
Sign-off with Bounded Formal Verification Proofs

NamDo Kim, Junhyuk Park
Samsung Electronics

Giheung, South Korea

HarGovind Singh, Vigyan Singhal
Oski Technology

Gurgaon, India and Mountain View, CA, USA

Abstract— Formal property verification (also known as model
checking) is a powerful methodology that can be used to find
corner-case bugs, improve verification efficiency and reduce the
verification cycle. However, inconclusive formal analysis results
or bounded proofs have been hindering adoption of formal
technology in the industry. This paper describes a formal sign-off
methodology in the presence of bounded proofs. With an
understanding of the design-under-test and a systematic
analytical approach, we can qualify the bounded proof depths
and use Abstraction Models to achieve the required proof bound
for formal sign-off.

Keywords—Formal verification; sign-off; abstractions; proof
depth; bounded proof; formal coverage

I. INTRODUCTION

Most verification sign-off in the industry are based on
simulation. Good metrics exist to track verification progress,
such as percentage of checks written, bug rate (test-bench
bugs and RTL bugs), coverage targets; and sign-off is defined
as the meeting of these metric-driven goals. However,
simulation is often not enough to verify functional correctness
for today’s complex designs. Formal verification (model
checking) can cover all state transitions, thus proving
exhaustive functional correctness of designs with complex
corner case scenarios often harder to cover with simulation.

Formal technology can be used in different applications:

• automatic formal checks (also called super-lint or
formal lint) can detect dead code, pragma violations,
constant nets/registers and state machine deadlocks

• a recent category of Formal “Apps”, which target
specific applications, such as clock domain crossing
verification, pre- and post-clock gating equivalence
checking, X-propagation verification, can solve
specific verification needs

• assertion-based-verification (ABV) can find bugs by
verifying local assertions as well as prove compliance
with standard interfaces

• end-to-end formal verification can replace block-level
simulation by building reference models and proving
the complete functionality of the blocks

Of all these applications, end-to-end formal results in the
hardest proofs, but also offers the most benefits that make
formal sign-off possible.

Regardless of the types of formal applications, for each
checker verified by the formal tool, the result is either
conclusive (either an unbounded proof or a failure) or

inconclusive (accompanied by a proof depth of N cycles from
reset). Traditionally, users have ignored the results when tools
report “inconclusive”, especially when used in a bug-hunting
mode. In fact, commercial tools reinforce the worthlessness of
this result by reporting “inconclusive” or “explored”, instead
of “bounded proof”. In reality, the proof depth N guarantees
that the shortest failure will be longer than N. If we can
determine all interesting design behavior is observed within N
cycles, the inconclusive bounded proof is equivalent to a full
proof, no less useful than an unbounded proof.

We describe a methodology to use such proofs in a
tapeout-worthy sign-off process, by qualifying the bounded
proof depths with an analysis. Section II describes the notion
of “sign-off” used during design verification, and sign-off
requirements for formal verification. Section III describes the
formal verification search process, and the use model. Section
IV describes end-to-end checkers and the complexity
challenge created by such checkers. Section V describes our
methodology used to compute the required proof bound for a
sign-off. Section VI discusses how to achieve formal sign-off
using Abstraction Models with the understanding of the
required proof bound. Sections VII and VIII demonstrates the
effectiveness of the methodology to achieve formal sign-off
using industry designs. Section IX offers concluding remarks.

II. VERIFICATION SIGN-OFF

 Since the costs of making design changes rise
exponentially as a design gets closer to tapeout, and beyond
(Fig. 1), “sign-off” is used to denote a critical milestone when
a particular department (e.g. timing, power, functional
verification departments) commits to having reached a
measurable level of completeness with respect to its respective
metric(s).

Block-level
design

Block-level
verification

Chip-level
verification

ECO
phase

Tapeout

Silicon
is back

$1M

$100k

$10k

$1k

$100

$10M

Fig. 1. The cost of fixing a bug rises exponentially

ASIC

Manager

Design

Manager

Verification

Manager

Physical Design

Manager

Design

Engineer #1

Design

Engineer #M

Verification

Engineer #1

Verification

Engineer #N

Physical Design

Engineer #1

Physical Design

Engineer #P

Synthesis

Manager

Power

Engineer

Timing

Engineer

Fig. 2. Each department must sign off before tapeout

 The origin of this word is from netlist sign-off at the point
when an ASIC customer hands off the netlist to its ASIC
vendor; at this time, the customer has met the timing and
functional requirements in the netlist, and any change required
by the customer thereafter is very expensive. In this
traditional usage, sign-off was used for the timing analysis and
equivalence checking departments. However, given the rising
cost of changes as the design reaches certain milestones, (e.g.
“final netlist”, tapeout, or production milestones), the term
sign-off is now also used to get commitments from other
departments (Fig. 2), such as the functional verification
department, which commits that the RTL has been thoroughly
tested, and that the cost of continued verification has reached a
point of diminishing returns, compared to the cost of lost
market opportunity incurred by delaying the tapeout.

 The sign-off requirements for simulation-based functional
verification usually include tracking various metrics like
number of open bugs, number of functional tests written vs the
planned list of tests, and percentage of code and functional
coverage targets achieved. To achieve similar sign-off
commitments from the formal verification team, we need to
quantify the utility of the “inconclusive” results from the
formal tools, especially since most end-to-end formal proofs
rarely give conclusive results. This will be the focus of the
paper.

III. FORMAL VERIFICATION USE MODEL

 The inputs supplied to a formal verification tool are:

• the design-under-test (DUT),

• a set of constraints,

• a set of checkers (or assertions), and

• optionally, a set of manually written Abstraction
Models (described further in Section VI) that reduce
the complexity of the formal search.

 In a given run-time, for each checker, the formal tool
returns one of three possible answers:

1. (unbounded) pass, or a full proof, indicating there
is a guarantee that no counter-example is possible
in the entire search space;

2. fail, along with a counter-example trace the user
can debug; or

3. an inconclusive result, or a bounded pass, along
with a proof depth N.

The proof depths achieved by formal are often orders of
magnitude smaller than depths reached by ordinary simulation
tests. An oft-asked-question that needs to be answered is: If I
achieve a bounded proof of N cycles on a given design, how
much of the design functionality have I verified? In other
words, for a given design, how many cycles do I need to cover
with formal?

FormalSimulation

Fig. 3. Comparing state space searches

 A formal tool performs an exhaustive state space search on
the design, starting from the reset state. In Fig. 3, we contrast
the state space searched via a simulation test, versus state
space searched by formal verification (up to a proof depth of
3, in the figure). Whereas each simulation test covers a single
but deep sequence of states after reset, the formal search
performs a breadth-first search from a reset state, or from an
intermediate state, in case of hybrid formal. Sometimes,
usually for smaller DUTs or easy checkers, the tool can
guarantee an unbounded proof. On the other hand, often for
larger designs or end-to-end proofs, we face an exponential
complexity barrier (Fig. 4). In such cases, for a given run-
time, the tool reports a bounded pass.

Fig. 4. Proof depth vs. Run time

IV. COMPLEXITY OF END-TO-END PROOFS

Both the complexity of running formal verification proofs
and the completeness of such proofs in fulfilling verification
sign-off requirements depend heavily on the scope of the
checkers being proven.

DUT
(DDR2 memory

controller)

Internal assertions

AXI4
VIP

DDR2
VIP

Interface
checkers

End-to-End
Checker

Fig. 5. Scope of formal checkers

 Such scope can vary widely, as discussed earlier [1].
Formal can be used to verify (a) local assertions, (b) interface
checkers, or (c) end-to-end checkers. Local assertions, easiest
to verify, include assertions written inside the RTL as well as
checkers like clock domain crossing (CDC) checkers.
Interface checkers verify the compliance of the design to
standard, or custom, interfaces such as ARM AMBA AXI [9],
sometimes verified with the use of a formal assertion VIP.
While verifying local assertions and interface checkers is
useful and can uncover some hard-to-find bugs, clearly this
does not replace the task of verifying the DUT completely
with a sign-off commitment. If that is a motivation to apply
formal, one must build end-to-end checkers (Fig. 5) as well.
As one would expect, the complexity of proving end-to-end
checkers is significant, and we rarely expect unbounded
proofs.

In absence of an unbounded proof, we require every end-
to-end checker to reach a required proof bound. This
requirement is similar to the coverage metric in simulation.
As argued earlier, if we can determine all interesting design
behavior is observed within N cycles, the inconclusive
bounded proof is equivalent to a full proof, no less useful than
an unbounded proof. Just like the coverage metric in
simulation, this metric provides confidence that we have
exercised all corner cases in RTL. By using this metric, formal
verification is now transformed into a target-oriented
methodology. Based on the difference between depth achieved
on a checker and the required proof bound, a formal engineer
can make informed decisions on whether to add Abstraction
Models (Section VI), or increase machine effort. With this
metric in hand, formal sign-off is possible.

V. DETERMINING REQUIRED PROOF BOUND

We determine the required proof bound using following
steps (many of which are subjective in nature):

A. Latency analysis of the design

B. Micro-architectural analysis

C. Covers for “interesting” corner-cases

D. Formal coverage

E. Failures seen during formal verification

F. Safety nets like bugs found in simulation and/or in
hybrid regression runs

The first three steps are executed in the initial stages of the
formal verification work, whereas the last three steps are
carried out while executing formal verification project, and at
the end.

A. Latency Analysis

This involves analyzing the latency from input to the
relevant output port of the design. This initial analysis
provides a lower bound for the required proof bound. In this
step, we layer in additional proof depth due to design
initialization, multiple input streams, long input packets etc.

For most designs, the latency number can be obtained by
writing covers on output data valid ports. These estimates can
change greatly as input constraints are developed. An
unexpectedly large latency number obtained in the initial
phase can also be profitably used. For example, out of reset,
design may be performing automatic hardware initialization
sequence. During this period, design will not accept any
input, nor will it generate any output. Latency number
observed for the design will highlight this, and verification
engineer can tackle hardware initialization right in the
beginning by either short-circuiting the initialization process
(by applying cut-points and constraining – if it is irrelevant to
the functionality under test), or by providing the post hardware
initialization design state as the initial state to the formal tool.

B. Micro-architectural Analysis

This involves identifying major design structures e.g. state
machines, counters, FIFOs, RAMs, linked lists. This can be
done with the RTL designer’s help, or by an analysis of the
RTL design. Architectural information is augmented by RTL
code information e.g. deeply nested if-then-else, or case
statements. Formal cover properties can be written to put each
design structure in an interesting state to get an estimate of
required proof depth. For example, we can find out the
minimum cycles required to fill a FIFO, or traverse all states
of a state machine.

As an example, consider a design that implements multiple
FIFOs sharing a single memory for storing data, with
supporting memories to store head/tail pointers for each FIFO,
linked list and free list. Apart from writing covers for filling
each FIFO, we can also determine the minimum cycles
required to write to (or read from) each address of each
memory. This information can be used to separate out
randomly accessed and sequentially accessed memories, and
the formal verification engineer can then determine if design
size should be reduced (if design is parameterized), or
Abstraction Models would be needed for the design.

C. Covers for Interesting Corner-cases

This step is similar to the analysis that is done to create the
list of functional coverage targets to be met in simulation.
This involves brain-storming the interesting scenarios to
exercise different corner cases of RTL e.g. an internal arbiter,
back-pressuring the input request path due to lack of output
interface credits, causing the input request FIFO to get full.
However, we need to carefully filter out the corner-cases not
relevant to the RTL. This is similar to avoiding mistakes while

coding functional cover points for simulation. For example, a
FIFO getting full along with a counter rolling over seems like
an interesting corner-case; but the FIFO and counter may be
completely unrelated design-structures, and targeting a proof
bound where both structures reach their individual interesting
states (simultaneously) may not be useful.

Note that it is often useful to under-constrain the inputs of
a DUT to allow more generic behavior than code system-
specific constraints that specify the exact input constraints.
This scenario is possible if the DUT is designed to handle
more generic behavior than possible in the real system. The
use of such under-constraints prevents a large required proof
depth than may otherwise be necessary – see the discussion of
under-constraining number of AXI read/write transfers in our
second case study in Section VIII.

D. Formal Coverage

Formal coverage is a relatively new feature offered by
some commercial tools. This feature was proposed recently
[11] as a metric very similar to simulation-based coverage
with the same goals (to measure the completeness of the
verification), albeit to measure the completeness of the formal
verification work. The idea is that when formal verification
runs are complete, a formal user can measure the code
coverage targets that are hit with the formal testbench, within
the proof bounds achieved in the formal regression runs.

The code coverage targets are identical to the targets used
by simulation tools, e.g. line coverage, expression coverage, or
FSM coverage.

The flow is to first run the end-to-end checkers and
determine the proof bounds reported by the formal verification
tool. Then, in a separate formal coverage run, the smallest
proof bound is supplied as an input, and the formal coverage
tool reports the code coverage targets reached within that
bound. Any code coverage targets not reached indicate
portions of the code that are not formally verified within the
achieved proof bounds. These targets must be analyzed
manually. It is also possible that some of these targets are not
reached because of intentional or unintentional over-
constraints in the formal testbench.

E. Bugs Found during Formal Verification

Usually, a single end-to-end checker finds most (or many)
bugs. For every counter-example (both real bugs as well as
false failures due to formal test-bench issues), we track the
number of counter-examples reported for every depth (Fig. 6).
The graph shown in the figure is very typical. For the data in
the figure, if formal reported the first counter-example at a
depth of N cycles, and later proves that there are no failures at
a new higher depth (e.g. N+6 in Fig. 6), usually this higher
depth is the required proof depth. This analysis has to be
balanced with some exceptions: for example, if the design has
multiple modes of operation, each resulting in a different
latency from inputs to outputs, or if the latencies can be
multiples of some number larger than 1, we have to ensure
that we have covered all modes of operation. As an example,
consider a design containing an arbiter, which arbitrates
between multiple internal requestors, with one of the

requestors being special – capable of generating requests only
at cycle numbers which are multiple of 4. Goal is to prove
that the design is deadlock free. Due to the presence of the
special requestor, it is possible that our checker fails only at
N+8 now. However, formal may have hit complexity limits
and checker is bounded proven to N+7 cycles only. Due to
this, while inferring required proof bound from a number of
counter-examples seen for each proof depth, we must be
aware of detailed design functionality.

Fig. 6. Proof depth vs. Number of counter-examples observed

F. Safety Nets

Many of the steps described so far are based on manual
analysis, and may possibly under-estimate the required proof
bound. While they have worked very well for us, resulting in
post-silicon success on many designs, we also like to use a
few methods as backup safety nets:

1. Bugs found by simulation. Usually formal
verification is run in parallel with simulation or
emulation running at a higher-level (the DUT for
formal is contained in the DUT for simulation). If a
bug is found in the formal DUT by simulation or
emulation, we always try to reproduce the bug in the
formal testbench. This process could show that our
analysis for the required proof depth was incorrect.
We have experienced a situation where our original
analysis for the required proof depth required rework
when a simulation trace revealed a micro-
architectural condition we had overlooked.

2. Hybrid formal search. Formal tools have the ability
to search from deep states in the design [10]. Once
the formal testbench is mature, we often set up
nightly regression runs, with some runs running in a
hybrid mode. If our proof depth analysis is incorrect,
it is possible the hybrid formal search hits a bug,
requiring re-analysis.

3. Proof engines that are not strictly breadth-first.
Some recent powerful engines do not always search
in a breadth-first manner [3]. While these engines
cannot easily be used for a deterministic sign-off
process, they may uncover a bug that shows a flaw in
our proof depth analysis.

VI. ABSTRACTION MODELS

When formal cannot reach deep states in a design that are
important to verify, use of manually crafted Abstraction

Models can often reduce the required proof depths, and
achieve sign-off.

Abstraction Models are used to reduce the state space of a
design so that the search becomes computationally less
complex [1]. A sound Abstraction Model adds more behavior
to a design, and does not remove any. By adding reset states,
or state transitions to the design, the depth of state space of the
original design can be reduced and hence far away corner
cases can be reached in a lesser number of cycles than on the
original design. These Abstraction Models help reach proofs,
or failures, faster. There is also the possibility of a false
failure, but such a failure comes with a trace, which can be
debugged to determine if it is an RTL bug, or one due to an
over-abstraction.

False
edge

Without abstraction
With abstraction

Fig. 7. State space transformation due to an abstraction

Examples of Abstraction Models include:

• Localization: adding cut-points in a design [5]
• Counter abstraction: replacing deep counters by

abstract counters, e.g. replacing the 2n state space of an
n-bit counter by a few states: 0, 1, at-least-two [8]

• Tagging: simplifying a system consisting of a large
number of data types by simplifying the structure with
respect to a specific or a symbolic tag [6]

• Memory abstraction: replacing the height of a large
memory with one line of memory, representing the
transaction that is being tracked [1] [13]

Abstraction Models have the effect of both reducing the

state space of a design (Fig. 7), as well as increasing the
portion of a design that can be covered in N cycles, thereby
increasing the reach of formal tools. When the state space is
reduced in a sound Abstraction Model, multiple states from
the original design map onto a single state, and all original
transitions are aggregated, resulting in an addition of behavior
and not the loss of any behavior.

Abstraction Models are design dependent, so one first
needs to analyze the design-under-test (DUT) to understand
where the formal complexity comes from and then craft
specific Abstraction Models to overcome this complexity.
While using Abstraction Models cannot result in a false
positive (missing bugs), a coarse Abstraction Model may
result in a false negative (a false failure, and hence not a real
bug). Crafting the right Abstraction Model to solve the
complexity problem can be an iterative process that leads to a

final Abstraction Model, which is neither so tight that it
doesn’t help with verification closure nor so coarse that it
results in false failures. The right Abstraction Model can offer
significant improvement to the verification run time, as
illustrated in the case study below.

A. Example of an Abstraction Model

Consider Tx portion of PCI Express transaction layer
design which takes application layer requests and generates
commands for data-link layer. Design contains a tag allocator
block (TAB) which attaches a unique tag to each incoming
request. TAB takes ‘request’ as input, and in next cycle,
asserts either ‘empty’ or ‘grant’ at its output. If TAB asserts
‘grant’, it indicates granted tag number on its ‘grant_tag’
output port. When tag returns, ‘return’ input of TAB is
asserted and freed tag is indicated on ‘return_tag’ input port.

Initially, TAB grants tags in linear order (0 -> 1 -> 2…),
but as requests are processed and tags are returned in out of
order fashion, TAB may start granting tags in a random order.
Additionally, when there are no free tags, requests are back-
pressured by asserting ‘empty’. Due to the large number of
available tags, interesting back-pressure scenarios can be
reached only after 1024 cycles, which is way too deep for any
formal tool to reach.

To reach interesting back-pressure scenarios for the PCIe
transaction layer design, we can replace TAB by its
Abstraction Model in which a single symbolic, but random,
tag value (‘sym_tag’) is modelled. We create a state machine
with two states (Fig. 8)

• H – Indicating that TAB has modelled tag

• D – Indicating that TAB doesn’t have modelled tag

Fig. 8. Abstraction Model for TAB

Following properties were written on TAB outputs (PTAB)

• request |-> ##1 (empty || grant)

• (state == H) |-> (!empty)

• ((state == D) && grant) |-> (grant_tag != sym_tag)

Additionally, following properties were written on TAB
inputs (PSYS)

• ((state == H) && return) |-> (return_tag != sym_tag)

• (state == D) |-> “sym_tag is eventually returned”

After replacing TAB RTL by Abstraction Model (i.e.
assume PTAB), all our PCIe transaction layer checks will see
back-pressure condition right after ‘sym_tag’ is granted. It is
equally important to prove the correctness of PTAB
assumptions. This can be done by running formal on TAB
RTL and assuming PSYS.

VII. CASE STUDY 1

For the first case study, we use the open-source version of
the Sun Microsystems’ UltraSPARC T1 microprocessor [4],
[12]. This version, called OpenSPARC T1, is available as
download from Oracle [7], under the GNU license. It consists
of eight SPARC cores, connected through a crossbar (CCX) to
an L2 cache [12] (Fig. 9). CCX is the design we are formally
verifying in this case study; the top-level block diagram
appears in Fig. 10. It consists of 22,174 lines of RTL code
and over 30,000 flip-flops (TABLE I), representing a design
that could stress the limits of end-to-end formal verification.

TABLE I DESIGN SUMMARY OF CCX

Parameter Value

Line of Code 22,174

Design units 97

Instances 3,227

Number of inputs ports 59

Number of outputs ports 48

Input bits 1,982

Output bits 2,005

Fig. 9. Block diagram of OpenSPARC T1 processor

Fig. 10. CCX top-level block diagram

Fig. 11. Internal queues for L2-cache bank0, FPU and IOB

Fig. 12. Checkerboard implementation for CCX arbiter

CCX has one arbiter per destination to schedule requests
when source(s) transmit packets to a single destination in the
same cycle. A packet for a request that has not been scheduled
by arbiter is stored in an internal queue which can store up to
two such packets per destination for each of the sources (Fig.
11). Contents from eight sources are effectively stored in a 16
entries (2 entries per source) checkerboard structure (Fig. 12).
Each source can possibly generate two-packet requests which
consumes both the locations reserved for the source.
Additionally, CCX arbiters pop first 2 requests from FIFO in
flops to reduce latency, effectively creating an 18-entry
structure.

The design is hard to verify with simulation because it has
a large number of concurrent operations; all the 8 CPUs, 4 L2
cache banks, FPU and IO bridge operate in parallel. In
addition, managing multiple requests to single destination
makes the control logic quite complex. It is impossible to
simulate all possible scenarios and not miss a bug in the
simulation-only verification environment. Formal is the right
technology to verify such designs as it performs exhaustive
analysis to ensure all scenarios are covered with no missing
bugs. Of course, formal has to converge.

To formally verify this design, the formal testbench
environment has 11 checkers, 6 end-to-end checkers that
model end-to-end behavior of the design, and 5 interface
checkers that check the correctness of interface compliance.

One of the key checkers is the data consistency check – called
pcx_data_match_A, which states that when output data ready
is high, output data must match corresponding input data.
There are also 16 constraints written to disallow illegal input
scenarios.

A. Determining Required Proof Bound

1) Latency analysis: We wrote a cover on output data
valid port and got a depth of 4 cycles. With a cover aware of
two-packet requests, we got an initial proof depth estimate of
5 cycles, representing the minimum proof depth required to
see interesting proofs amd counter-examples.

2) Micro-architectural analysis: Each destination has an
effective storage of eighteen entries. To cover all corner-case
for any potential bug in the storage of the 18th (last) location,
at least 21 cycles (4 cycles of initial latency for first request +
17 more requests) are required.

3) Covers for interesting corner-cases: Our micro-
architectural analysis driven depth requirement didn’t include:

• Two-packet requests

• Presence of stalls

Writing cover which included these conditions gave us a proof
bound of 23 cycles. We included one more cycle in our proof
bound requirement as a safety margin. This gave us a 24-cycle
required proof bound for the end-to-end checker for the CCX
design.

4) Formal coverage: Our proof bound requirements were
validated using toggle coverage. As shown in Fig. 13, the
dotted blue line, 100% toggle coverage target was reached at
21 cycles. Apart from the data consistency check, the rest of
the checks required much smaller proof depth.

B. Complexity Analysis and Abstraction Model

By plotting ‘Proof radius’ Vs ‘effort’ curve (Fig. 14), we
estimated that tool would need 991 days to reach our required
proof depth of 24 cycles. Clearly this runtime was not
reasonable, and we needed a better strategy to achieve sign-
off. After looking at the design, we decided to apply two
Abstraction Models:

• Data-width Abstraction Model: Reduce the width of
data buses. This didn’t reduce the proof depth
requirements, but reduced the number of flops in the
design and hence formal complexity.

• Counter Abstraction Model: Each destination of CCX
had an 18-deep storage. The write and read address
counters of the arbiter FIFO are zero on reset and
hence require many cycles to reach interesting
scenarios like writing and reading last location of
storage. Incremental nature of write and read address
counters are key to design functionality. However,
design behavior is immune to out-of-reset value of
these two counters – as long as both the counters take
same value. Use of this abstraction reduced our proof
depth requirement to 9 cycles. This was validated by

100% toggle coverage results achieved in 6 cycles in
Fig. 13 (dotted orange line)

Fig. 13. Clock cycles vs. Toggle coverage

Comparative results of proof depth achieved for the data
consistency checker, with and without Abstraction Models, are
shown in TABLE II. The results are obtained using Mentor’s
Questa Formal version 10.2a and 5 CPU cores with a time-out
of 8 hours. Required proof depth number helped us in deciding
to work on Abstraction Models instead of just running tool for
more time, and lead to a 600,000x speed-up in the data-
consistency proof by developing two Abstraction Models so as
to achieve sign-off on this checker.

Fig. 14. Proof radius vs. Runtime for CCX data-consistency checker

TABLE II IMPROVEMENT IN CONVERGENCE BY ABSTRACTIONS

Runtime Comparison with & without
Abstraction Models

Without
Abstraction

Models

With Data-
width

Abstraction

With Data-width and
Counter Abstractions

Proof
Depth

Runtime
(in sec)

Runtime
(in sec)

Proof
Depth

Runtime
(in sec)

10 253 175

11 447 160

12 2,008 317

13 9,112 841

14
Timeout
(8 hours)

1,705

15
Timeout
(8 hours)

5,265

16
Timeout
(8 hours)

25,748

17-22
Timeout
(8 hours)

Timeout (8
hours)

7 56

23
Timeout
(8 hours)

Timeout (8
hours)

8 101

24
full proof

Timeout
(8 hours)

Timeout (8
hours)

9
full proof

149

VIII. CASE STUDY 2

For the second case study, we pick a proprietary, commercial
design for a scalable and configurable network-on-chip (Fig.
15), consisting of multiple masters and slaves interconnected
using decoders, arbiters and optional register slices (RS). Fig.
16 shows the smallest possible, 2x2 version (2 masters and 2
slaves) of the network with cross-bar components, that we will
use in this case study. TABLE III lists the design statistics of
2x2 sub-system. All masters and slaves followed AXI4
protocol on their input and output side respectively. However,
in order to support much higher performance in the internals
of the design, a proprietary modification was specified on the
AXI4 protocol to allow sequences of packets on the five AXI4
channels that would otherwise violate the AXI4 protocol.
This modification enabled much higher performance, but
created additional corner-cases for verification, and created
new challenges, especially for simulation-driven verification.
The work described in this section was done using Mentor’s
Questa Formal tool.

Fig. 15. A P * Q network-on-chip system (P masters and Q slaves)

Fig. 16. 2x2 sub-system used for verification

Slaves ensure that the strict AXI4 protocol is obeyed at its
output, even though the modified AXI4 protocol was allowed
at its input. To this end, it needs to buffer transactions for
AXI4 channels, and re-order transactions to comply with
AXI4 protocol on its output.

The primary verification goal was to ensure that the
network-on-chip does not deadlock under any possible
combinations of input scenarios on all AXI4 channels.

TABLE III DESIGN SUMMARY OF 2X2 SUB-SYSTEM

Module Number of flops

Master0 5,217

Master1 5,229

Decoder0 2

Decoder1 2

Register Slices
(RS0+RS1+RS2+RS3)

334*4=1336

Arbiter0 382

Arbiter1 382

Slave0 3743

Slave1 3743

Total 20,036

We determined that the master can never contribute to
dead-lock and excluded it from scope of formal verification.
Further, we divided the remaining requirement into three
separate proofs:

• The Fabric consisting of the Decoder-RS-Arbiters
network does not deadlock

• The Fabric obeys the modified AXI4 protocol on its
output

• Assuming the Fabric obeys the modified AXI4
protocol on its output, the Slaves do not deadlock

We take “Decoder-RS-Arbiters network doesn’t deadlock”
as an example checker to explain the methodology used to
determine and validate required proof depth.

A. Determining Required Proof Bound

1) Latency analysis: We wrote covers on valid and control
outputs of the two arbiters (e.g. AWVALID and WLAST
signals) to derive a preliminary estimate. These covers were
reached in 3 cycles.

2) Micro-architectural analysis: We analyzed the depth of
FIFOs and counters used in the Arbiter nodes, especially
paying attention to the conditions for getting the FIFOs to be
full, and the counters to be empty. This gave us an estimate of
13 cycles.

3) Covers for interesting corner-cases: The AXI4
modification resulted in a few interesting functional coverage
targets. We wrote covers for each of these targets. The cover
for the deepest of these targets was hit in 29 cycles and was an
indication of a lower bound on the required proof depth.

Note that the AXI4 protocol allows up to 256 transfers for
read or write data bursts [2]. However, the Fabric design is
oblivious to this requirement, and the output of the Fabric
design satisfies this if and only if the input satisfies it. So, we
deliberately under-constrain the inputs to allow arbitrary

number of, even more than 256, transfers. Since nothing in
the design micro-architecture depends on this limit of 256, we
are able to achieve a required proof bound far smaller than 256
cycles.

Fig. 17. Clock cycles vs. Coverage

4) Formal coverage: Our proof bound requirements were
validated using statement, branch, expression and toggle
coverage. As shown in Fig. 17, 100% coverage target was
reached at 20 cycles.

Fig. 18. Clock cycles vs. number of counter-examples seen

5) Failures seen during formal verification: As shown in
Fig. 18, during our checker coding effort, we found first
counter-example at 17th cycles, and most (11 total) of the
counter-examples at 18th cycle and one counter example at 19th
cycle. From 20th cycle onwards, no counter-example was
seen.

B. Results

We reached a proof depth of 31 cycles for the Decode to
arbiter deadlock checker in 12 hours of effort, satisfying our
required proof depth target.

IX. CONCLUSION

Formal verification is a powerful technique to find corner
case design bugs. A formal sign-off methodology can ensure
no bugs are left behind when taping out. However, for end-to-
end formal verification to be applied to realistic and

interesting design blocks, expecting full proof is unrealistic.
The key is to know what proof depth is sufficient and how to
achieve such proof depth when formal tools don’t converge.
This paper outlined the techniques that we have used
successfully to formally sign-off on many design blocks. With
this methodology, formal tools will find more use in today’s
verification flow, and assist in resolving the challenging task
of verification faced by the industry.

ACKNOWLEDGMENTS
The authors would like to acknowledge support from

Mentor Graphics to support their tool and the formal coverage
options, especially Roger Sabbagh. The authors also want to
thank Ankit Saxena and Prashant Aggarwal from Oski
Technology, and designers Junhee Yoo, Jaegeun Yun,
Bubchul Jeong and Dongsoo Kang for their work in the two
case studies.

REFERENCES
[1] P. Aggarwal, D. Chu, V. Kadamby, and V. Singhal, “Planning for end-

to-end formal with simulation-based coverage,” Proc. Formal Methods
in Computer-Aided Design FMCAD 2011, Austin, TX, USA, 2011, pp.
9-16.

[2] ARM Ltd., “AMBA AXI and ACE protocol specification, Issue E,”
2013.

[3] A. R. Bradley, “SAT-based model checking without unrolling,” Proc.
Verification, Model Checking, and Abstract Interpretation VMCAD
2011, Austin, TX, USA, R. Jhala and D. A. Schmidt (Eds.), Springer,
2011, pp. 70-87.

[4] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: a 32-way
multithreaded SPARC processor,” IEEE Micro, vol. 25(2), 2005, pp. 21-
29.

[5] R. P. Kurshan, “Formal verification in a commercial setting,” Proc.
Design Automation Conference DAC 1997, Anaheim, CA, USA, pp.
258-262.

[6] K. L. McMillan, “Verification of an implementation of Tomasolu’s
algorithm by compositional model checking,” Proc. Conf. Computer-
Aided Verification CAV 1998, Vancouver, BC, Canada, A. J. Hu and
M. Y. Vardi (Eds.), Springer, 1998, pp. 110-121.

[7] Oracle Corp., “OpenSPARC overview”, OpenSPARC site,
http://www.oracle.com/technetwork/systems/opensparc/index.html.

[8] F. Pong and M. Dubois, “A new approach for the verification of cache
coherence protocols,” IEEE Trans. Parallel Distrib. Systems, vol. 6(8),
1995, pp. 773-787.

[9] C. Saye and J. Sonander, “Formal verification of AMBA 3 AXI bus
systems,” ARM Information Quarterly, vol. 4(2), 2005, pp. 15-17.

[10] A. Seawright, R. Sathianathan, C. G. Gauthron, J. R. Levitt, K. C.
Mulam, R. C. Ho, and P. Yeung, “Selection of initial states for formal
verification,” U. S. Patent 7,454,324, November 2008.

[11] V. Singhal and P. Aggarwal, “Using coverage to deploy formal
verification in a simulation world,” in Proc. Conf. Computer-Aided
Verification CAV 2011, Snowbird, UT, USA, G. Gopalakrishnan and S.
Qadeer (Eds.), Springer, 2011, pp. 44-49.

[12] Sun Microsystems, “OpenSPARC T1 Specification,”,
http://www.oracle.com/technetwork/systems/opensparc/index.html.

[13] M. N. Velev, R. E. Bryant, and A. Jain, “Efficient modeling of memory
arrays in symbolic simulation,” in Proc. Conf. Computer-Aided
Verification CAV 1997, Haifa, Israel, O. Grumberg (Ed.), Springer-
Verlag, 1997, pp. 388-399.

