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Abstract—How many times have you coded a watch-dog timer
that triggers when an event does not occur within a time limit?
Have you ever wondered whether there was a function to display
a few more elements, not just one at an error location, when
a data mismatch occurred in a scoreboard? Design verification
engineers often encounter such issues, which we addressed by de-
veloping a generic class library in SystemVerilog. After surveying
several verification projects and other programming languages,
we created these commonly used classes: a text processing class,
fifteen container classes, two strategy classes, six verification-
specific classes, and three domain-specific classes. To evaluate the
library’s benefit, we categorized our verification code into project-
specific and fixed-pattern groups. The preliminary results showed
that the library reduced the number of lines of the project-specific
code by about 5%. The library was made available as open-
source code and placed in a social coding site to encourage the
verification communities to extend its functionality further.

Keywords—SystemVerilog, generic library, open source soft-
ware, text processing, data structures, arrays

I. INTRODUCTION

SystemVerilog is among the most widely used object-
oriented programming languages in the design verification
field [1]. Recent developments in modern verification method-
ology using SystemVerilog have led to viable reuse of verifi-
cation components, such as a reusable scoreboard in Universal
Verification Methodology (UVM) proposed by Sarkar [2].
Although modern verification methodology like UVM provides
a high-level verification framework for this reuse, test-bench
development often requires the repeated use of low-level
functions. Examples include text manipulation, a linked list
to model a chain of DMA descriptors, and data randomization
with distributions. These functions can be highly reusable, but
lack of an openly available library tends to prevent their reuse.
It seems that every test-bench defines its own version of min
and max functions, for example.

Generic functions might be rarely shared for several rea-
sons. One is that most people lack the time to develop
such a library. Creating robust functions requires thorough
verification. Defining consistent and configurable functions is
not trivial, and writing API documents is a burden. Another
reason is that some functions are relatively easy to develop.
Thus, people do not view creating them as something that
is tedious even if it is necessary to do so repeatedly. Lastly,
even though the library is created, sharing it might be difficult
because of technical and legal restrictions.

Nevertheless, we believe the generic library would benefit
the verification community immediately for these reasons: (i)

users can save time by not having to develop the common
functions; and (ii) they can write more readable code by
separating implementation from usage. If the library is created
properly, additional benefits might accrue. Foremost, users can
avoid common mistakes, pitfalls and gotchas. For example,
the library can provide a thread-safe operation if concurrency
is crucial. Secondly, users can enjoy the latest SystemVerilog
features without knowing them if a simulator supports them.
For example, if a simulator supports the $countbits system
function, the library can delegate the bit counting of a packed
array to this function instead of iterating over the array.
Thirdly, users can choose different algorithms/implementations
based on their requirements. Lastly, the library can provide
a uniform way to access data. For example, one can use a
common iterator to access a collection class regardless of its
implementation. Furthermore, a shared library can evolve and
be fixed by peer developers.

This paper discusses the development of a generic library
in SystemVerilog that provides frequently used classes and
functions. This library is methodology independent. It is made
available as open source so that the verification communi-
ties can extend it. In order to extract common functions,
we investigated multiple verification projects from various
domains. We also surveyed other programming languages. We
found that modern scripting languages, such as Python and
Ruby, have a much richer set of string functions [3], [4]
than present in SystemVerilog [5]. Though text processing is
not the primary use of SystemVerilog, text handling, such as
aligning a text, is not uncommon in test-bench development.
Such a manipulation might not be difficult to develop, but it
often requires tedious coding. As a result of the investigation,
we developed five groups of classes: a text processing class,
container classes, strategy classes, verification-specific classes,
and domain-specific classes. We are currently investigating
489,875 lines of existing SystemVerilog code, and we found
that about 5% of code could be replaced with the classes
and functions in the common library. The reduction of code
helped to reduce the number of potential bugs. The existing
library provides only a limited number of functions. Therefore,
the ability to extend the library is one key to its usefulness.
Thanks to the recent evolution of social coding sites, code
collaboration has never been easier. We used GitHub [6] to
make the library open to the communities.

Section II describes the overview of the library. Sections III
to VII describe each group of the library and highlight some
methods of the library. Sections VIII and IX summarize
packaging and code sharing. Section X discusses case studies



using the library. Another approach to add functionality is also
studied.

II. OVERVIEW OF THE LIBRARY

The library was classified into five main groups: (i)
text processing; (ii) container; (iii) strategy; (iv) verification-
specific; and (v) domain-specific. All groups except the text
processing were further divided into sub-groups (Figure 1).
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Fig. 1. Groups of the Library

To identify the common functions of the text processing
class, the string libraries of C++ [7], Java [8], Python [3],
Perl [9], Ruby [4], and JavaScript [10] were surveyed. C++
Standard Library [7] and Java Collections Framework [8]
were also surveyed to develop the container classes. In ad-
dition, nine verification projects were investigated to extract
frequently used functions. The domains of the verification
projects included an array processor, an image processor, SoC
interconnects, and mobile peripherals.

The library was implemented in SystemVerilog, but some
classes allowed the user to choose a foreign language im-
plementation. For example, the text processing class was
implemented in two ways. One used native SystemVerilog
only, and the other delegated some functions to the Standard
C++ Library via Direct Programming Interface (DPI). The
former might be selected for easier debugging, while the latter
might be selected for better performance.

The library was developed as verification-methodology ag-
nostic. We did not use any methodology-dependent classes in
building the library. Many functions were declared as static
so that they could be used without instantiating an object. All
container classes were implemented as parameterized classes,
and they could be specialized with a data type. The data type

could be an integral data type, such as bit and int, or a
user-defined data type, such as class. Unlike Java, primitive
wrapper classes were not created intentionally.1 This allowed
us to use a container class for an integral data type without
creating a wrapper object.

We focused on low-level classes and functions to lay the
foundation for higher-level classes and functions. For example,
building blocks of a scoreboard such as a priority queue and a
data-stream class were provided, but not the scoreboard itself.
There were about 360 functions in the library. In the following
sections, we highlighted only the classes and functions that
were interesting from a verification point of view. For a
complete list of the classes and functions, see our online
document [11].

III. TEXT PROCESSING CLASS

Although text processing is not the primary focus of
verification, we often need it. The number of functions that
the string library of other programming languages support
varies (Table I). Note that string operators such as “!=” were
excluded from the number of functions. Also note that the
overloaded functions were counted as one.

TABLE I. NUMBER OF STRING FUNCTIONS

Language Type/Class/Object Number of Functions

SystemVerilog string 18
SystemC/C++ std::string 25
Java java.lang.String 38
Python str 44
Perl string 22
Ruby String 82
JavaScript String 19

About half of the string functions of SystemVerilog and
C++ are numeric converters such as atoi. We created forty-
seven functions, which were divided into three categories
(Table II).

TABLE II. TEXT PROCESSING FUNCTIONS

Returns string:

capitalize join_str slice
center lc_first slice_len
change ljust strip
chomp lstrip swap_case
colorize replace title_case
contains_str reverse trim
delete rjust uc_first
insert rstrip untabify

Returns bit:

contains is_lower is_upper
ends_with is_printable only
is_alpha is_single_bit_type starts_with
is_digit is_space

Returns Other:

chop index rpartition
count partition rsplit
find_any rfind_any split
hash rindex split_lines

The top group lists the functions that return a string-
type object. The middle group lists the functions that return

1A wrapper class wraps around the value of an integral data type to make
it an object.



a Boolean bit. The bottom group lists the functions that
return another type of object. Since we output texts much
more frequently than we read texts in SystemVerilog, we
created more functions that return a string (top group).
Nevertheless, the users can do Python-like text processing in
SystemVerilog by using the other functions if necessary.

As mentioned in the Overview of the Library, the text pro-
cessing class was implemented in two ways; one in SystemVer-
ilog only, the other with C++. The following subsections show
sample implementations of the index function, which returns
the index of the first occurrence of the specified substring
(sub) in the given string (s).

A. Implementation 1 – Using SystemVerilog Only

The function uses a for loop to find a match:

static function int text::index( string s,
string sub,
int start_pos = 0,
int end_pos = -1 );

int slen = s.len();
int blen = sub.len();

if ( slen == 0 || blen == 0 ) return -1;
normalize( s, start_pos, end_pos );
for ( int i = start_pos; i <= end_pos - blen + 1;

i++ ) begin
if ( s.substr( i, i + blen - 1 ) == sub )

return i;
end
return -1;

endfunction: index

B. Implementation 2 – Using SystemVerilog and C++

The function delegates the string search to a C++ function
called c_find:

import "DPI-C" function
int c_find( string, string, int );

static function int text::index( string s,
string sub,
int start_pos = 0,
int end_pos = -1 );

int i;
int slen = s.len();
int blen = sub.len();

if ( slen == 0 || blen == 0 ) return -1;
normalize( s, start_pos, end_pos );
i = c_find( s, sub, start_pos );
if ( i >= 0 && i + blen - 1 <= end_pos ) return i;
return -1;

endfunction: index

The c_find function creates a std::string object and
calls its find method to find a match:

extern "C" {
int c_find( const char* s,

const char* sub,
const int start_pos ) {

std::string ss( s );
return ss.find( sub, start_pos );

}
}

Although many functions were inspired by the program-
ming languages we surveyed, some functions were newly
created with verification in mind. The next subsection shows
an example.

C. Colorize

Some terminals support color. The colorize function
takes advantage of the color capability. One could use this
function to highlight error messages in red in a log file.
The function uses ANSI escape codes [12] to change the
foreground and background color of the specified text. Addi-
tionally, the function can change the font to boldface, underline
the text, and even make it blink if supported by the terminal.
The formal arguments of the function are shown below:

static function string
text::colorize( string s,

fg_color_e fg = FG_BLACK,
bg_color_e bg = BG_WHITE,
bit bold = 0,
bit underline = 0,
bit blink = 0,
bit reverse = 0 );

A sample usage follows:

$display( text::colorize( "display me in red",
FG_RED ) );

IV. CONTAINER CLASSES

A container offers a data structure that collects other
objects. Four groups of classes were created: (i) pair; (ii) tuple;
(iii) aggregates; and (iv) collections.

A. Pair Class

The pair is a parameterized class that carries two values,
which can be different types. For example, the code below
creates an object of the pair type, which has a value of int
type and a value of string type.

pair#(int,string) p;
p = new( 123, "a pair of int and string" );
$display( "%d", p.first ); // first element
$display( "%s", p.second ); // second element

The pair class provides the functions shown in Table III.

TABLE III. FUNCTIONS OF PAIR AND TUPLE CLASSES

Pair Class Tuple Class

eq eq
ne ne
lt lt
gt gt
le le
ge ge
clone clone
swap swap



B. Tuple Class

The tuple extends the concept of pair. It carries more than
two values as a single unit. Since SystemVerilog does not
support the variable number of class parameters, we created a
tuple class that holds up to ten values. The class declaration
looks like this:

class tuple #( type T1 = int, type T2 = int,
type T3 = int, type T4 = int,
type T5 = int, type T6 = int,
type T7 = int, type T8 = int,
type T9 = int, type T10 = int );

// ... body of the class
endclass: tuple

The tuple class provides the same functions as the pair class
does (Table III). A pair or a tuple can be used as an argument
and/or a return value of a function if more than one value
needs to be passed as a single unit.

C. Aggregate Classes

The aggregate classes provide utility functions to various
aggregate data types. Six classes were created in this group.
Tables IV to VI show the list of functions that each of the
aggregate classes supports.

TABLE IV. FUNCTIONS OF PACKED ARRAY AND UNPACKED ARRAY

Packed Array Class Unpacked Array Class

from_unpacked_array
to_unpacked_array
from_queue from_queue
to_queue to_queue
from_dynamic_array from_dynamic_array
to_dynamic_array to_dynamic_array
init init
reverse reverse
count_zeros compare
count_ones to_string
count_unknowns
count_hizs

1) Packed Array Class: The packed_array is a param-
eterized class that provides utility functions to a packed array.
The class can be specialized with a data type and the width
of the array. The data type must be the bit data types (bit,
logic, reg), enumerated types, or other packed arrays and
packed structures. The following sample code shows how to
convert a packed array into an unpacked array using one of
the functions of the class.

bit[7:0] pa; // packed array
bit ua[7:0]; // unpacked array
ua = packed_array#(bit,8)::to_unpacked_array( pa );

2) Unpacked Array Class: The unpacked_array is
a parameterized class that provides utility functions to an
unpacked array. The class can be specialized with a data type
and the size of the array. The data type can be any data type.
The following sample code reverses the order of unpacked
array elements.

my_class ua[8]; // unpacked array of my_class
unpacked_array#(my_class,8)::reverse( ua );

TABLE V. FUNCTIONS OF DYNAMIC ARRAY AND QUEUE

Dynamic Array Class Queue Class

from_unpacked_array from_unpacked_array
to_unpacked_array to_unpacked_array
from_queue from_dynamic_array
to_queue to_dynamic_array
init init
reverse reverse
compare compare
clone clone
split split
merge merge
concat concat
extract extract
append append
to_string to_string

TABLE VI. FUNCTIONS OF DATA STREAM AND BIT STREAM
(INHERITED FUNCTIONS ARE NOT SHOWN)

Data Stream Class Bit Stream Class

to_bit_stream alternate
make_divisible count_zeros
sequential count_ones
constant count_unknowns
random count_hizs
scramble
to_string
to_string_with_en

3) Dynamic Array Class: The dynamic_array is a
parameterized class that provides utility functions to a dynamic
array. The class can be specialized with any data type. The
following sample code shows how to compare two dynamic
arrays using a user-provided comparator.

my_class da1[]; // dynamic array 1
my_class da2[]; // dynamic array 2
bit result = dynamic_array#(my_class)::
compare( da1, da2, .cmp( my_comparator ) );

The my_comparator is a strategy class that provides the
functions that compare two objects of my_class type. It must
provide at least the ne function that returns 1 if two objects
are not equal. If no comparator is given, the elements of the
dynamic arrays are compared using the default comparator,
whose ne function compares two objects using the logical
inequality operator (“!=”).

4) Queue Class: The queue is a parameterized class that
provides utility functions to a queue. The class can be special-
ized with any data type. This class provides similar functions
to the ones the dynamic array class provides (Table V).

5) Data Stream Class: The data_stream is a param-
eterized class that manages a stream of packed arrays. The
data_stream is a subclass of the dynamic_array class
(Figure 2).
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Fig. 2. Specialization of the Array Classes



Similar to the packed_array class, this class can be
specialized with a data type and the width of the array. The
same restrictions as that of the packed_array class apply in
terms of the kind of data type. This class has a function called
to_string to display its contents in a variety of ways. For
example, the following code displays only four elements from
the beginning of the data stream and six elements from the
end of the data stream.

bit[7:0] ds[]; // data stream
ds = new[16]( ’{ ’h00, ’h11, ’h22, ’h33,

’h44, ’h55, ’h66, ’h77,
’h88, ’h99, ’hAA, ’hBB,
’hCC, ’hDD, ’hEE, ’hFF } );

$display( data_stream#(bit,8)::to_string( ds,
.group( 2 ), .num_head( 4 ), .num_tail( 6 ) ) );

The output looks like this:

0011 2233 ... AABB CCDD EEFF

Note that the group argument specifies the number of ele-
ments to group together, the num_head specifies the number
of elements at the beginning of the data stream to display, and
the num_tail specifies the number of elements at the end of
the data stream to display.

A data stream may be accompanied with its data-enables.
For example, the code below displays the value of an array
element (ds[i]) if a corresponding data-enable (de[i]) is
1. Otherwise, it displays “--”.

bit[7:0] ds[]; // same data stream as before
bit de[]; // data enables
de = new[16]( ’{ 0, 1, 1, 0,

1, 0, 0, 1,
1, 1, 1, 1,
1, 0, 0, 1 } );

$display(data_stream#(bit,8)::to_string_with_en(
ds, de, .group( 4 ), .group_separator( "\n" ) );

The output looks like this:

--1122--
44----77
8899AABB
CC----FF

There are more arguments to customize the output (see [11]).

The data_stream class also has a rich set of data-
generation functions. For example, the code below generates a
dynamic array of 16 elements that have sequential values with
a randomized initial value.

bit[7:0] ds[];
ds = data_stream#(bit,8)::sequential(

.length( 16 ), .randomize_init_value( 1 ) );

The generated array can be displayed as before (assuming the
randomized initial value was ’h75):

$display( data_stream#(bit,8)::to_string( ds,
.group( 1 ), .num_head( 4 ), .num_tail( 0 ) ) );

// 75 76 77 78 ...

6) Bit Stream Class: The bit_stream is a parameterized
class that manages a bit stream. The bit_stream is a
subclass of the data_stream class specialized with a 1-
bit width (Figure 2). One can use this class to manage a serial
data stream.

D. Collection Classes

The collection classes offer data structures. Seven collec-
tion classes and one iterator class were created (Figure 3).
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Fig. 3. Collection Classes

The collection class is an abstract base class that
defines the common functions that its subclasses should imple-
ment. Some collection classes were implemented using a queue
and an associative array type in SystemVerilog. The queue and
the associative array have associated methods. It is important
to know the performance of the methods because selecting an
inappropriate method can negatively impact the performance
of the collection classes. For example, inserting an element to
the front of a queue using the insert function, or deleting
an element from the back of a queue using the delete
function takes much longer time than other operations.2 This
is because all elements have to be shifted in the queue for
these operations. We took these underlying structures into
consideration when we created the collection classes described
below.

1) Set Class: The set is a collection class that contains
no duplicate elements. It is implemented using an associative
array.

2) Deque Class: The deque is a double-ended queue class
that supports push and pop at both ends. It is implemented
using a queue.

3) Linked List Class: The linked_list is a doubly-
linked list class. It is implemented using a newly created
link element type. The class provides better performance for
inserting and deleting elements than the deque class does.

2q.insert(0,e) is equivalent to q.push_front(e), but the former
takes a much longer time.



4) Priority Queue Class: The priority_queue class
orders its elements according to their priority. It is imple-
mented using a newly created priority heap.

5) Map Class: The map class maps keys to values. It is
implemented using an associative array.

6) Stack Class: The stack class implements a Last-In-
First-Out (LIFO) structure. It is implemented using a queue.

7) Iterator Class: The iterator class provides uniform
access methods to the collection classes regardless of their
implementations. The following code shows an example to
iterate over each element within a set.

set#(int) int_set;
iterator#(int) it = int_set.get_iterator();
while ( it.has_next() )
$display( it.next() );

V. STRATEGY CLASSES

The strategy classes provide a family of algorithms used
by other classes. Two groups of classes were created: (i)
comparators; and (ii) formatters.

A. Comparators

The comparators are used to compare two objects. They
are mainly used by the container classes. A new comparator
should be created if two objects need to be deep-compared.
For example, the eq function of the default comparator uses
the logical equality operator (“==”) for the object comparison:

class comparator #( type T = int );
virtual function bit eq( T x, T y );
return x == y;

endfunction: eq
// ... other functions

endclass: comparator

The default comparator is fine for comparing two objects of
an integral data type, such as int. However, if the type is the
pair, you might want to compare the elements in the pairs,
not the object handles. The pair_comparator is one of
the comparators the library offers. This comparator compares
the elements in the pairs to determine the equality:

class pair_comparator #( type T = pair )
extends comparator #(T);
virtual function bit eq( T x, T y );
return x.first == y.first &&

x.second == y.second;
endfunction: eq
// ... other functions

endclass: pair_comparator

B. Formatters

The formatters are used to convert an object to a string for-
mat. A simulation often uses large integer values, such as sim-
ulation time values scaled in picoseconds. The to_string
function of the comma_formatter class can format an
integral data value to a string that has commas as thousands
separators for better readability. For example, the following
code displays “123,456,789”.

comma_formatter#(longint) com_fmtr
= comma_formatter#(longint)::get_instance();

$display( com_fmtr.to_string( 123456789 ) );

VI. VERIFICATION-SPECIFIC CLASSES

The verification-specific classes offer utility functions use-
ful for verification. We created three groups of classes: (i)
random classes; (ii) timer classes; and (iii) a journal class.

A. Random Classes

1) Random Number Classes: The random number classes
provide pre-defined distribution bins for randomizing a num-
ber. Classes with 2, 4, 8, 16, and 32 distribution bins are
defined. The random number class with four bins is shown
below.

class random_4_bin_num;
dist_bin db[4];
rand int val;

constraint val_con {
val dist {
[db[0].min_val:db[0].max_val] :/ db[0].wt,
[db[1].min_val:db[1].max_val] :/ db[1].wt,
[db[2].min_val:db[2].max_val] :/ db[2].wt,
[db[3].min_val:db[3].max_val] :/ db[3].wt
};

}
endclass: random_4_bin_num

The dist_bin is a struct defined as:

typedef struct {
int min_val;
int max_val;
byte unsigned wt; // distribution weight

} dist_bin;

For example, the following code creates four random distribu-
tion bins:

random_4_bin_num n = new;

// min max wt
n.db = ’{ ’{ 100, 200, 1 }, // bin 0

’{ 300, 400, 2 }, // bin 1
’{ 500, 600, 3 }, // bin 2
’{ 700, 800, 4 } }; // bin 3

assert( n.randomize() );
$display( n.val ); // the randomized value

The value of variable n.val is randomized to between 100
and 200, between 300 and 400, between 500 and 600, or
between 700 and 800 with a weighted ratio of 1-2-3-4.

2) Random Utility Class: The random_util provides a
function to return a value of bit type that shows true (1) or
false (0). It is randomized based on the given percentage. In the
following example, the conditional expression is randomized
to 1 with 70% of probability.

if ( random_util::random_bool( 70 ) ) begin
// ...



B. Timer Classes

Table VII lists the functions of the timer classes.

1) Kitchen Timer Class: The kitchen_timer class
counts a simulation time (not a wall clock time) and triggers
an event once the timer expires. The kitchen timer can be used
as a watch-dog timer or as an event trigger that fires a later
time.

2) Stopwatch Class: The stopwatch class also counts a
simulation time. Unlike the kitchen timer class, the stopwatch
class is mainly used for monitoring the performance of an
internal process. The user can measure the end-to-end delay
of a transaction, or the duration between two events.

3) Random Delay Class: The random_delay class waits
for a randomized time within the range specified by the user.
The user can specify an event to exit from the waiting state
before the randomized delay elapses.

TABLE VII. TIMER FUNCTIONS

Kitchen Timer Class Stopwatch Class Random Delay Class

start start delay
stop stop
pause pause
resume resume
reset reset
is_stopped is_stopped
is_running is_running
is_paused is_paused
set_delay measure
add_delay
set_random_delay
get_elapsed
get_remaining

C. Journal Class

The journal class provides a uniform method to write
a transaction log. It can save a separate log file for post-
processing.

VII. DOMAIN-SPECIFIC CLASSES

The domain-specific classes described below offer utility
functions to a specific target domain, but these functions are
generic enough to reuse.

A. CRC Class

The crc class calculates a cyclic redundancy check value.
It provides forty-two different, commonly used CRC functions.
One function declaration of the CRC class is shown below:

static function bit[15:0]
crc::crc16_ccitt( bit bitstream[] );

A general-purpose CRC function that can use a custom CRC
polynomial is also provided.

B. Scrambler Classes

The scrambler is a parameterized class that provides a
scramble function to a bit stream. One general-purpose scram-
bler as well as eighteen commonly used scramblers were
created. The function declaration to scramble a bit stream
follows:

class scrambler #( type T = bit, int DEGREE = 2 );
typedef T bs_type[]; // bit stream type
typedef T[DEGREE-1:0] lfsr_type;

virtual function bs_type scramble(
bs_type bs, ref lfsr_type lfsr ); // LFSR values
// ... body of the function

endfunction: scramble
// ... other functions

endclass: scrambler

The function returns the scrambled bit stream as well as the
Linear Feedback Shift Register (LFSR) value, which can be
used as the seed value for the next call of this function.

C. 8b/10b Encoding Class

The 8b/10b encoding class is currently being developed.
The class provides 8b/10b encoding and decoding functions
for serial communications.

VIII. PACKAGING

A. Package

All library files are included by a single file called
cl_pkg.sv. It packages class definitions into one Sys-
temVerilog package called cl. We chose this short name for
the package to make it less obtrusive, but one can change the
name if it conflicts with other namespaces. A class declared
within the package can be accessed using one of the following:

• the class scope resolution operator “::”

int i = cl::choice#(int)::min( j, k );

• an explicit import declaration

import cl::choice;
int i = choice#(int)::min( j, k );

• a wildcard import (as usual)

import cl::*;
int i = choice#(int)::min( j, k );

Many functions were defined as static so as to be used
without instantiating an object.

B. License

The library is licensed under the MIT / X Window System
License [13], which means “this library can be used however
you want even in proprietary verification.”

IX. SOCIAL CODING

Our library is a first step towards a richer and more
complete set of libraries. In the last few years, web-based
repository hosting services for software projects have emerged.
GitHub [6] is one of the so-called “social coding” service
providers. We chose GitHub not only because it is the most
popular open-source forge [14], but because it offers more
social aspects that encourage developers to contribute. We have
identified the following stages in which one becomes involved
in social coding:



A. Downloads

The initial stage is actually using the library. Downloading
is simply a click of a “Download ZIP” button. The whole
library package, as well as the test suite used to verify the
library, are downloaded.

B. Comments

The second stage is to comment on the library. GitHub
offers line-level comments to allow the reviewer to make
a suggestion to a specific line of code. The other users’
contributions can be “watched” similar to the way one can
follow Twitter users. Personal notifications to the specific
activities can be set as well.

C. Forks

The third stage is to modify the library. Forking creates a
personal copy of a project. This personal copy can be modified
in any way.

D. Pull Requests

The fourth stage is to share the modification with the
community. Pull requests allow the user to request that his
or her contribution be merged.

We anticipate that using GitHub lowers the barriers for
contributing at each stage mentioned above. However, there is
a complication specific to verification libraries. More details on
this will be given in the Difficulties of Open-Source Projects
in the next section.

X. RESULTS AND DISCUSSION

A total of thirty-eight classes and a total of 362 functions
and tasks were created. To evaluate the number of lines
that could be replaced by the library, we investigated nine
verification projects. VMM was used for four projects and
VMM-like in-house methodology was used for five projects.
A total of 489,875 lines of existing SystemVerilog code was
investigated. This number of lines included class-based code
such as tests, verification components, and verification objects,
but excluded module-based code such as design under test
(DUT) and top-level test benches. The comment lines and
blank lines were also excluded. The preliminary investigation
revealed that about 2% of code could be replaced by the library.

One of the main goals of the generic library was to reduce
the number of lines by reusing common functions. However,
the 2% code reduction fell somewhat short of our expectations.
Was this because the library was not diversified enough to
cover the wide range of verification functions? Or, was this
because the verification work itself intrinsically consisted of
a project-specific unique set of codes, and thus no additional
common library could be created? To answer these questions,
further investigations were made to reveal what the other 98%
of code carried out.

A. Code Breakdown

We categorized our code into two groups: a fixed-pattern
group and a project-specific group. The code categorized into
the fixed-pattern group uses fixed style and usually cannot
be replaced by the common library. The fixed-pattern group
includes compiler directives, interface definitions, type defini-
tions, declarations, constraints, functional coverages, register
abstraction layers (RAL), and boilerplate codes. The boiler-
plate codes are the functions that have to be included to
make verification methodology work. The examples include
the copy, compare, byte_pack, and byte_unpack
functions of VMM [15]. The code not classified into the fixed-
pattern group is categorized into the project-specific group.

typedef (1.3%)
interface (1.9%)
compiler directive (2.1%)

constraint (2.3%)
structure literal (2.7%)

variable declaration (2.7%)
covergroup (3.1%)

function−argument declaration (6.1%)
boilerplate (8.1%)

RAL (30.5%)

project−specific (39.2%)

Fig. 4. Breakdown of 489,875 Lines of Verification Code

Interestingly, the investigation results showed that about
60% of the codes were categorized into the fixed-pattern
group (Figure 4). If we excluded the fixed-pattern code, the
reduction rate rose to about 5%. Considering that most of the
library consisted of low-level functions, this number seemed
reasonable. Even though the number of fixed-pattern codes
took 60% of the entire code, and the library might give little
benefit to them, the fixed-pattern codes were relatively easy
to develop and could even be generated automatically. As the
project-specific codes are the most vital part, this reduction
rate seemed satisfactory.

B. Limitations of the Library

Although our library can be extended to support more
variety of functions, some functions are probably infeasible to
develop in SystemVerilog. This is because of the performance
and expressiveness of the language compared to other pro-
gramming languages.3 Such functions may include processing
regular-expressions, image processing, and parsing external
format such as JavaScript Object Notation (JSON) [16]. One
approach to overcoming this limitation is to use another
programming language through DPI. SystemVerilog defines a
foreign-language layer only for the C programming language,
but with a little effort we would be able to interface the
SystemVerilog to C++ as shown in Section III.

3The language expressiveness is measured by how simply a concept can be
expressed in the language.



The library does not break the language limitations either.
For example, the library cannot add a new syntax to the
language such as a list comprehension, nor add a new program-
ming paradigm such as a lambda function (Python supports
both). One interesting approach to overcome this limitation
without modifying the language itself would be to create a
library similar to Functional Java [17]. However, we have not
yet evaluated the usefulness of such an approach for the design
verification field.

C. Difficulties of Open-Source Projects

Open sourcing does not magically make a project a success.
In his booklet on open-source projects, Fogel [18] mentions
that most free software projects fail. This is because they add
new sets of complexities, such as deploying a development
web site, writing documentation, packaging, and managing
contributors who have never met each other. In addition to
these common hurdles, there is another restriction specific
to verification libraries. Unlike other open-source projects, in
which contributors use their own time and software, the veri-
fication libraries are usually developed using their employer’s
resources. Typically, the copyright of such libraries belong
to their employer. To avoid potential risks with lawsuits, we
have decided not to accept any “pull requests” from individual
contributors. This may not be the ideal eco-system, but the
users can still make comments on the library and fork the
library to extend it by themselves. We hope a social coding
site like GitHub would ease these activities. Although we will
not accept the source code in itself, we will accept a request
for developing a new class or a function. Because the new
function might immediately benefit other users, we will try to
add it on a regular basis to make the library more useful.

XI. CONCLUSIONS

We created a library to handle common verification tasks,
and opened it to the verification community. Our library
was independent from any verification methodology. One
area of future work will be to develop a methodology-
dependent library, such as for UVM. Examples include an
extension of uvm_tlm_generic_payload class, an event
waiter that waits for a uvm_event with a timeout, and a
report_phase function that collects the simulation statis-
tics [19].

Python lovers often use the phrase “batteries included” to
describe its standard library [20], which covers many utility
functions. One reason that coding in Python is fun may be
because of this rich set of libraries. We hope that our library
may become the starting point for the shared generic library
that makes coding fun again in SystemVerilog, too.
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