field generator.

VI. ACKNOWLEDGMENT

The author would like to thank entire Texas Instruments Freising MCU systems, design, verification and management

team for their support during the implementation of aforementioned solutions.

VII. REFERENCES

[1] M. Litterick and M. Harnisch, "Verilab," [Online]. Available:

http://www.verilab.com/files/litterick_register_final_1.pdf.

[2] M. G. V. M. Team, Cookbook - Online Methodology DOcumentation from Mentor Graphics

Verification Methodology Team, Menthor Graphics, 2012.

[3] H. Foster, "Wilson Research Group Functional Verification Study," 2012.

[4] K. A. Meade and S. Rosenberg, A Practical Guide to Adopting the Unversal Verification Methodology

(UVM), second edition ed., San Jose, CA, 2013.

[5] "Accellera," UVM Library, [Online]. Available: http://accellera.org/downloads/standards/uvm.

