
Sign-off with
Bounded Formal Verification Proofs

NAMDO KIM
SAMSUNG

JUNHYUK PARK
SAMSUNG

HARGOVIND SINGH
OSKI TECHNOLOGY

VIGYAN SINGHAL
OSKI TECHNOLOGY

• What Does Formal Sign-off Mean

• Why Bounded Proof is Necessary in Formal Sign-off

• How to Compute Required Proof Bound

• Case Study 1: CCX design
• Determining Required Proof Bound

• Use Abstraction Models to reduce Required Proof Depth to Achieve
Sign-off

• Case Study 2: NOC design
• Determining Required Proof Bound

• Results

Agenda

3/1/20222 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

What Does Formal Sign-off Mean

Unique Methodology. Highest Coverage. Fastest Time to Market.

Sign-offs

• What does sign-off mean to program managers?
• Ready for tape-out

• Sign-off requires
• Commitment to finish – else task is optional, and may be killed

• Metrics to measure progress

• Nightly/weekly regression runs

• Common sign-off flows
• Static timing

• Simulation (spreadsheet and coverage)

• Power

• RTL-vs-gates LEC

3/1/20224 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Verification (Simulation) Manager’s Dashboard

3/1/20225

Coverage tracking

Bug tracking

Runtime status

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Simulation Sign-off Alone Not Sufficient

0%

10%

20%

30%

40%

50%

60%

2004

2007

2010

Wilson Research Group and Mentor Graphics
2010 Functional Verification Study. Used with permission.

R
es

po
ns

es

6

Types of Post-silicon Flaws

3/1/2022

The Solution – Formal Needs to Be Widely Adopted

Simulation
($401.8M)

Formal
($38.3M)

0
50

100
150
200
250
300
350
400
450

Gate-level RTL

M
ill

io
ns

Simulation Formal

$0.4M

• Gate-level formal (equivalence checking)
• Then (1993): Chrysalis; Now: Cadence (Verplex), Synopsys

• RTL formal (model checking)
• Then (1994): Averant, IBM; Now: Cadence, Jasper, Mentor, Synopsys

Source:
Gary Smith EDA, October

2010

* excluding analog

3/1/20227

Verification Market Size (2009)

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Inconclusive

Formal Reality in Industry

• Around for 20+ years

• Expectations has been set high
• Low efforts for constraints

• Tools will complete proofs

• Expectations have been set low
• Only verify local assertions

• No End-to-End proofs

• Perception
• Low bang-for-the-buck

• Not worthy of “sign-off”

• Training and staffing
• Few places to learn formal application

• How to build a productive formal team

3/1/20228

The biggest challenges is users
don’t know what to do with

inconclusive results

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

The Facts About Inconclusive Results

Myth: Inconclusive proof results are not useful

• Facts:
• Most “End-to-End” proofs will results in Bounded Proofs

• Bounded Proofs are reported with a proof depth

• Formal guarantees exhaustive search up to proof depth

• Using Abstraction Models, required proof bounds can be minimized

• Formal coverage validates proof depths and formal efforts

3/1/20229 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

End-to-End Formal Enables Sign-off

3/1/202210

End-to-End
Formal

Adoption

Co
m

pl
ex

ity
 &

 B
en

ef
its

• Catch corner case bugs early
• Increase verification efficiency
• Replace block-level simulation
• Enable formal sign-off

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

End-to-End Formal Complements Simulation

3/1/202211

MAC
AXI-AHB
BRIDGE

RF

DEC SCH EXEC

LSUINT
ARM

Mem
Ctrl

USB
Ctrl

BB
USB
PHY

GPIO I2CTIMER

DMA
Ctrl

Formal (MC)

Formal (SEC)

Simulation

• Different designs suited for different methods (MC, SEC or simulation)

• Planning at the micro-architectural design stage is critical

• Formal delivers verified IPs for SOC integration

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Why Bounded Proof Is Necessary in
Formal Sign-off

Unique Methodology. Highest Coverage. Fastest Time to Market.

Formal
Testbench

Model Checking (MC)

MC Tools
Checkers Verified

OR
CounterExample

p
q

Constraints

Abstraction Models

3/1/2022

*e.g. :
- JasperGold (Jasper)
- IFV/IEV (Cadence)
- Magellan (Synopsys)
- Questa (Mentor)

13

RTL

or
“Inconclusive”

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Oski Formal Sign-off Methodology

3/1/202214

Design Under Test
(DUT)

Constraints

End-to-End

Checkers
Coverage
(Code and

Functional)

Complexity
(Abstraction Models)

Design Under Test
(DUT)

Measurable & Dependable as Simulation Sign-off

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Local Assertions – easier to verify

• Internal RTL assertions, embedded in RTL

• Protocol assertions

 valid/ready handshake, AXI4, DDR2…

• Interface Assertions – harder to verify

• Relate to inputs/outputs

• End-to-End Checkers – hardest to verify

• Model end-to-end functionality

• Can replace simulation

• Often requires abstraction models to
manage complexity

What is End-to-End Formal?

3/1/202215

RTL

Local Assertions

AXI4
AVIP

DDR2
AVIP

Interface
Assertions

End-to-End
Checkers

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• 95% of End-to-End Checker is in SV or Verilog; rest is SVA
• Developing reference model requires time and effort

End-to-End Checkers

3/1/202216

Memory
Controller (MC)

RTL

D D R 2 i/f

A X I 4 i/f
MC Checker

FSM

FIFO
Counters

MC Reference Model

SVA Assertions

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Complexity – How to Measure

3/1/202217

Irrelevant
Logic

Cone-of-
Influence

Design
Block

Checker

• One coarse measure of Complexity

• Use number of flops/memory bits in the Cone-of-Influence of the Checker

The Larger the Cone-of-Influence, the More Complex the Proof!

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Complexity – Where It Comes From

3/1/202218

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

Checker: (st == 2’b01) => ~b

a
st[0]

st[1]

b

RTL

Internal Netlist

Internal STG

23 = 8
210 = 1,024
220 = 1,048,576
230 = 1,073,741,824

Formal Complexity Comes from Search Space Explosion!

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Formal Covers All State Transitions Within Proof Depth

19

R

1

1

1

1

3/1/2022

2

2

2

22

2

2

2

2

2

2

2

8191

8191

255. . .

Interesting
Corner-cases?

N

Proof Depth

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Simulation Covers One Path of State Transition

20

R

1

1

1

1

3/1/2022

2

2

2

22

2

2

2

2

2

2

2

8191

8191

255. . .

N

Proof Depth Simulation
coverage

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

We Can’t Fight the Exponential!

• Unbounded Proof results can be unpredictable
• Depends on engine finding an inductive invariant

• Bounded Model Checking is more predictable
• Although, runtime comparison has a much larger variance than proof depth comparison

• Maximize engineer productivity

• Use Abstraction Models to reduce Required Proof Depth

3/1/202221

PROOF DEPTH

TO
OL

 R
UN

TI
ME

2hr

4hr

36 37

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

How Perfect Does Formal Have to Be?

3/1/202222

Graphic: MacGregor
Marketing• Formal has to be more cost-effective than the alternative

• Formal is not perfect
• Deep enough bounded proofs are good enough
• Still need to have checks and balances in place (like anything else)

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

How to Compute Required Proof Bound

Unique Methodology. Highest Coverage. Fastest Time to Market.

• Premise:

• A proof depth that gives us the “coverage” that “we need”

• Similar to simulation sign-off

• Can be measured with commercial formal tools

• A proof depth that will not miss any RTL bug

• Bounded proof is as good as full proof, offering formal sign-off

Required Proof Bound

3/1/202224 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Based on:

1. Latency analysis of design

2. Micro-architectural analysis (with, and without designer)

3. Covers for “interesting” corner-cases

4. Formal coverage

5. Failures seen during formal verification

6. Safety nets
a. Missed bugs found in simulation

b. Missed bugs found in hybrid regression runs

Determining Required Proof Bound

3/1/202225 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Analyze latency from one end of the design to the other end

• Provides a lower bound, not the required proof bound

• Layer in additional proof depth due to:

• Initialization

• Multiple input streams

• Long packets (if it matters to the design)

• Error cases

1. Latency Analysis

3/1/202226

Memory
Controller

ARM
AMBA
AXI4

DDR2

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Analyze micro-architectural structures:
• State machines

• Counters

• FIFOs

• RAMs

• Linked lists

• Analyze RTL code

• Deeply nested if-then-else, or case statements

• “Determine” proof depth necessary to exercise all relevant logic

2. Micro-architectural Analysis

3/1/202227 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Similar to functional coverage analysis for simulation

• Brain-storm interesting corner-cases:

• Exercise corners of RTL

• Ignore corner-cases that are not relevant to RTL
• E.g. longer sequences than RTL cares about (similar to mistakes in

functional coverage for simulation)

• Implement covers as properties, and run formal for a minimum
required proof depth

3. Covers for “Interesting” Corner-Cases

3/1/202228 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Formal Coverage measures quality of formal effort

• Provide quantifiable measure to judge whether:

• Constraints are complete

 Can identify effects of over-constraints situation

• Complexity strategy is complete

 Coverage of proof depths with/without Abstraction Models

• Checkers are complete

 Requires observability coverage

 Could be substituted by proof cores (if we get unbounded proofs!)

4. Formal Coverage

3/1/202229 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Code Coverage vs STG Coverage

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

30 3/1/2022

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case (st)
2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Simulation Coverage (a = 0)

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

31 3/1/2022

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case (st)
2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Formal Coverage (depth = 1)

00,0

01,000,1

01
1

0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1

32 3/1/2022

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
if (~rst) st <= 2’b00;
else case (st)
2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
if (~rst) b <= 1’b0;
else if (~a | b) b <= 1’b0;
else b <= 1’b1;

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Coverage Methodology

3/1/202233

Implement Checkers
and Constraints

Run formal verification
and collect Coverage

Are
Coverage goals

met?

Add Abstractions
and/or fix Constraints

Formal has achieved
coverage targets

33 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Usually one End-to-End checker finds most (many) bugs

• Track number of bugs found for every proof depth

• Some proof depths yield a lot of bugs

5. Failures seen during Formal Verification

3/1/202234

• Beware of modal behavior

• Multiple operating modes, discrete jumps in FSMs, or multiples modes of latencies

0

2

4

6

8

10

12

17 18 19 20

Counter-example lengths

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Bugs may be missed because:

• Missing checkers

• Over-constraints

• Insufficient proof depth

• Watch missed bugs found in simulation

• Set up formal regressions
• Run formal search from deep states, different states on different days

• Use bug-hunting engines that are not are exhaustive for a bound (PDR)

6. Safety Nets

3/1/202235 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Case Study 1
CCX Verification

Unique Methodology. Highest Coverage. Fastest Time to Market.

OpenSPARC T1 Design Characteristics

3/1/202237

CPU

CCX Statistics

RTL Lines 22,174

Instances 3,227

Inputs 1,982

Outputs 2,005

Flip-flops 30,900

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• 8 CPU requestors

• 1-packet or 2-packet request

• One arbiter per destination

• 4 L2 banks

• IOBridge

• FPU

• 16 deep queue per destination

• Checkerboard structure, shared across all
requestors

• 2 entries per requestor

• 2-packet requests consume both locations
reserved for a requestor

• 2 flop stages after queue

• Effectively 18 deep storage structure

CCX Details

3/1/202238 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• 11 checkers
• 6 end-to-end checkers

• 5 interface checkers

• 16 constraints

CCX Formal Testbench Summary

3/1/202239 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

1. Latency analysis

• Cover on output data valid port

 Hits in 4 cycles

• Cover aware of 2-packet request

 Hits in 5 cycles

2. Micro-architectural Analysis

• Exercise all storage locations of 18 deep storage

 21 cycles – Initial latency of 4 cycles + 17 more requests to fill up storage

3. Cover for interesting corner-cases

• 2-packet requests, stall conditions

 Hits in 23 cycles

Determining Required Proof Bound (1/2)

3/1/202240 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Required proof bound – 24 cycles (added 1 cycle for margin)

4. Formal Coverage
• 100% toggle coverage achieved in 21 cycles

Determining Required Proof Bound (2/2)

3/1/202241 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16 18 20 22 24To
gg

le
 c

ov
er

ag
e

(in
 %

ag
e)

Clock cycles

Toggle coverage vs. Clock cycles

• Property: when data ready is high, the output data must match the
corresponding input data

• 24 cycles are necessary to achieve full proof

• Run-time to reach full proof is approx. 991 days without using
Abstraction Models

End-to-End Checker: pcx_data_match_A

3/1/202242

1

10

100

1000

10000

100000

1000000

10000000

100000000

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24R
un

tim
e

(in
 s

ec
s;

 in
 lo

g
sc

al
e)

Proof radius (in cycles)

Runtime vs. Proof radius

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• An “Abstraction Model” of a design is a superset of the design behavior

• Reduces state space

• Adds state transitions

• Adds Reset states

Going Deeper with Abstraction Model

3/1/202243

R

1

1

1

1

2

2

2

22

2

2

2

2

2

2

2

8191

8191

255. . .

Interesting
Corner-cases

Short-cuts due to
Abstraction Models

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Abstraction Models Achieve Coverage Early

3/1/202244

• To achieve 100% toggle coverage
• With Data-width and Counter Abstraction Models takes 6 cycles

(proof depth is 9 cycles)

• Without Abstraction Models takes 21 cycles (proof depth is 24 cycles)

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10 12 14 16 18 20 22 24To
gg

le
 c

ov
er

ag
e

(in
 %

ag
e)

Clock cycles

Toggle coverage vs. Clock cycles

With Data-width and Counter Abstraction Models

Without Abstraction Models

Abstraction Models Enable Formal Convergence Faster

3/1/202245

Without
Abstraction Models

With Data-width
Abstraction

With Data-width and Counter
Abstractions

Proof Depth Runtime (in sec) Runtime (in sec) Proof Depth Runtime (in sec)

10 253 175
11 447 160
12 2,008 317
13 9,112 841
14 Timeout (8 hours) 1,705
15 Timeout (8 hours) 5,265
16 Timeout (8 hours) 25,748

17-22 Timeout (8 hours) Timeout (8 hours) 7 56
23 Timeout (8 hours) Timeout (8 hours) 8 101

24 (full proof) Timeout (8 hours) Timeout (8 hours) 9 (full proof) 149

Formal tools
timeout on
original RTL

Abstraction
Models
reduce

runtime

Abstraction
Models
reduce

proof depth

Abstraction
Models enable

early formal
convergence

© 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Case Study 2
Deadlock verification in NOC

Unique Methodology. Highest Coverage. Fastest Time to Market.

• P master and Q slaves
• Interconnect having decoders, register slices (RS) and arbiters

NOC Block Diagram

3/1/202247 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Master1

MasterP

. . .

Master0

Slave1

SlaveQ

. . .
Slave0

Xbar
(Decoders,

Register Slices,
Arbiters)

2-Master, 2-slave DUT

3/1/202248 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

Decoder0 Arbiter0 Slave0Master0
RS0

RS0

Decoder0 Arbiter0 Slave0Master0
RS0

RS0

region of modified AXI4 protocol

AXI4

AXI4

AXI4

AXI4

2x2 NOC flop Count
Master 10,446

Decoder, RS, Arbiter 2,104

Slave 7,486

Total 20,036

• Slave buffers and re-orders transactions to obey AXI4

• Master can never contribute to deadlock

• Deadlock problem divided in 3 parts
• Decoder-RS-Arbiter network doesn’t deadlock

• Decoder-RS-Arbiter network follows modified AXI4 protocol

• Slave doesn’t deadlock

• DUT - Decoder-RS-Arbiter network

Verification Strategy

3/1/202249 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

1. Latency analysis

• Cover on output valid ports of arbiters (e.g. AWVALID)

 Hits in 3 cycles

2. Micro-architectural Analysis

• Analyzed depth of FIFOs and counters in Arbiters

• Cover on simultaneous occurrence of FIFO full and counter empty condition

 13 cycles

3. Cover for interesting corner-cases

 29 cycles

Determining Required Proof Bound (1/3)

3/1/202250 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

• Proof bound unaffected by AXI4 support of 256 transfers

• Required proof bound – 29 cycles

Determining Required Proof Bound (2/3)

3/1/202251 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4. Formal Coverage
• 100% branch, expression and toggle coverage achieved in 20 cycles

5. Failures seen during formal verification
• No counter-example from 20th cycle onwards

Determining Required Proof Bound (3/3)

3/1/202252 © 2005-2014 OSKI TECHNOLOGY, INC.- ALL RIGHTS RESERVED

0

2

4

6

8

10

12

17 18 19 20

Counter-example lengths

• Deadlock checker reached 31 cycles with 12 hours of effort

	Sign-off with�Bounded Formal Verification Proofs
	Agenda
	What Does Formal Sign-off Mean
	Sign-offs
	Verification (Simulation) Manager’s Dashboard
	Simulation Sign-off Alone Not Sufficient
	The Solution – Formal Needs to Be Widely Adopted
	Formal Reality in Industry
	The Facts About Inconclusive Results
	End-to-End Formal Enables Sign-off
	End-to-End Formal Complements Simulation
	Why Bounded Proof Is Necessary in Formal Sign-off
	Model Checking (MC)
	Oski Formal Sign-off Methodology
	What is End-to-End Formal?
	End-to-End Checkers
	Complexity – How to Measure
	Complexity – Where It Comes From
	Formal Covers All State Transitions Within Proof Depth
	Simulation Covers One Path of State Transition
	We Can’t Fight the Exponential!
	How Perfect Does Formal Have to Be?
	How to Compute Required Proof Bound
	Required Proof Bound
	Determining Required Proof Bound
	1. Latency Analysis
	2. Micro-architectural Analysis
	3. Covers for “Interesting” Corner-Cases
	4. Formal Coverage
	Code Coverage vs STG Coverage
	Simulation Coverage (a = 0)
	Formal Coverage (depth = 1)
	Coverage Methodology
	5. Failures seen during Formal Verification
	6. Safety Nets
	Case Study 1�CCX Verification
	OpenSPARC T1 Design Characteristics
	CCX Details
	CCX Formal Testbench Summary
	Determining Required Proof Bound (1/2)
	Determining Required Proof Bound (2/2)
	End-to-End Checker: pcx_data_match_A
	Going Deeper with Abstraction Model
	Abstraction Models Achieve Coverage Early
	Abstraction Models Enable Formal Convergence Faster
	Case Study 2�Deadlock verification in NOC
	NOC Block Diagram
	2-Master, 2-slave DUT
	Verification Strategy
	Determining Required Proof Bound (1/3)
	Determining Required Proof Bound (2/3)
	Determining Required Proof Bound (3/3)

