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Abstract— Formal property verification (also known as model 
checking) is a powerful methodology that can be used to find 
corner-case bugs, improve verification efficiency and reduce the 
verification cycle. However, inconclusive formal analysis results 
or bounded proofs have been hindering adoption of formal 
technology in the industry. This paper describes a formal sign-off 
methodology in the presence of bounded proofs.  With an 
understanding of the design-under-test and a systematic 
analytical approach, we can qualify the bounded proof depths 
and use Abstraction Models to achieve the required proof bound 
for formal sign-off. 
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I.  INTRODUCTION 

Most verification sign-off in the industry are based on 
simulation.  Good metrics exist to track verification progress, 
such as percentage of checks written, bug rate (test-bench 
bugs and RTL bugs), coverage targets; and sign-off is defined 
as the meeting of these metric-driven goals.  However, 
simulation is often not enough to verify functional correctness 
for today’s complex designs.  Formal verification (model 
checking) can cover all state transitions, thus proving 
exhaustive functional correctness of designs with complex 
corner case scenarios often harder to cover with simulation.  

Formal technology can be used in different applications: 

• automatic formal checks (also called super-lint or 
formal lint) can detect dead code, pragma violations, 
constant nets/registers and state machine deadlocks 

• a recent category of Formal “Apps”, which target 
specific applications, such as clock domain crossing 
verification, pre- and post-clock gating equivalence 
checking, X-propagation verification, can solve 
specific verification needs 

• assertion-based-verification (ABV) can find bugs by 
verifying local assertions as well as prove compliance 
with standard interfaces 

• end-to-end formal verification can replace block-level 
simulation by building reference models and proving 
the complete functionality of the blocks 

Of all these applications, end-to-end formal results in the 
hardest proofs, but also offers the most benefits that make 
formal sign-off possible. 

Regardless of the types of formal applications, for each 
checker verified by the formal tool, the result is either 
conclusive (either an unbounded proof or a failure) or 

inconclusive (accompanied by a proof depth of N cycles from 
reset).  Traditionally, users have ignored the results when tools 
report “inconclusive”, especially when used in a bug-hunting 
mode. In fact, commercial tools reinforce the worthlessness of 
this result by reporting “inconclusive” or “explored”, instead 
of “bounded proof”. In reality, the proof depth N guarantees 
that the shortest failure will be longer than N.  If we can 
determine all interesting design behavior is observed within N 
cycles, the inconclusive bounded proof is equivalent to a full 
proof, no less useful than an unbounded proof. 

We describe a methodology to use such proofs in a 
tapeout-worthy sign-off process, by qualifying the bounded 
proof depths with an analysis. Section II describes the notion 
of “sign-off” used during design verification, and sign-off 
requirements for formal verification.  Section III describes the 
formal verification search process, and the use model. Section 
IV describes end-to-end checkers and the complexity 
challenge created by such checkers.  Section V describes our 
methodology used to compute the required proof bound for a 
sign-off.  Section VI discusses how to achieve formal sign-off 
using Abstraction Models with the understanding of the 
required proof bound. Sections VII and VIII demonstrates the 
effectiveness of the methodology to achieve formal sign-off 
using industry designs. Section IX offers concluding remarks. 

II.  VERIFICATION SIGN-OFF 

 Since the costs of making design changes rise 
exponentially as a design gets closer to tapeout, and beyond 
(Fig. 1), “sign-off” is used to denote a critical milestone when 
a particular department (e.g. timing, power, functional 
verification departments) commits to having reached a 
measurable level of completeness with respect to its respective 
metric(s).
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Fig. 1.  The cost of fixing a bug rises exponentially 



ASIC 

Manager

Design  

Manager

Verification  

Manager

Physical Design 

Manager

Design

Engineer #1

Design  

Engineer #M

Verification

Engineer #1

Verification

Engineer #N

Physical Design

Engineer #1

Physical Design

Engineer #P

Synthesis

Manager

Power

Engineer

Timing

Engineer
 

Fig. 2. Each department must sign off before tapeout 

 The origin of this word is from netlist sign-off at the point 
when an ASIC customer hands off the netlist to its ASIC 
vendor; at this time, the customer has met the timing and 
functional requirements in the netlist, and any change required 
by the customer thereafter is very expensive.  In this 
traditional usage, sign-off was used for the timing analysis and 
equivalence checking departments.  However, given the rising 
cost of changes as the design reaches certain milestones, (e.g. 
“final netlist”, tapeout, or production milestones), the term 
sign-off is now also used to get commitments from other 
departments (Fig. 2), such as the functional verification 
department, which commits that the RTL has been thoroughly 
tested, and that the cost of continued verification has reached a 
point of diminishing returns, compared to the cost of lost 
market opportunity incurred by delaying the tapeout. 

 The sign-off requirements for simulation-based functional 
verification usually include tracking various metrics like 
number of open bugs, number of functional tests written vs the 
planned list of tests, and percentage of code and functional 
coverage targets achieved.  To achieve similar sign-off 
commitments from the formal verification team, we need to 
quantify the utility of the “inconclusive” results from the 
formal tools, especially since most end-to-end formal proofs 
rarely give conclusive results.  This will be the focus of the 
paper. 

III.  FORMAL VERIFICATION USE MODEL 

 The inputs supplied to a formal verification tool are: 

• the design-under-test (DUT), 

• a set of constraints, 

• a set of checkers (or assertions), and 

• optionally, a set of manually written Abstraction 
Models (described further in Section VI) that reduce 
the complexity of the formal search.  

 In a given run-time, for each checker, the formal tool 
returns one of three possible answers: 

1. (unbounded) pass, or a full proof, indicating there 
is a guarantee that no counter-example is possible 
in the entire search space; 

2. fail, along with a counter-example trace the user 
can debug; or 

3. an inconclusive result, or a bounded pass, along 
with a proof depth N. 

The proof depths achieved by formal are often orders of 
magnitude smaller than depths reached by ordinary simulation 
tests.  An oft-asked-question that needs to be answered is: If I 
achieve a bounded proof of N cycles on a given design, how 
much of the design functionality have I verified?  In other 
words, for a given design, how many cycles do I need to cover 
with formal? 
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Fig. 3. Comparing state space searches 

 A formal tool performs an exhaustive state space search on 
the design, starting from the reset state.  In Fig. 3, we contrast 
the state space searched via a simulation test, versus state 
space searched by formal verification (up to a proof depth of 
3, in the figure).  Whereas each simulation test covers a single 
but deep sequence of states after reset, the formal search 
performs a breadth-first search from a reset state, or from an 
intermediate state, in case of hybrid formal.  Sometimes, 
usually for smaller DUTs or easy checkers, the tool can 
guarantee an unbounded proof.  On the other hand, often for 
larger designs or end-to-end proofs, we face an exponential 
complexity barrier (Fig. 4).  In such cases, for a given run-
time, the tool reports a bounded pass. 

 

Fig. 4. Proof depth vs. Run time 

IV.  COMPLEXITY OF END-TO-END PROOFS 

Both the complexity of running formal verification proofs 
and the completeness of such proofs in fulfilling verification 
sign-off requirements depend heavily on the scope of the 
checkers being proven. 
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Fig. 5. Scope of formal checkers 

 Such scope can vary widely, as discussed earlier [1]. 
Formal can be used to verify (a) local assertions, (b) interface 
checkers, or (c) end-to-end checkers.  Local assertions, easiest 
to verify, include assertions written inside the RTL as well as 
checkers like clock domain crossing (CDC) checkers.  
Interface checkers verify the compliance of the design to 
standard, or custom, interfaces such as ARM AMBA AXI [9], 
sometimes verified with the use of a formal assertion VIP.  
While verifying local assertions and interface checkers is 
useful and can uncover some hard-to-find bugs, clearly this 
does not replace the task of verifying the DUT completely 
with a sign-off commitment.  If that is a motivation to apply 
formal, one must build end-to-end checkers (Fig. 5) as well.  
As one would expect, the complexity of proving end-to-end 
checkers is significant, and we rarely expect unbounded 
proofs.  

In absence of an unbounded proof, we require every end-
to-end checker to reach a required proof bound.  This 
requirement is similar to the coverage metric in simulation.  
As argued earlier, if we can determine all interesting design 
behavior is observed within N cycles, the inconclusive 
bounded proof is equivalent to a full proof, no less useful than 
an unbounded proof.  Just like the coverage metric in 
simulation, this metric provides confidence that we have 
exercised all corner cases in RTL. By using this metric, formal 
verification is now transformed into a target-oriented 
methodology. Based on the difference between depth achieved 
on a checker and the required proof bound, a formal engineer 
can make informed decisions on whether to add Abstraction 
Models (Section VI), or increase machine effort. With this 
metric in hand, formal sign-off is possible. 

V. DETERMINING REQUIRED PROOF BOUND 

We determine the required proof bound using following 
steps (many of which are subjective in nature): 

A. Latency analysis of the design 

B. Micro-architectural analysis 

C. Covers for “interesting” corner-cases 

D. Formal coverage 

E. Failures seen during formal verification 

F. Safety nets like bugs found in simulation and/or in 
hybrid regression runs 

The first three steps are executed in the initial stages of the 
formal verification work, whereas the last three steps are 
carried out while executing formal verification project, and at 
the end. 

A. Latency Analysis 

This involves analyzing the latency from input to the 
relevant output port of the design. This initial analysis 
provides a lower bound for the required proof bound.  In this 
step, we layer in additional proof depth due to design 
initialization, multiple input streams, long input packets etc. 

For most designs, the latency number can be obtained by 
writing covers on output data valid ports.  These estimates can 
change greatly as input constraints are developed.  An 
unexpectedly large latency number obtained in the initial 
phase can also be profitably used.  For example, out of reset, 
design may be performing automatic hardware initialization 
sequence.  During this period, design will not accept any 
input, nor will it generate any output.  Latency number 
observed for the design will highlight this, and verification 
engineer can tackle hardware initialization right in the 
beginning by either short-circuiting the initialization process 
(by applying cut-points and constraining – if it is irrelevant to 
the functionality under test), or by providing the post hardware 
initialization design state as the initial state to the formal tool. 

B. Micro-architectural Analysis 

This involves identifying major design structures e.g. state 
machines, counters, FIFOs, RAMs, linked lists.  This can be 
done with the RTL designer’s help, or by an analysis of the 
RTL design.  Architectural information is augmented by RTL 
code information e.g. deeply nested if-then-else, or case 
statements.  Formal cover properties can be written to put each 
design structure in an interesting state to get an estimate of 
required proof depth.  For example, we can find out the 
minimum cycles required to fill a FIFO, or traverse all states 
of a state machine. 

As an example, consider a design that implements multiple 
FIFOs sharing a single memory for storing data, with 
supporting memories to store head/tail pointers for each FIFO, 
linked list and free list.  Apart from writing covers for filling 
each FIFO, we can also determine the minimum cycles 
required to write to (or read from) each address of each 
memory.  This information can be used to separate out 
randomly accessed and sequentially accessed memories, and  
the formal verification engineer can then determine if design 
size should be reduced (if design is parameterized), or 
Abstraction Models would be needed for the design. 

C. Covers for Interesting Corner-cases 

This step is similar to the analysis that is done to create the 
list of functional coverage targets to be met in simulation.  
This involves brain-storming the interesting scenarios to 
exercise different corner cases of RTL e.g. an internal arbiter, 
back-pressuring the input request path due to lack of output 
interface credits, causing the input request FIFO to get full.  
However, we need to carefully filter out the corner-cases not 
relevant to the RTL. This is similar to avoiding mistakes while 



coding functional cover points for simulation.  For example, a 
FIFO getting full along with a counter rolling over seems like 
an interesting corner-case; but the FIFO and counter may be 
completely unrelated design-structures, and targeting a proof 
bound where both structures reach their individual interesting 
states (simultaneously) may not be useful. 

Note that it is often useful to under-constrain the inputs of 
a DUT to allow more generic behavior than code system-
specific constraints that specify the exact input constraints.  
This scenario is possible if the DUT is designed to handle 
more generic behavior than possible in the real system.  The 
use of such under-constraints prevents a large required proof 
depth than may otherwise be necessary – see the discussion of 
under-constraining number of AXI read/write transfers in our 
second case study in Section VIII. 

D. Formal Coverage 

Formal coverage is a relatively new feature offered by 
some commercial tools.  This feature was proposed recently 
[11] as a metric very similar to simulation-based coverage 
with the same goals (to measure the completeness of the 
verification), albeit to measure the completeness of the formal 
verification work.  The idea is that when formal verification 
runs are complete, a formal user can measure the code 
coverage targets that are hit with the formal testbench, within 
the proof bounds achieved in the formal regression runs. 

The code coverage targets are identical to the targets used 
by simulation tools, e.g. line coverage, expression coverage, or 
FSM coverage.   

The flow is to first run the end-to-end checkers and 
determine the proof bounds reported by the formal verification 
tool.  Then, in a separate formal coverage run, the smallest 
proof bound is supplied as an input, and the formal coverage 
tool reports the code coverage targets reached within that 
bound.  Any code coverage targets not reached indicate 
portions of the code that are not formally verified within the 
achieved proof bounds.  These targets must be analyzed 
manually.  It is also possible that some of these targets are not 
reached because of intentional or unintentional over-
constraints in the formal testbench.   

E. Bugs Found during Formal Verification 

Usually, a single end-to-end checker finds most (or many) 
bugs.  For every counter-example (both real bugs as well as 
false failures due to formal test-bench issues), we track the 
number of counter-examples reported for every depth (Fig. 6).  
The graph shown in the figure is very typical.  For the data in 
the figure, if formal reported the first counter-example at a 
depth of N cycles, and later proves that there are no failures at 
a new higher depth (e.g. N+6 in Fig. 6), usually this higher 
depth is the required proof depth.  This analysis has to be 
balanced with some exceptions: for example, if the design has 
multiple modes of operation, each resulting in a different 
latency from inputs to outputs, or if the latencies can be 
multiples of some number larger than 1, we have to ensure 
that we have covered all modes of operation.  As an example, 
consider a design containing an arbiter, which arbitrates 
between multiple internal requestors, with one of the 

requestors being special – capable of generating requests only 
at cycle numbers which are multiple of 4.  Goal is to prove 
that the design is deadlock free.  Due to the presence of the 
special requestor, it is possible that our checker fails only at 
N+8 now.  However, formal may have hit complexity limits 
and checker is bounded proven to N+7 cycles only.  Due to 
this, while inferring required proof bound from a number of 
counter-examples seen for each proof depth, we must be 
aware of detailed design functionality. 

 

Fig. 6. Proof depth vs. Number of counter-examples observed 

F. Safety Nets 

Many of the steps described so far are based on manual 
analysis, and may possibly under-estimate the required proof 
bound.  While they have worked very well for us, resulting in 
post-silicon success on many designs, we also like to use a 
few methods as backup safety nets: 

1. Bugs found by simulation.  Usually formal 
verification is run in parallel with simulation or 
emulation running at a higher-level (the DUT for 
formal is contained in the DUT for simulation).  If a 
bug is found in the formal DUT by simulation or 
emulation, we always try to reproduce the bug in the 
formal testbench.  This process could show that our 
analysis for the required proof depth was incorrect.  
We have experienced a situation where our original 
analysis for the required proof depth required rework 
when a simulation trace revealed a micro-
architectural condition we had overlooked. 

2. Hybrid formal search. Formal tools have the ability 
to search from deep states in the design [10].  Once 
the formal testbench is mature, we often set up 
nightly regression runs, with some runs running in a 
hybrid mode.  If our proof depth analysis is incorrect, 
it is possible the hybrid formal search hits a bug, 
requiring re-analysis. 

3. Proof engines that are not strictly breadth-first. 
Some recent powerful engines do not always search 
in a breadth-first manner [3].  While these engines 
cannot easily be used for a deterministic sign-off 
process, they may uncover a bug that shows a flaw in 
our proof depth analysis. 

VI.  ABSTRACTION MODELS 

When formal cannot reach deep states in a design that are 
important to verify, use of manually crafted Abstraction 



Models can often reduce the required proof depths, and 
achieve sign-off. 

Abstraction Models are used to reduce the state space of a 
design so that the search becomes computationally less 
complex [1].  A sound Abstraction Model adds more behavior 
to a design, and does not remove any.  By adding reset states, 
or state transitions to the design, the depth of state space of the 
original design can be reduced and hence far away corner 
cases can be reached in a lesser number of cycles than on the 
original design. These Abstraction Models help reach proofs, 
or failures, faster.  There is also the possibility of a false 
failure, but such a failure comes with a trace, which can be 
debugged to determine if it is an RTL bug, or one due to an 
over-abstraction. 

False 
edge

Without abstraction
With abstraction

 
Fig. 7. State space transformation due to an abstraction 

Examples of Abstraction Models include: 

• Localization: adding cut-points in a design [5] 
• Counter abstraction: replacing deep counters by 

abstract counters, e.g. replacing the 2n state space of an 
n-bit counter by a few states: 0, 1, at-least-two [8] 

• Tagging: simplifying a system consisting of a large 
number of data types by simplifying the structure with 
respect to a specific or a symbolic tag [6] 

• Memory abstraction: replacing the height of a large 
memory with one line of memory, representing the 
transaction that is being tracked [1] [13] 

 
Abstraction Models have the effect of both reducing the 

state space of a design (Fig. 7), as well as increasing the 
portion of a design that can be covered in N cycles, thereby 
increasing the reach of formal tools.  When the state space is 
reduced in a sound Abstraction Model, multiple states from 
the original design map onto a single state, and all original 
transitions are aggregated, resulting in an addition of behavior 
and not the loss of any behavior. 

Abstraction Models are design dependent, so one first 
needs to analyze the design-under-test (DUT) to understand 
where the formal complexity comes from and then craft 
specific Abstraction Models to overcome this complexity. 
While using Abstraction Models cannot result in a false 
positive (missing bugs), a coarse Abstraction Model may 
result in a false negative (a false failure, and hence not a real 
bug).  Crafting the right Abstraction Model to solve the 
complexity problem can be an iterative process that leads to a 

final Abstraction Model, which is neither so tight that it 
doesn’t help with verification closure nor so coarse that it 
results in false failures. The right Abstraction Model can offer 
significant improvement to the verification run time, as 
illustrated in the case study below. 

A. Example of an Abstraction Model 

Consider Tx portion of PCI Express transaction layer 
design which takes application layer requests and generates 
commands for data-link layer.  Design contains a tag allocator 
block (TAB) which attaches a unique tag to each incoming 
request.  TAB takes ‘request’ as input, and in next cycle, 
asserts either ‘empty’ or ‘grant’ at its output.  If TAB asserts 
‘grant’, it indicates granted tag number on its ‘grant_tag’ 
output port.  When tag returns, ‘return’ input of TAB is 
asserted and freed tag is indicated on ‘return_tag’ input port. 

Initially, TAB grants tags in linear order (0 -> 1 -> 2…), 
but as requests are processed and tags are returned in out of 
order fashion, TAB may start granting tags in a random order.  
Additionally, when there are no free tags, requests are back-
pressured by asserting ‘empty’.  Due to the large number of 
available tags, interesting back-pressure scenarios can be 
reached only after 1024 cycles, which is way too deep for any 
formal tool to reach. 

To reach interesting back-pressure scenarios for the PCIe 
transaction layer design, we can replace TAB by its 
Abstraction Model in which a single symbolic, but random, 
tag value (‘sym_tag’) is modelled.  We create a state machine 
with two states (Fig. 8) 

• H – Indicating that TAB has modelled tag 

• D – Indicating that TAB doesn’t have modelled tag 

 

Fig. 8. Abstraction Model for TAB 

Following properties were written on TAB outputs (PTAB) 

• request |-> ##1 (empty || grant) 

• (state == H) |-> (!empty) 

• ((state == D) && grant) |-> (grant_tag != sym_tag) 

Additionally, following properties were written on TAB 
inputs (PSYS) 

• ((state == H) && return) |-> (return_tag != sym_tag) 

• (state == D) |-> “sym_tag is eventually returned” 

After replacing TAB RTL by Abstraction Model (i.e. 
assume PTAB), all our PCIe transaction layer checks will see 
back-pressure condition right after ‘sym_tag’ is granted.  It is 
equally important to prove the correctness of PTAB 
assumptions. This can be done by running formal on TAB 
RTL and assuming PSYS. 



VII.  CASE STUDY 1 

For the first case study, we use the open-source version of 
the Sun Microsystems’ UltraSPARC T1 microprocessor [4], 
[12].  This version, called OpenSPARC T1, is available as 
download from Oracle [7], under the GNU license.  It consists 
of eight SPARC cores, connected through a crossbar (CCX) to 
an L2 cache [12] (Fig. 9).  CCX is the design we are formally 
verifying in this case study; the top-level block diagram 
appears in Fig. 10.  It consists of 22,174 lines of RTL code 
and over 30,000 flip-flops (TABLE I), representing a design 
that could stress the limits of end-to-end formal verification. 

TABLE I DESIGN SUMMARY OF CCX 

Parameter Value 

Line of Code 22,174 

Design units 97 

Instances 3,227 

Number of inputs ports 59 

Number of outputs ports 48 

Input bits 1,982 

Output bits 2,005 

 

 
Fig. 9. Block diagram of OpenSPARC T1 processor 

 

Fig. 10. CCX top-level block diagram 

 

Fig. 11. Internal queues for L2-cache bank0, FPU and IOB 

 

Fig. 12. Checkerboard implementation for CCX arbiter 

CCX has one arbiter per destination to schedule requests 
when source(s) transmit packets to a single destination in the 
same cycle. A packet for a request that has not been scheduled 
by arbiter is stored in an internal queue which can store up to 
two such packets per destination for each of the sources (Fig. 
11). Contents from eight sources are effectively stored in a 16 
entries (2 entries per source) checkerboard structure (Fig. 12). 
Each source can possibly generate two-packet requests which 
consumes both the locations reserved for the source. 
Additionally, CCX arbiters pop first 2 requests from FIFO in 
flops to reduce latency, effectively creating an 18-entry 
structure. 

The design is hard to verify with simulation because it has 
a large number of concurrent operations; all the 8 CPUs, 4 L2 
cache banks, FPU and IO bridge operate in parallel. In 
addition, managing multiple requests to single destination 
makes the control logic quite complex. It is impossible to 
simulate all possible scenarios and not miss a bug in the 
simulation-only verification environment. Formal is the right 
technology to verify such designs as it performs exhaustive 
analysis to ensure all scenarios are covered with no missing 
bugs. Of course, formal has to converge. 

To formally verify this design, the formal testbench 
environment has 11 checkers, 6 end-to-end checkers that 
model end-to-end behavior of the design, and 5 interface 
checkers that check the correctness of interface compliance. 



One of the key checkers is the data consistency check – called 
pcx_data_match_A, which states that when output data ready 
is high, output data must match corresponding input data. 
There are also 16 constraints written to disallow illegal input 
scenarios. 

A. Determining Required Proof Bound 

1) Latency analysis: We wrote a cover on output data 
valid port and got a depth of 4 cycles. With a cover aware of 
two-packet requests, we got an initial proof depth estimate of 
5 cycles, representing the minimum proof depth required to 
see interesting proofs amd counter-examples. 
 

2) Micro-architectural analysis: Each destination has an 
effective storage of eighteen entries. To cover all corner-case 
for any potential bug in the storage of the 18th (last) location, 
at least 21 cycles (4 cycles of initial latency for first request + 
17 more requests) are required. 
 

3) Covers for interesting corner-cases: Our micro-
architectural analysis driven depth requirement didn’t include: 

• Two-packet requests 

• Presence of stalls 

Writing cover which included these conditions gave us a proof 
bound of 23 cycles. We included one more cycle in our proof 
bound requirement as a safety margin. This gave us a 24-cycle 
required proof bound for the end-to-end checker for the CCX 
design. 
 

4) Formal coverage: Our proof bound requirements were 
validated using toggle coverage. As shown in Fig. 13, the 
dotted blue line, 100% toggle coverage target was reached at 
21 cycles.  Apart from the data consistency check, the rest of 
the checks required much smaller proof  depth. 

B. Complexity Analysis and Abstraction Model 

By plotting ‘Proof radius’ Vs ‘effort’ curve (Fig. 14), we 
estimated that tool would need 991 days to reach our required 
proof depth of 24 cycles. Clearly this runtime was not 
reasonable, and we needed a better strategy to achieve sign-
off. After looking at the design, we decided to apply two 
Abstraction Models: 

• Data-width Abstraction Model: Reduce the width of 
data buses. This didn’t reduce the proof depth 
requirements, but reduced the number of flops in the 
design and hence formal complexity. 

• Counter Abstraction Model: Each destination of CCX 
had an 18-deep storage. The write and read address 
counters of the arbiter FIFO are zero on reset and 
hence require many cycles to reach interesting 
scenarios like writing and reading last location of 
storage. Incremental nature of write and read address 
counters are key to design functionality. However, 
design behavior is immune to out-of-reset value of 
these two counters – as long as both the counters take 
same value. Use of this abstraction reduced our proof 
depth requirement to 9 cycles. This was validated by 

100% toggle coverage results achieved in 6 cycles in 
Fig. 13 (dotted orange line) 

 

Fig. 13. Clock cycles vs. Toggle coverage 

Comparative results of proof depth achieved for the data 
consistency checker, with and without Abstraction Models, are 
shown in TABLE II. The results are obtained using Mentor’s 
Questa Formal version 10.2a and 5 CPU cores with a time-out 
of 8 hours. Required proof depth number helped us in deciding 
to work on Abstraction Models instead of just running tool for 
more time, and lead to a 600,000x speed-up in the data-
consistency proof by developing two Abstraction Models so as 
to achieve sign-off on this checker. 

 

Fig. 14. Proof radius vs. Runtime for CCX data-consistency checker 

TABLE II  IMPROVEMENT IN CONVERGENCE BY ABSTRACTIONS 

 

Runtime Comparison with & without  
Abstraction Models 

Without 
Abstraction 

Models 

With Data-
width 

Abstraction 

With Data-width and 
Counter Abstractions 

Proof 
Depth 

Runtime 
(in sec) 

Runtime 
(in sec) 

Proof 
Depth 

Runtime 
(in sec) 

10 253 175   

11 447 160   

12 2,008 317   

13 9,112 841   

14 
Timeout  
(8 hours) 

1,705   

15 
Timeout  
(8 hours) 

5,265   

16 
Timeout  
(8 hours) 

25,748   

17-22 
Timeout  
(8 hours) 

Timeout (8 
hours) 

7 56 

23 
Timeout  
(8 hours) 

Timeout (8 
hours) 

8 101 

24 
full  proof 

Timeout  
(8 hours) 

Timeout (8 
hours) 

9 
full proof 

149 



VIII.  CASE STUDY 2 

For the second case study, we pick a proprietary, commercial 
design for a scalable and configurable network-on-chip (Fig. 
15), consisting of multiple masters and slaves interconnected 
using decoders, arbiters and optional register slices (RS).  Fig. 
16 shows the smallest possible, 2x2 version (2 masters and 2 
slaves) of the network with cross-bar components, that we will 
use in this case study. TABLE III lists the design statistics of 
2x2 sub-system.  All masters and slaves followed AXI4 
protocol on their input and output side respectively.  However, 
in order to support much higher performance in the internals 
of the design, a proprietary modification was specified on the 
AXI4 protocol to allow sequences of packets on the five AXI4 
channels that would otherwise violate the AXI4 protocol.  
This modification enabled much higher performance, but 
created additional corner-cases for verification, and created 
new challenges, especially for simulation-driven verification.  
The work described in this section was done using Mentor’s 
Questa Formal tool. 

  

Fig. 15.  A P * Q network-on-chip system (P masters and Q slaves) 

 

Fig. 16. 2x2 sub-system used for verification 

Slaves ensure that the strict AXI4 protocol is obeyed at its 
output, even though the modified AXI4 protocol was allowed 
at its input.  To this end, it needs to buffer transactions for 
AXI4 channels, and re-order transactions to comply with 
AXI4 protocol on its output.  

The primary verification goal was to ensure that the 
network-on-chip does not deadlock under any possible 
combinations of input scenarios on all AXI4 channels. 

TABLE III  DESIGN SUMMARY OF 2X2 SUB-SYSTEM 

Module Number of flops 

Master0 5,217 

Master1 5,229 

Decoder0 2 

Decoder1 2 

Register Slices 
(RS0+RS1+RS2+RS3) 

334*4=1336 

Arbiter0 382 

Arbiter1 382 

Slave0 3743 

Slave1 3743 

Total 20,036 

 

We determined that the master can never contribute to 
dead-lock and excluded it from scope of formal verification. 
Further, we divided the remaining requirement into three 
separate proofs: 

• The Fabric consisting of the Decoder-RS-Arbiters 
network does not deadlock 

• The Fabric obeys the modified AXI4 protocol on its 
output 

• Assuming the Fabric obeys the modified AXI4 
protocol on its output, the Slaves do not deadlock 

We take “Decoder-RS-Arbiters network doesn’t deadlock” 
as an example checker to explain the methodology used to 
determine and validate required proof depth. 

A. Determining Required Proof Bound 

1) Latency analysis: We wrote covers on valid and control 
outputs of the two arbiters (e.g. AWVALID and WLAST 
signals) to derive a preliminary estimate.  These covers were 
reached in 3 cycles. 
 

2) Micro-architectural analysis: We analyzed the depth of 
FIFOs and counters used in the Arbiter nodes, especially 
paying attention to the conditions for getting the FIFOs to be 
full, and the counters to be empty.  This gave us an estimate of 
13 cycles. 
 

3) Covers for interesting corner-cases: The AXI4 
modification resulted in a few interesting functional coverage 
targets.  We wrote covers for each of these targets.  The cover 
for the deepest of these targets was hit in 29 cycles and was an 
indication of a lower bound on the required proof depth. 
 

Note that the AXI4 protocol allows up to 256 transfers for 
read or write data bursts [2]. However, the Fabric design is 
oblivious to this requirement, and the output of the Fabric 
design satisfies this if and only if the input satisfies it.  So, we 
deliberately under-constrain the inputs to allow arbitrary 



number of, even more than 256, transfers.  Since nothing in 
the design micro-architecture depends on this limit of 256, we 
are able to achieve a required proof bound far smaller than 256 
cycles. 

 

Fig. 17. Clock cycles vs. Coverage 

4) Formal coverage: Our proof bound requirements were 
validated using statement, branch, expression and toggle 
coverage. As shown in Fig. 17, 100% coverage target was 
reached at 20 cycles. 
 

 
Fig. 18. Clock cycles vs. number of counter-examples seen 

5) Failures seen during formal verification: As shown in 
Fig. 18, during our checker coding effort, we found first 
counter-example at 17th cycles, and most (11 total) of the 
counter-examples at 18th cycle and one counter example at 19th 
cycle.  From 20th cycle onwards, no counter-example was 
seen. 

B. Results 

We reached a proof depth of 31 cycles for the Decode to 
arbiter deadlock checker in 12 hours of effort, satisfying our 
required proof depth target. 

IX.  CONCLUSION 

Formal verification is a powerful technique to find corner 
case design bugs. A formal sign-off methodology can ensure 
no bugs are left behind when taping out. However, for end-to-
end formal verification to be applied to realistic and 

interesting design blocks, expecting full proof is unrealistic. 
The key is to know what proof depth is sufficient and how to 
achieve such proof depth when formal tools don’t converge. 
This paper outlined the techniques that we have used 
successfully to formally sign-off on many design blocks. With 
this methodology, formal tools will find more use in today’s 
verification flow, and assist in resolving the challenging task 
of verification faced by the industry. 
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