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What Does Formal Sign-off Mean

Unique Methodology. Highest Coverage. Fastest Time to Market.



Sign-offs

• What does sign-off mean to program managers?
• Ready for tape-out

• Sign-off requires
• Commitment to finish – else task is optional, and may be killed

• Metrics to measure progress

• Nightly/weekly regression runs

• Common sign-off flows
• Static timing

• Simulation (spreadsheet and coverage)

• Power

• RTL-vs-gates LEC

3/1/20224 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED



Verification (Simulation) Manager’s Dashboard
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Coverage tracking

Bug tracking

Runtime status
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Simulation Sign-off Alone Not Sufficient
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2010 Functional Verification Study.  Used with permission. 
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The Solution – Formal Needs to Be Widely Adopted

Simulation
($401.8M)

Formal
($38.3M)
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$0.4M

• Gate-level formal (equivalence checking)
• Then (1993): Chrysalis; Now: Cadence (Verplex), Synopsys

• RTL formal (model checking)
• Then (1994): Averant, IBM; Now: Cadence, Jasper, Mentor, Synopsys

Source:
Gary Smith EDA, October 

2010

* excluding analog
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Verification Market Size (2009)
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Inconclusive

Formal Reality in Industry

• Around for 20+ years

• Expectations has been set high
• Low efforts for constraints

• Tools will complete proofs

• Expectations have been set low
• Only verify local assertions

• No End-to-End proofs

• Perception
• Low bang-for-the-buck

• Not worthy of “sign-off”

• Training and staffing
• Few places to learn formal application

• How to build a productive formal team
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The biggest challenges is users 
don’t know what to do with 

inconclusive results
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The Facts About Inconclusive Results

Myth: Inconclusive proof results are not useful

• Facts:
• Most “End-to-End” proofs will results in Bounded Proofs

• Bounded Proofs are reported with a proof depth

• Formal guarantees exhaustive search up to proof depth

• Using Abstraction Models, required proof bounds can be minimized

• Formal coverage validates proof depths and formal efforts
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End-to-End Formal Enables Sign-off 
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• Catch corner case bugs early
• Increase verification efficiency
• Replace block-level simulation
• Enable formal sign-off
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End-to-End Formal Complements Simulation
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Ctrl

Formal (MC)

Formal (SEC)

Simulation

• Different designs suited for different methods (MC, SEC or simulation)

• Planning at the micro-architectural design stage is critical

• Formal delivers verified IPs for SOC integration
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Why Bounded Proof Is Necessary in 
Formal Sign-off

Unique Methodology. Highest Coverage. Fastest Time to Market.



Formal
Testbench

Model Checking (MC)

MC Tools
Checkers Verified

OR
CounterExample

p
q

Constraints

Abstraction Models
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*e.g. :
- JasperGold (Jasper)
- IFV/IEV (Cadence)
- Magellan (Synopsys)
- Questa (Mentor)

13

RTL

or
“Inconclusive”
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Oski Formal Sign-off Methodology
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Design Under Test
(DUT)

Constraints

End-to-End 

Checkers
Coverage
(Code and 

Functional)

Complexity 
(Abstraction Models)

Design Under Test
(DUT)

Measurable & Dependable as Simulation Sign-off 
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• Local Assertions – easier to verify

• Internal RTL assertions, embedded in RTL

• Protocol assertions 

 valid/ready handshake, AXI4, DDR2…

• Interface Assertions – harder to verify

• Relate to inputs/outputs

• End-to-End Checkers – hardest to verify

• Model end-to-end functionality

• Can replace simulation

• Often requires abstraction models to 
manage complexity

What is End-to-End Formal?
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RTL

Local Assertions

AXI4
AVIP

DDR2
AVIP

Interface
Assertions

End-to-End
Checkers
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• 95% of End-to-End Checker is in SV or Verilog; rest is SVA
• Developing reference model requires time and effort

End-to-End Checkers
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Memory
Controller (MC)

RTL

D  D  R  2   i/f

A  X  I  4   i/f
MC Checker

FSM

FIFO
Counters

MC Reference Model

SVA Assertions
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Complexity – How to Measure
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Irrelevant
Logic

Cone-of-
Influence

Design
Block

Checker

• One coarse measure of Complexity

• Use number of flops/memory bits in the Cone-of-Influence of the Checker

The Larger the Cone-of-Influence, the More Complex the Proof! 
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Complexity – Where It Comes From
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input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case( st )

2’b00:  if (~a) st <= 2’b01;
2’b01:  st <= 2’b10;
2’b10:  if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Checker:  (st == 2’b01) => ~b

a
st[0]

st[1]

b

RTL

Internal Netlist

Internal STG

23 = 8
210 = 1,024
220 = 1,048,576
230 = 1,073,741,824

Formal Complexity Comes from Search Space Explosion! 
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Formal Covers All State Transitions Within Proof Depth
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Simulation Covers One Path of State Transition
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We Can’t Fight the Exponential!

• Unbounded Proof results can be unpredictable 
• Depends on engine finding an inductive invariant

• Bounded Model Checking is more predictable
• Although, runtime comparison has a much larger variance than proof depth comparison

• Maximize engineer productivity

• Use Abstraction Models to reduce Required Proof Depth
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How Perfect Does Formal Have to Be?
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Graphic: MacGregor
Marketing• Formal has to be more cost-effective than the alternative

• Formal is not perfect
• Deep enough bounded proofs are good enough
• Still need to have checks and balances in place (like anything else)
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How to Compute Required Proof Bound

Unique Methodology. Highest Coverage. Fastest Time to Market.



• Premise:

• A proof depth that gives us the “coverage” that “we need”

• Similar to simulation sign-off

• Can be measured with commercial formal tools

• A proof depth that will not miss any RTL bug

• Bounded proof is as good as full proof, offering formal sign-off

Required Proof Bound
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• Based on:

1. Latency analysis of design

2. Micro-architectural analysis (with, and without designer)

3. Covers for “interesting” corner-cases

4. Formal coverage

5. Failures seen during formal verification

6. Safety nets
a. Missed bugs found in simulation

b. Missed bugs found in hybrid regression runs

Determining Required Proof Bound
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• Analyze latency from one end of the design to the other end

• Provides a lower bound, not the required proof bound

• Layer in additional proof depth due to:

• Initialization

• Multiple input streams

• Long packets (if it matters to the design)

• Error cases

1. Latency Analysis

3/1/202226

Memory
Controller

ARM
AMBA
AXI4

DDR2
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• Analyze micro-architectural structures:
• State machines

• Counters

• FIFOs

• RAMs

• Linked lists

• Analyze RTL code 

• Deeply nested if-then-else, or case statements

• “Determine” proof depth necessary to exercise all relevant logic

2. Micro-architectural Analysis
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• Similar to functional coverage analysis for simulation

• Brain-storm interesting corner-cases:

• Exercise corners of RTL

• Ignore corner-cases that are not relevant to RTL
• E.g. longer sequences than RTL cares about (similar to mistakes in 

functional coverage for simulation)

• Implement covers as properties, and run formal for a minimum 
required proof depth

3. Covers for “Interesting” Corner-Cases
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• Formal Coverage measures quality of formal effort

• Provide quantifiable measure to judge whether:

• Constraints are complete

 Can identify effects of over-constraints situation

• Complexity strategy is complete

 Coverage of proof depths with/without Abstraction Models

• Checkers are complete

 Requires observability coverage

 Could be substituted by proof cores (if we get unbounded proofs!)

4. Formal Coverage
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Code Coverage vs STG Coverage
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input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case (st)
2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;
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Simulation Coverage (a = 0)
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input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case (st)
2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;
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Formal Coverage (depth = 1)
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input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case (st)
2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED



Coverage Methodology

3/1/202233

Implement Checkers
and Constraints

Run formal verification
and collect Coverage

Are
Coverage goals

met?

Add Abstractions
and/or fix Constraints

Formal has achieved
coverage targets
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• Usually one End-to-End checker finds most (many) bugs

• Track number of bugs found for every proof depth

• Some proof depths yield a lot of bugs

5. Failures seen during Formal Verification

3/1/202234

• Beware of modal behavior

• Multiple operating modes, discrete jumps in FSMs, or multiples modes of latencies
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Counter-example lengths
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• Bugs may be missed because:

• Missing checkers

• Over-constraints

• Insufficient proof depth

• Watch missed bugs found in simulation

• Set up formal regressions
• Run formal search from deep states, different states on different days

• Use bug-hunting engines that are not are exhaustive for a bound (PDR)

6. Safety Nets
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Case Study 1
CCX Verification

Unique Methodology. Highest Coverage. Fastest Time to Market.



OpenSPARC T1 Design Characteristics 

3/1/202237

CPU

CCX Statistics

RTL Lines 22,174

Instances 3,227

Inputs 1,982

Outputs 2,005

Flip-flops 30,900
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• 8 CPU requestors

• 1-packet or 2-packet request

• One arbiter per destination

• 4 L2 banks

• IOBridge

• FPU

• 16 deep queue per destination

• Checkerboard structure, shared across all 
requestors

• 2 entries per requestor

• 2-packet requests consume both locations 
reserved for a requestor

• 2 flop stages after queue

• Effectively 18 deep storage structure

CCX Details
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• 11 checkers
• 6 end-to-end checkers

• 5 interface checkers

• 16 constraints

CCX Formal Testbench Summary
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1. Latency analysis 

• Cover on output data valid port 

 Hits in 4 cycles

• Cover aware of 2-packet request 

 Hits in 5 cycles

2. Micro-architectural Analysis

• Exercise all storage locations of 18 deep storage

 21 cycles – Initial latency of 4 cycles + 17 more requests to fill up storage

3. Cover for interesting corner-cases

• 2-packet requests, stall conditions

 Hits in 23 cycles

Determining Required Proof Bound (1/2)
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• Required proof bound – 24 cycles (added 1 cycle for margin)



4. Formal Coverage
• 100% toggle coverage achieved in 21 cycles

Determining Required Proof Bound (2/2)
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• Property: when data ready is high, the output data must match the 
corresponding input data

• 24 cycles are necessary to achieve full proof

• Run-time to reach full proof is approx. 991 days without using 
Abstraction Models

End-to-End Checker: pcx_data_match_A
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• An “Abstraction Model” of a design is a superset of the design behavior

• Reduces state space

• Adds state transitions

• Adds Reset states

Going Deeper with Abstraction Model
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Abstraction Models Achieve Coverage Early
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• To achieve 100% toggle coverage
• With Data-width and Counter Abstraction Models takes 6 cycles 

(proof depth is 9 cycles)

• Without Abstraction Models takes 21 cycles (proof depth is 24 cycles)
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Abstraction Models Enable Formal Convergence Faster
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Without
Abstraction Models

With Data-width 
Abstraction

With Data-width and Counter
Abstractions

Proof Depth Runtime (in sec) Runtime (in sec) Proof Depth Runtime (in sec)

10 253 175
11 447 160
12 2,008 317
13 9,112 841
14 Timeout (8 hours) 1,705
15 Timeout (8 hours) 5,265
16 Timeout (8 hours) 25,748

17-22 Timeout (8 hours) Timeout (8 hours) 7 56
23 Timeout (8 hours) Timeout (8 hours) 8 101

24 (full proof) Timeout (8 hours) Timeout (8 hours) 9 (full proof) 149

Formal tools 
timeout on 
original RTL

Abstraction 
Models 
reduce 

runtime

Abstraction 
Models 
reduce 

proof depth

Abstraction 
Models enable 

early formal 
convergence
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Case Study 2
Deadlock verification in NOC

Unique Methodology. Highest Coverage. Fastest Time to Market.



• P master and Q slaves
• Interconnect having decoders, register slices (RS) and arbiters

NOC Block Diagram

3/1/202247 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Master1

MasterP

. . .

Master0

Slave1

SlaveQ

. . .
Slave0

Xbar
(Decoders, 

Register Slices,
Arbiters)



2-Master, 2-slave DUT
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Decoder0 Arbiter0 Slave0Master0
RS0

RS0

Decoder0 Arbiter0 Slave0Master0
RS0

RS0

region of modified AXI4 protocol

AXI4

AXI4

AXI4

AXI4

2x2 NOC flop Count
Master 10,446

Decoder, RS, Arbiter 2,104

Slave 7,486

Total 20,036



• Slave buffers and re-orders transactions to obey AXI4

• Master can never contribute to deadlock

• Deadlock problem divided in 3 parts
• Decoder-RS-Arbiter network doesn’t deadlock

• Decoder-RS-Arbiter network follows modified AXI4 protocol

• Slave doesn’t deadlock

• DUT - Decoder-RS-Arbiter network

Verification Strategy
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1. Latency analysis 

• Cover on output valid ports of arbiters (e.g. AWVALID)

 Hits in 3 cycles

2. Micro-architectural Analysis

• Analyzed depth of FIFOs and counters in Arbiters

• Cover on simultaneous occurrence of FIFO full and counter empty condition

 13 cycles

3. Cover for interesting corner-cases

 29 cycles

Determining Required Proof Bound (1/3)

3/1/202250 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Proof bound unaffected by AXI4 support of 256 transfers

• Required proof bound – 29 cycles



Determining Required Proof Bound (2/3)
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4. Formal Coverage
• 100% branch, expression and toggle coverage achieved in 20 cycles



5. Failures seen during formal verification
• No counter-example from 20th cycle onwards

Determining Required Proof Bound (3/3)
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