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Abstract — This paper shows a successful cooperation between 

simulation and formal verification which enabled code coverage 

closure with minimum effort. The case study presented is the 

cryptography engine of Ubicom IP8000 processor.  Formal 

verification, in the form of unreachability analysis, was first 

applied to refine code coverage results by identifying the 

unreachable targets, among the uncovered targets, for all the 

components of the IP8000 core. Among the remaining reachable 

targets there were data dependent blocks of the 3DES (Triple 

DES, Data Encryption Standard) engine. Covering those targets 

with simulation alone would have required a large number of 

random simulation cycles, with no guarantee of hitting the 

coverage target, or a very time-consuming unrolling of the DES 

algorithm iterations. Instead, we used formal verification to find 

the 3DES inputs that were needed to reach 100% coverage. This 

block had not undergone assertion based verification, therefore 

there were no constraints to model the environment in formal 

analysis and the cost of developing them from scratch would have 

been too high. However, several existing tests, similar to those 

required, provided examples of legal traces for the block. In this 

paper we show how we captured the essence of those traces, the 

key control signals and their timing, in an SVA (SystemVerilog 

Assertion Language) sequence and how we used that sequence in 

an SVA cover statement to generate values that could be directly 

used in a system level test in order to close the coverage loop.  

Keywords: unreachability analysis; coverage closure; formal 

verification;  simulation 

I.  INTRODUCTION 

In this paper we present a case study of combining the 
usage of formal verification [1] and simulation techniques to 
close code coverage [2] on a 3DES [3,4] block, a component of 
the Ubicom IP8000 processor [5].  The 3DES block is part of 
the IP8000 hardware crypto security engine, which includes 
encryption, decryption, authentication and key exchange with 
support for DES/3DES as well as MD5 (Message Digest 
algorithm), AES (Advanced Encryption Standard), SHA1, and 
SHA2 (Secure Hashing Algorithm) to accelerate networking 
algorithms and wireless security. We describe how we used 
existing simulation results and formal verification without 
constraints to find the 3DES inputs that were needed to reach 
100% code coverage. 

Code coverage is an effective technique to identify 
functional verification holes.  While 100% code coverage does 
not guarantee the full exploration of the design functionality, 
less than 100% clearly indicates that some code was never 

exercised. Code coverage is one of the key metrics in Ubicom’s 
functional verification methodology whose objective is to 
deliver very high quality design in a cost-effective way. The 
case study presented in this paper is an example of how best 
results can be achieved with minimum effort by using the most 
suitable tool for the task at hand and by exploiting 
complementing technologies such as simulation and formal 
analysis. Coverage is measured towards the end of the project 
to assess the quality of the verification effort. New directed 
tests, which target the unreached coverage objectives, are then 
written. 

A key step in coverage analysis is to separate the 
achievable from the unachievable coverage targets, a task for 
which, in the IP8000 project, we used unreachability analysis. 
This consists of a formal proof that a given coverage target 
cannot be reached. Unreachability analysis is an example of 
how formal verification can be used to support a simulation 
based verification flow. This technique has been previously 
used [6,7] and it is becoming a standard feature of formal tools 
[8].   In this paper we take the cooperation of formal and 
simulation a step further by showing how formal analysis and 
simulation can be efficiently used to close the coverage loop. In 
particular we show how to exploit the result of unreachability 
analysis, existing simulation tests and formal verification to 
create, with very limited effort, the missing test cases for the 
3DES engine.  

The rest of the paper is organized as follows: section II 
gives a description of Ubicom IP8000 and its verification 
strategy; section III describes the application and results of 
unreachability analysis to Ubicom IP8000 core; section IV 
outlines the functionality of the crypto engine and the missing 
test cases; section V describes how the missing tests were 
created by using a combination of formal verification and 
simulation; section VI concludes this paper. 

II. VERIFICATION OF UBICOM IP8000  

Ubicom is a fabless semiconductor company 

headquartered in San Jose, CA that develops processor 

systems that optimize data flow where Media Meets 

Networking. The IP8000 processor family is the fifth 

generation of Ubicom’s line of 32-bit processors for high 

performance embedded applications. 

IP8000 has an 800MHz 12-threaded CPU with 64KB 

level-1 instruction/data caches and a separate 256KB on-chip 



memory. Significant differences from previous generations 

include the additions of MMU (Memory Management Unit), 

FPU (Floating Point Unit), BTB (Branch Target Buffer) and 

pipe-depth within the CPU; support for multiple outstanding 

misses in-flight from the caches; and DDR3, PCIe Gen-2 and 

USB 3.0 external interfaces. Unique to Ubicom processors is 

the ability to schedule 12 threads down a single non-stalling 

pipeline and an efficient memory-to-memory ISA. 

The verification team was involved from the architecture 

phase all the way through to post-silicon performance 

validation, with bugs being progressively more expensive to 

fix the later they were found. The design team was also 

“persuaded” to help-out: using design-for-verification 

techniques, one example being a run-time switch on the MMU 

that allowed legacy pipeline tests to be run on the new CPU. 

Given the large number of product changes and a small 

team with limited simulation farm resources, we had no choice 

but to work smart – selecting the most suitable tool for any 

task to get the best result with the least effort.  When targeting 

the IP8000 core module the team employed directed tests, 

constrained random tests, assertions and formal proof based 

techniques to verify different blocks.  

CPU tests were written in UBICOM32 assembly language. 

Given the effort to write tests at this level, Ubicom engineers 

use a lightweight BNF context-free language to expand their 

individual directed test into a constrained random one; this 

format is supported by the internally-developed tool DRAG 

(Directed Random Algorithm Generator). 

These CPU tests were passed through the UBICOM32 

toolchain to produce instruction and data memory images that 

were loaded into a Verilog simulator. Traces were captured by 

monitors during the simulation and used to compare off-line 

against a golden reference model in a post-process step. 

Coverage analysis was used to determine when constrained 

random testing was asymptotically approaching its productive 

limit for any block. At that point other techniques such as 

directed tests or formal proofs were used to hit the remaining 

coverage holes. 

Towards the end of the project we booted Linux on the 

RTL simulator, a task that took 96-hours to complete and 

which found numerous software bugs along the way.  For 

completeness the verification team also ran gate-level 

simulations: hierarchical, flat, and SDF-annotated; looking for 

problems in the reset state of the machine, scan connectivity 

and “don’t-care” design space left uncovered by LEC tools.  

III. REFINING CODE COVERAGE RESULTS: 

UNREACHABILITY ANALYSIS 

As described in the previous section, code coverage was 
collected towards the end of the IP8000 project, in order to 
assess the quality of the verification effort. 

The block coverage for the IP8000_core module (see Table 
1) was 93.41%; 10 out of 14 components had less than 100% 
block coverage, a total of 967 uncovered targets. 

Unreachability analysis was used to identify unreachable 
targets. This consists in a formal proof that no sequence of 
input values exists that covers the block of code under analysis. 
Details of how unreachability analysis was applied are given in 
the next subsection. We first discuss the results we obtained. 

 

Block Coverage Name 

93% (13710/14677) IP800_core 

(cumulative) 

Immediate sub-instances 

93%    (5303/5679) Unit1 

83%    (59/71) Unit2 

78%    (142/182) Unit3 

96%    (880/915) Unit4 

78%    (757/969) Unit5 

96%    (1328/1378) Unit6 

93%    (255/273) Unit7 

96%    (3705/3852) Unit8 (including 

security engine) 

92%    (649/701) Unit9 

96%    (561/586) Unit10 

100%  (58/58) Unit11 

100%  (5/5) Unit12 

100%  (6/6) Unit13 

100%  (2/2) Unit14 

Table 1. Initial block coverage for the IP8000_core and its components 

 

Unreachability analysis identified 579 targets as 
unreachable (see Table 2). Those were reviewed to rule out 
design bugs; it was established that the unreachable targets 
were default statements or blocks not used in the chosen mode 
of operation, selected using either input values or parameter 
values.  

 

Block Coverage Name 

97% (13710/14098/579) IP800_core 

(cumulative) 

Immediate sub-instances 

98%    (5303/5393/286) Unit1 

91%    (59/65/6) Unit2 

88%    (142/162/20) Unit3 

99%    (880/886/29) Unit4 

88%    (757/856/113) Unit5 

97%    (1328/1365/13) Unit6 

93%    (255/273) Unit7 

98%    (3705/3768/84) Unit8 (including 

security engine) 

95%    (649/680/21) Unit9 

97%    (561/579/7) Unit10 

100%  (58/58) Unit11 

100%  (5/5) Unit12 

100%  (6/6) Unit13 

100%  (2/2) Unit14 

Table 2. Block coverage after unreachability analysis of the IP8000_core 
components (covered blocks/total reachable blocks/unreachable blocks). 

 



Of the remaining 388 uncovered targets, 346 were 
identified as unreachable by the designers, leaving 42 blocks 
for which new tests needed to be developed. Five of those 
blocks belonged to the 3DES module of the security engine (a 
sub-instance of Unit8); in this paper we report on the technique 
used to craft the tests for these 5 targets.  

The final block coverage was 99.91%; the last 12 
uncovered targets belonged to the Data Cache arbiter. It was 
decided to formally verify this module and the remaining 
coverage was waived. Table 3 summarizes the uncovered 
blocks throughout the coverage review process. 

 

 Uncovered blocks 

Initial uncovered blocks 967 

After unreachability analysis 388 

After designer review, to be 

covered by new tests 
42 

Final uncovered blocks, to 

be addressed by formal 

verification 

12 

Table 3. Uncovered blocks throughout the coverage review process 

 

A. Applying Unreachability Analysis 

Unreachability analysis uses formal analysis to assess if a 
given coverage target can ever be reached. If a target is 
identified as unreachable, there is no sequence of inputs which 
covers the target, while matching the constraints of formal 
analysis.  

We used Cadence Incisive Comprehensive Coverage  
(ICCR) to analyze coverage and Cadence Incisive Formal 
Verifier (IFV) to perform unreachability analysis. At the time 
of the project, the two tools had not yet been integrated into 
one flow, now the Code Coverage Unreachability flow of 
Cadence Incisive Enterprise Verifier-XL (IEV). Therefore we 
used scripting to convert coverage results to formal targets and 
vice versa.  

A first script iccr2ifv analyzed the ICCR coverage report 
and translated uncovered blocks into IFV deadcode automatic 
assertions. There are 2 limitations to the this part of the flow: a) 
there is no IFV deadcode equivalent of “implicit else” blocks, 
which occur when an “if” statement without an “else” clause is 
used; b) care needs to be taken when targets belong to included 
files because the two tools use different qualifiers for the line 
numbers. The IEV unreachability flow removes these 
limitations and extends the unreachability analysis to 
expression coverage. 

The selected deadcode automatic assertions were run in 
IFV. A failed assertion indicates that the target code is indeed 
“dead” and therefore unreachable in simulation. A second 
script ifv2iccr translated back failed deadcode assertions to 
blocks to be filtered out in ICCR.  

We had to choose the hierarchical level at which to run the 
formal deadcode analysis. Although we made an attempt at 
running at IP8000_core level, it was deemed more efficient to 

perform unreachability analysis on each IP8000_core 
component with uncovered targets. The only abstraction 
technique used was blackboxing of the memories. The total run 
time of unreachability analysis was less than 2 hours, while the 
maximum memory consumption was less than 2.8GB. The size 
of the IP8000_core components ranged from 70 FFs to 35K 
FFs. Notice that only the uncovered targets were formally 
analyzed, as the covered targets were obviously not deadcode. 
This resulted in a more efficient usage of the formal tool.  

No constraints were used in the unreachability analysis, 
even when they were available, as the objective was to identify 
structurally and unquestionably unreachable code. The only 
settings specified were the clocks (some components have 
multiple synchronous clocks) and the reset state. 

IV. CRYPTO ENGINE AND MISSING TEST CASES 

Ubicom’s IP8000 network processor provides hardware 
acceleration for network security protocols such as IPSEC, 
VPN and SSL via its encryption, decryption and hashing 
algorithm implementations. Its security engine includes blocks 
that implement the most prevalent cryptographic algorithms, 
including AES (Advanced Encryption Standard), MD5 
(Message Digest algorithm), DES and 3DES (Triple DES, Data 
Encryption Standard), and Secure Hashing Algorithms 
variations: SHA-1, SHA-256, and SHA-512, SHA-224 and 
SHA-384. 

In this paper we describe the 3DES engine and the 
verification methods used to complete its design verification 
block coverage.  The 3DES cipher logic in the IP8000 
processor reuses a DES encryption/decryption hardware block 
(see Fig. 1) along with 3 key registers and a control state 
machine in order to produce its results.  While we examine 
DES as our example, the same coverage hole issues and 
solutions, including formal methods, could be applied to any of 
the security engine's crypto blocks.  

The 3DES function performs a series of three DES 
encrypt/decrypt calculations with three keys, so its hardware 
consists of a DES cipher function block and a control state-
machine. 

 
Figure 1.    Triple DES – Overview of Encryption 



Briefly, the IP8000's DES hardware block takes in a 64-bit 
data block and a 64-bit key.  Its cipher function consists of 16 
rounds of logical processing (Feistel function [9]), preceded by 
an initial permutation and followed by a final permutation (see 
Fig. 2 and Fig. 3). The result is a 64-bit output. The DES 
function is symmetric, in that it uses the same key for 
encryption and decryption. Each of the crypto algorithm 
function blocks in the IP8000 design has a set of directed 
verification suites, which include mode variations, timing 
variations and data patterns along with pre-calculated results. 

In addition, some of the blocks, such as the DES/3DES 
cipher block use a C-reference model to enable directed 
random input data and key generation and result checking for 
its encryption and decryption modes.   (It should be noted that 
DES is now considered obsolete and 3DES, a variation of DES 
that is repeated 3 times with up to 3 independent keys, has been 
superseded for many applications by AES, which is also 
supported by the IP8000 security engine.) 

The design verification effort for the 3DES block made use 
of DRAG, Ubicom’s internally-developed tool, to support its 
directed random testing.  This allowed us to generate repeatable 
random tests and feed data patterns to the Design-Under-Test 
(DUT) as well as the C-reference model and use the reference 
result for checking of the DUT. 

Of course, given the number of possible patterns, this still 
meant that it could take a long time before random testing 
would cover all the logic.  Note that for 3DES, there are 2

168
 or 

3.74 x 10
50

 possible keys, for DES; there are 2
56

 or 7.2 x 10
16

 
keys. 

Our IP8000 design verification coverage effort yielded a 
number of uncovered code blocks within the security engine.  
Some were timing cases, such as concurrent events and gaps 
between events, e.g. result data ready versus new data inputs.   
Others were variations of algorithm mode combinations, such 
as cipher chaining.    These control-based cases were straight-
forward to create and add to our test-suite.  However, there 
were still a number of uncovered blocks that were data 
dependent. 

The approaches that we considered for solving this problem 
included more random simulation, modifying the C-reference 
model, and manually creating additional tests. 

In fact, when examining the uncovered blocks, we found 
that the 3DES block still had some intermediate logic terms 
that were not covered, even after much simulation with random 
inputs.  Given an intermediate result, it is possible to "unroll" 
and rewind or reverse-engineer the encryption calculation to 
find sets of intermediate patterns for the multiple stages which 
eventually map back to block input patterns, but this can be a 
time-consuming job and might be best served by permuting and 
using the C-reference model. 

In our case, there were a number of intermediate terms that 
were uncovered from various stages of the block, so modifying 
the reference model could also be time-consuming and one-
time/throwaway work.  Given enough simulation cycles, we 
could probably have covered the remaining logic using our 
existing random methods, but that would consume simulation 
cycles and be slower due to coverage collection.   Finally, we 
could have tried to manually derive the input values from the 
known uncovered intermediate values, but this would have 
been a difficult and time consuming task even after reducing 
the number of unknown by using fixed key values.  

 

 
 

Figure 2.   Internal structure of DES (from Wikipedia) 

 

 
 

Figure 3.   Feistel function (F-function) of DES  (from Wikipeida) 



Instead, we considered the possibility of having a formal 
verification tool do the work of reverse-engineering the 
patterns. We were already using the formal tool to find 
deadcode in the security engine, so we explored using the 
results to produce a set of possible input patterns and keys.   In 
fact, we realized that we could make the problem easier 
because we could constrain the key value.  In this case, we 
needed to not only derive the value of the intermediate causal 
input, but we needed to derive the original input pattern that 
was presented to the block itself in order to most easily feed the 
patterns into proper test cases.  

V. CLOSING THE LOOP: CREATING THE MISSING TESTS 

USING FORMAL AND SIMULATION 

The first attempt in generating the missing tests for the 
3DES block was based directly on the results of the formal 
unreachability analysis. IFV found the uncovered code to be 
reachable and generated a witness, which showed how to reach 
those lines at the module level (Fig. 4 shows the source code 
annotation from the witness of the deadcode assertions for line 
37 of the module des_s1).  Tracing the driver of the input b1 
showed that the witness value of b1 was derived from the value 
of an uninitialized register. This was neither a scenario that 
could be reproduced in simulation or a significant one for 
functional verification. At the same time, the local value of b1 
alone was not enough to craft a meaningful test case. What was 
needed was the input of the entire 3DES block or even better 

the values of the input registers that would be loaded by the 
CPU to start a 3DES calculation. 

A more interesting witness could have been obtained by 
modeling the environment of the 3DES block. However this 
block had not undergone assertion based verification, therefore 
there were no constraints to model its environment in formal 
analysis and the cost of developing them from scratch was 
deemed too high with respect to the risk of bugs in the block. 
Modeling of the environment would have required a) the 
formal verification engineer to become familiar with the 
functionality of the crypto engine and its integration within the 
system and b) to describe the environment in SVA [10]. 

The alternative was to examine existing tests that exercised 
the same logic to understand how similar blocks were covered 
under normal operating condition.  

Finding the tests was fairly straightforward thanks to the 
way the tests were named and organized. Once a candidate test 
was identified, it was confirmed that it was of interest by 
looking at the block coverage for the test itself. The specific 
test, called sec_3des, covered line 64 of the des_s1 module.  

In order to understand how the sec_3des test achieved 
coverage of the des_s1 line, the inputs of the 3DES module 
(which contained des_s1)  and the signals b1 and s1 of des_s1 
were displayed in a waveform viewer (see Fig. 5).  

 It was then clear that the desired value of the signal b1 
(shown in the witness of the deadcode assertion and equal to 
‘h08) had to be produced at some point in the 16 cycles 
between des_start and des_done. This behavior could be easily 
captured in an SVA sequence consisting of two parts: a) a 
sequence describing the behavior of des_start and des_done; b) 
a sequence describing that b1 takes the desired value at least 
once. The two SVA sequences were then combined by the 
intersect SVA operator, so that the first sequence, which has a 
fix length of 18 cycles, constrained the length of the second 
one.  Finally, the resulting sequence was instantiated in an SVA 
cover statement: 

 
 

Figure 4.   Source code annotation from the witness of the unreachability 

analysis of line 37; it indicates that the line is reached when the signal b1 

has the value ‘h08. 

 
 

Figure 5.   Simulation waveform for test sec_3des 

 



cover_b1_08: cover property 

(@posedge clk_core) 

 (des_start && !des_stop  

  ##1 !des_start && !des_stop [*16] 

  ##1 !des_start && des_stop) 

 intersect 

 (##1 (des.des_f.des_s1.b1[5:0] == ‘h08)[=1]));  

 

Running the cover statement in IFV produced a witness that 
showed the desired value of signal b1 within 
des_start/des_done cycle and, more importantly, the values of 
des_in and des_key needed to drive b1 (see Fig. 6). These two 
signals correspond to the registers that the CPU loads when 
starting 3DES and their values can be used in a directed system 
level test.   

The trace shown in Fig. 6 was actually obtained by fixing 
the value of des_key. This could be easily achieved by adding a 
third subsequence to the cover statement: 

cover_b1_08: cover property 

… 

 intersect 

 (##1 (des.des_f.des_s1.b1[5:0] == ‘h08)[=1]) 

intersect 

((des_key[63:0] == ‘hdeadbeef12345678)[*]));  

 

The value of des_in needed to close coverage on the given 
block was des_in[63:32] == ‘h000e6386 and des_in[31:0] == 
‘had365b75. 

The same technique was applied to generate des_in values 
for the other 4 uncovered blocks. To avoid copy and paste and 
improve readability, a parametric SVA property 
stage_and_value was defined: 

property state_and_value(stage, value); 

(des_start && !des_stop  

  ##1 !des_start && !des_stop [*16] 

  ##1 !des_start && des_stop) 

 intersect 

 (##1 (stage == value)[=1]) 

intersect 

((des_key[63:0] == ‘hdeadbeef12345678)[*]);  

endproperty 

 

The above property was then instantiated for each 
uncovered block: 

cover_b1_08: cover property ( 

  stage_and_value ( 

   des.des_f.des_s1.b1[5:0], ‘h08)); 

… 

cover_b3_17: cover property ( 

  stage_and_value ( 

   des.des_f.des_s3.b3[5:0], ‘h17)); 

 

Similarly to the described example, the stage and value for 
each of the other uncovered blocks were derived from the 
witness of the corresponding IFV automatic deadcode 
assertion. The witness of each cover statement then provided 
the des_in value for the system level test. 

In this case study we had no specific difficulty in working 
with the cover statements, which provided the desired results 
within just a few minutes of runtime. However, it is not 
uncommon when trying to cover a specific behavior to have to 
deal with a “fail” result. In such a case no trace is provided, as 
“fail” means that no trace exists. In order to make progress and 
understand why the behavior cannot be covered, one would 
relax parts of the behavior description to the point where a 
trace can be produced. For example, in the cover statements of 
this case study, one could start with removing one of the 3 
sequences joined by the intersect operator. Or, if constraints 
were specified by means of assume statements, one or more 
constraints would be temporarily commented out. Once a trace 
is generated, it is examined to understand in what way it 
contradicts the desired behavior. The reason might be a mistake 
in the behavior description, or an over-restrictive set of 
environment constraints, or one might conclude that the 
specific behavior is indeed unreachable and use the information 
in the trace to understand why.  

A. Creating the Missing Tests and Verifying Coverage 

Once the formal tool was able to give us a pattern, it was 
simple to take an existing directed test and replace the input 
data with those produced by formal analysis and prove that the 
resulting calculation indeed covered the logic that we had 
targeted. For directed tests, we used a known good DES 
calculator (Linux OpenSSL command line tool) to calculate the 
expected result for comparison to the simulated result. 

Given the new directed tests, we were able to run 
simulation with coverage collection turned on and confirm that 
the targeted blocks were indeed covered. 

VI. CONCLUSIONS 

Coverage closure is generally regarded as a resource 
intensive and time consuming task. It requires two main 

 
 

Figure 6.   Witness for cover_b1_08 

 



activities: a) separating the uncovered target into reachable and 
unreachable; b) developing new test cases for the reachable 
targets. Formal verification can ease both tasks. However, 
applying formal verification has a cost in itself, in particular, 
when environment modeling by means of constraints is needed. 
In this paper we presented a case study in which we combined 
formal verification and existing simulation results, instead of 
environment modeling, to create the missing test cases. This 
way of applying formal verification was very cost-effective, 
while the effort required by simulation or formal alone would 
have been a) well in excess of the few hours required by the 
proposed technique and b) too high compared to the risk of 
bugs in the block. Without the proposed technique, we would 
have had to settle for a lower coverage.  

The case study described is one of several successful 
applications of formal verification in a mostly simulation-
driven verification methodology. During the IP8000 design 
project, formal verification complemented the simulation effort 
in the verification of critical blocks, protocols and algorithms.  
Formal techniques were also very successfully applied for post-
silicon debugging and system level connectivity verification. 
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