
Shaping Formal Traces without Constraints:
A Case Study in Closing Code Coverage on a Crypto Engine Using Formal Verification

David N. Goldberg, Adriana Maggiore, David J. Simpson

Ubicom, Inc.

San Jose, CA

{dgoldberg, amaggiore, jsimpson}@ubicom.com

Abstract — This paper shows a successful cooperation between

simulation and formal verification which enabled code coverage

closure with minimum effort. The case study presented is the

cryptography engine of Ubicom IP8000 processor. Formal

verification, in the form of unreachability analysis, was first

applied to refine code coverage results by identifying the

unreachable targets, among the uncovered targets, for all the

components of the IP8000 core. Among the remaining reachable

targets there were data dependent blocks of the 3DES (Triple

DES, Data Encryption Standard) engine. Covering those targets

with simulation alone would have required a large number of

random simulation cycles, with no guarantee of hitting the

coverage target, or a very time-consuming unrolling of the DES

algorithm iterations. Instead, we used formal verification to find

the 3DES inputs that were needed to reach 100% coverage. This

block had not undergone assertion based verification, therefore

there were no constraints to model the environment in formal

analysis and the cost of developing them from scratch would have

been too high. However, several existing tests, similar to those

required, provided examples of legal traces for the block. In this

paper we show how we captured the essence of those traces, the

key control signals and their timing, in an SVA (SystemVerilog

Assertion Language) sequence and how we used that sequence in

an SVA cover statement to generate values that could be directly

used in a system level test in order to close the coverage loop.

Keywords: unreachability analysis; coverage closure; formal

verification; simulation

I. INTRODUCTION

In this paper we present a case study of combining the
usage of formal verification [1] and simulation techniques to
close code coverage [2] on a 3DES [3,4] block, a component of
the Ubicom IP8000 processor [5]. The 3DES block is part of
the IP8000 hardware crypto security engine, which includes
encryption, decryption, authentication and key exchange with
support for DES/3DES as well as MD5 (Message Digest
algorithm), AES (Advanced Encryption Standard), SHA1, and
SHA2 (Secure Hashing Algorithm) to accelerate networking
algorithms and wireless security. We describe how we used
existing simulation results and formal verification without
constraints to find the 3DES inputs that were needed to reach
100% code coverage.

Code coverage is an effective technique to identify
functional verification holes. While 100% code coverage does
not guarantee the full exploration of the design functionality,
less than 100% clearly indicates that some code was never

exercised. Code coverage is one of the key metrics in Ubicom’s
functional verification methodology whose objective is to
deliver very high quality design in a cost-effective way. The
case study presented in this paper is an example of how best
results can be achieved with minimum effort by using the most
suitable tool for the task at hand and by exploiting
complementing technologies such as simulation and formal
analysis. Coverage is measured towards the end of the project
to assess the quality of the verification effort. New directed
tests, which target the unreached coverage objectives, are then
written.

A key step in coverage analysis is to separate the
achievable from the unachievable coverage targets, a task for
which, in the IP8000 project, we used unreachability analysis.
This consists of a formal proof that a given coverage target
cannot be reached. Unreachability analysis is an example of
how formal verification can be used to support a simulation
based verification flow. This technique has been previously
used [6,7] and it is becoming a standard feature of formal tools
[8]. In this paper we take the cooperation of formal and
simulation a step further by showing how formal analysis and
simulation can be efficiently used to close the coverage loop. In
particular we show how to exploit the result of unreachability
analysis, existing simulation tests and formal verification to
create, with very limited effort, the missing test cases for the
3DES engine.

The rest of the paper is organized as follows: section II
gives a description of Ubicom IP8000 and its verification
strategy; section III describes the application and results of
unreachability analysis to Ubicom IP8000 core; section IV
outlines the functionality of the crypto engine and the missing
test cases; section V describes how the missing tests were
created by using a combination of formal verification and
simulation; section VI concludes this paper.

II. VERIFICATION OF UBICOM IP8000

Ubicom is a fabless semiconductor company

headquartered in San Jose, CA that develops processor

systems that optimize data flow where Media Meets

Networking. The IP8000 processor family is the fifth

generation of Ubicom’s line of 32-bit processors for high

performance embedded applications.

IP8000 has an 800MHz 12-threaded CPU with 64KB

level-1 instruction/data caches and a separate 256KB on-chip

memory. Significant differences from previous generations

include the additions of MMU (Memory Management Unit),

FPU (Floating Point Unit), BTB (Branch Target Buffer) and

pipe-depth within the CPU; support for multiple outstanding

misses in-flight from the caches; and DDR3, PCIe Gen-2 and

USB 3.0 external interfaces. Unique to Ubicom processors is

the ability to schedule 12 threads down a single non-stalling

pipeline and an efficient memory-to-memory ISA.

The verification team was involved from the architecture

phase all the way through to post-silicon performance

validation, with bugs being progressively more expensive to

fix the later they were found. The design team was also

“persuaded” to help-out: using design-for-verification

techniques, one example being a run-time switch on the MMU

that allowed legacy pipeline tests to be run on the new CPU.

Given the large number of product changes and a small

team with limited simulation farm resources, we had no choice

but to work smart – selecting the most suitable tool for any

task to get the best result with the least effort. When targeting

the IP8000 core module the team employed directed tests,

constrained random tests, assertions and formal proof based

techniques to verify different blocks.

CPU tests were written in UBICOM32 assembly language.

Given the effort to write tests at this level, Ubicom engineers

use a lightweight BNF context-free language to expand their

individual directed test into a constrained random one; this

format is supported by the internally-developed tool DRAG

(Directed Random Algorithm Generator).

These CPU tests were passed through the UBICOM32

toolchain to produce instruction and data memory images that

were loaded into a Verilog simulator. Traces were captured by

monitors during the simulation and used to compare off-line

against a golden reference model in a post-process step.

Coverage analysis was used to determine when constrained

random testing was asymptotically approaching its productive

limit for any block. At that point other techniques such as

directed tests or formal proofs were used to hit the remaining

coverage holes.

Towards the end of the project we booted Linux on the

RTL simulator, a task that took 96-hours to complete and

which found numerous software bugs along the way. For

completeness the verification team also ran gate-level

simulations: hierarchical, flat, and SDF-annotated; looking for

problems in the reset state of the machine, scan connectivity

and “don’t-care” design space left uncovered by LEC tools.

III. REFINING CODE COVERAGE RESULTS:

UNREACHABILITY ANALYSIS

As described in the previous section, code coverage was
collected towards the end of the IP8000 project, in order to
assess the quality of the verification effort.

The block coverage for the IP8000_core module (see Table
1) was 93.41%; 10 out of 14 components had less than 100%
block coverage, a total of 967 uncovered targets.

Unreachability analysis was used to identify unreachable
targets. This consists in a formal proof that no sequence of
input values exists that covers the block of code under analysis.
Details of how unreachability analysis was applied are given in
the next subsection. We first discuss the results we obtained.

Block Coverage Name

93% (13710/14677) IP800_core

(cumulative)

Immediate sub-instances

93% (5303/5679) Unit1

83% (59/71) Unit2

78% (142/182) Unit3

96% (880/915) Unit4

78% (757/969) Unit5

96% (1328/1378) Unit6

93% (255/273) Unit7

96% (3705/3852) Unit8 (including

security engine)

92% (649/701) Unit9

96% (561/586) Unit10

100% (58/58) Unit11

100% (5/5) Unit12

100% (6/6) Unit13

100% (2/2) Unit14

Table 1. Initial block coverage for the IP8000_core and its components

Unreachability analysis identified 579 targets as
unreachable (see Table 2). Those were reviewed to rule out
design bugs; it was established that the unreachable targets
were default statements or blocks not used in the chosen mode
of operation, selected using either input values or parameter
values.

Block Coverage Name

97% (13710/14098/579) IP800_core

(cumulative)

Immediate sub-instances

98% (5303/5393/286) Unit1

91% (59/65/6) Unit2

88% (142/162/20) Unit3

99% (880/886/29) Unit4

88% (757/856/113) Unit5

97% (1328/1365/13) Unit6

93% (255/273) Unit7

98% (3705/3768/84) Unit8 (including

security engine)

95% (649/680/21) Unit9

97% (561/579/7) Unit10

100% (58/58) Unit11

100% (5/5) Unit12

100% (6/6) Unit13

100% (2/2) Unit14

Table 2. Block coverage after unreachability analysis of the IP8000_core
components (covered blocks/total reachable blocks/unreachable blocks).

Of the remaining 388 uncovered targets, 346 were
identified as unreachable by the designers, leaving 42 blocks
for which new tests needed to be developed. Five of those
blocks belonged to the 3DES module of the security engine (a
sub-instance of Unit8); in this paper we report on the technique
used to craft the tests for these 5 targets.

The final block coverage was 99.91%; the last 12
uncovered targets belonged to the Data Cache arbiter. It was
decided to formally verify this module and the remaining
coverage was waived. Table 3 summarizes the uncovered
blocks throughout the coverage review process.

 Uncovered blocks

Initial uncovered blocks 967

After unreachability analysis 388

After designer review, to be

covered by new tests
42

Final uncovered blocks, to

be addressed by formal

verification

12

Table 3. Uncovered blocks throughout the coverage review process

A. Applying Unreachability Analysis

Unreachability analysis uses formal analysis to assess if a
given coverage target can ever be reached. If a target is
identified as unreachable, there is no sequence of inputs which
covers the target, while matching the constraints of formal
analysis.

We used Cadence Incisive Comprehensive Coverage
(ICCR) to analyze coverage and Cadence Incisive Formal
Verifier (IFV) to perform unreachability analysis. At the time
of the project, the two tools had not yet been integrated into
one flow, now the Code Coverage Unreachability flow of
Cadence Incisive Enterprise Verifier-XL (IEV). Therefore we
used scripting to convert coverage results to formal targets and
vice versa.

A first script iccr2ifv analyzed the ICCR coverage report
and translated uncovered blocks into IFV deadcode automatic
assertions. There are 2 limitations to the this part of the flow: a)
there is no IFV deadcode equivalent of “implicit else” blocks,
which occur when an “if” statement without an “else” clause is
used; b) care needs to be taken when targets belong to included
files because the two tools use different qualifiers for the line
numbers. The IEV unreachability flow removes these
limitations and extends the unreachability analysis to
expression coverage.

The selected deadcode automatic assertions were run in
IFV. A failed assertion indicates that the target code is indeed
“dead” and therefore unreachable in simulation. A second
script ifv2iccr translated back failed deadcode assertions to
blocks to be filtered out in ICCR.

We had to choose the hierarchical level at which to run the
formal deadcode analysis. Although we made an attempt at
running at IP8000_core level, it was deemed more efficient to

perform unreachability analysis on each IP8000_core
component with uncovered targets. The only abstraction
technique used was blackboxing of the memories. The total run
time of unreachability analysis was less than 2 hours, while the
maximum memory consumption was less than 2.8GB. The size
of the IP8000_core components ranged from 70 FFs to 35K
FFs. Notice that only the uncovered targets were formally
analyzed, as the covered targets were obviously not deadcode.
This resulted in a more efficient usage of the formal tool.

No constraints were used in the unreachability analysis,
even when they were available, as the objective was to identify
structurally and unquestionably unreachable code. The only
settings specified were the clocks (some components have
multiple synchronous clocks) and the reset state.

IV. CRYPTO ENGINE AND MISSING TEST CASES

Ubicom’s IP8000 network processor provides hardware
acceleration for network security protocols such as IPSEC,
VPN and SSL via its encryption, decryption and hashing
algorithm implementations. Its security engine includes blocks
that implement the most prevalent cryptographic algorithms,
including AES (Advanced Encryption Standard), MD5
(Message Digest algorithm), DES and 3DES (Triple DES, Data
Encryption Standard), and Secure Hashing Algorithms
variations: SHA-1, SHA-256, and SHA-512, SHA-224 and
SHA-384.

In this paper we describe the 3DES engine and the
verification methods used to complete its design verification
block coverage. The 3DES cipher logic in the IP8000
processor reuses a DES encryption/decryption hardware block
(see Fig. 1) along with 3 key registers and a control state
machine in order to produce its results. While we examine
DES as our example, the same coverage hole issues and
solutions, including formal methods, could be applied to any of
the security engine's crypto blocks.

The 3DES function performs a series of three DES
encrypt/decrypt calculations with three keys, so its hardware
consists of a DES cipher function block and a control state-
machine.

Figure 1. Triple DES – Overview of Encryption

Briefly, the IP8000's DES hardware block takes in a 64-bit
data block and a 64-bit key. Its cipher function consists of 16
rounds of logical processing (Feistel function [9]), preceded by
an initial permutation and followed by a final permutation (see
Fig. 2 and Fig. 3). The result is a 64-bit output. The DES
function is symmetric, in that it uses the same key for
encryption and decryption. Each of the crypto algorithm
function blocks in the IP8000 design has a set of directed
verification suites, which include mode variations, timing
variations and data patterns along with pre-calculated results.

In addition, some of the blocks, such as the DES/3DES
cipher block use a C-reference model to enable directed
random input data and key generation and result checking for
its encryption and decryption modes. (It should be noted that
DES is now considered obsolete and 3DES, a variation of DES
that is repeated 3 times with up to 3 independent keys, has been
superseded for many applications by AES, which is also
supported by the IP8000 security engine.)

The design verification effort for the 3DES block made use
of DRAG, Ubicom’s internally-developed tool, to support its
directed random testing. This allowed us to generate repeatable
random tests and feed data patterns to the Design-Under-Test
(DUT) as well as the C-reference model and use the reference
result for checking of the DUT.

Of course, given the number of possible patterns, this still
meant that it could take a long time before random testing
would cover all the logic. Note that for 3DES, there are 2

168
 or

3.74 x 10
50

 possible keys, for DES; there are 2
56

 or 7.2 x 10
16

keys.

Our IP8000 design verification coverage effort yielded a
number of uncovered code blocks within the security engine.
Some were timing cases, such as concurrent events and gaps
between events, e.g. result data ready versus new data inputs.
Others were variations of algorithm mode combinations, such
as cipher chaining. These control-based cases were straight-
forward to create and add to our test-suite. However, there
were still a number of uncovered blocks that were data
dependent.

The approaches that we considered for solving this problem
included more random simulation, modifying the C-reference
model, and manually creating additional tests.

In fact, when examining the uncovered blocks, we found
that the 3DES block still had some intermediate logic terms
that were not covered, even after much simulation with random
inputs. Given an intermediate result, it is possible to "unroll"
and rewind or reverse-engineer the encryption calculation to
find sets of intermediate patterns for the multiple stages which
eventually map back to block input patterns, but this can be a
time-consuming job and might be best served by permuting and
using the C-reference model.

In our case, there were a number of intermediate terms that
were uncovered from various stages of the block, so modifying
the reference model could also be time-consuming and one-
time/throwaway work. Given enough simulation cycles, we
could probably have covered the remaining logic using our
existing random methods, but that would consume simulation
cycles and be slower due to coverage collection. Finally, we
could have tried to manually derive the input values from the
known uncovered intermediate values, but this would have
been a difficult and time consuming task even after reducing
the number of unknown by using fixed key values.

Figure 2. Internal structure of DES (from Wikipedia)

Figure 3. Feistel function (F-function) of DES (from Wikipeida)

Instead, we considered the possibility of having a formal
verification tool do the work of reverse-engineering the
patterns. We were already using the formal tool to find
deadcode in the security engine, so we explored using the
results to produce a set of possible input patterns and keys. In
fact, we realized that we could make the problem easier
because we could constrain the key value. In this case, we
needed to not only derive the value of the intermediate causal
input, but we needed to derive the original input pattern that
was presented to the block itself in order to most easily feed the
patterns into proper test cases.

V. CLOSING THE LOOP: CREATING THE MISSING TESTS

USING FORMAL AND SIMULATION

The first attempt in generating the missing tests for the
3DES block was based directly on the results of the formal
unreachability analysis. IFV found the uncovered code to be
reachable and generated a witness, which showed how to reach
those lines at the module level (Fig. 4 shows the source code
annotation from the witness of the deadcode assertions for line
37 of the module des_s1). Tracing the driver of the input b1
showed that the witness value of b1 was derived from the value
of an uninitialized register. This was neither a scenario that
could be reproduced in simulation or a significant one for
functional verification. At the same time, the local value of b1
alone was not enough to craft a meaningful test case. What was
needed was the input of the entire 3DES block or even better

the values of the input registers that would be loaded by the
CPU to start a 3DES calculation.

A more interesting witness could have been obtained by
modeling the environment of the 3DES block. However this
block had not undergone assertion based verification, therefore
there were no constraints to model its environment in formal
analysis and the cost of developing them from scratch was
deemed too high with respect to the risk of bugs in the block.
Modeling of the environment would have required a) the
formal verification engineer to become familiar with the
functionality of the crypto engine and its integration within the
system and b) to describe the environment in SVA [10].

The alternative was to examine existing tests that exercised
the same logic to understand how similar blocks were covered
under normal operating condition.

Finding the tests was fairly straightforward thanks to the
way the tests were named and organized. Once a candidate test
was identified, it was confirmed that it was of interest by
looking at the block coverage for the test itself. The specific
test, called sec_3des, covered line 64 of the des_s1 module.

In order to understand how the sec_3des test achieved
coverage of the des_s1 line, the inputs of the 3DES module
(which contained des_s1) and the signals b1 and s1 of des_s1
were displayed in a waveform viewer (see Fig. 5).

 It was then clear that the desired value of the signal b1
(shown in the witness of the deadcode assertion and equal to
‘h08) had to be produced at some point in the 16 cycles
between des_start and des_done. This behavior could be easily
captured in an SVA sequence consisting of two parts: a) a
sequence describing the behavior of des_start and des_done; b)
a sequence describing that b1 takes the desired value at least
once. The two SVA sequences were then combined by the
intersect SVA operator, so that the first sequence, which has a
fix length of 18 cycles, constrained the length of the second
one. Finally, the resulting sequence was instantiated in an SVA
cover statement:

Figure 4. Source code annotation from the witness of the unreachability

analysis of line 37; it indicates that the line is reached when the signal b1

has the value ‘h08.

Figure 5. Simulation waveform for test sec_3des

cover_b1_08: cover property

(@posedge clk_core)

 (des_start && !des_stop

 ##1 !des_start && !des_stop [*16]

 ##1 !des_start && des_stop)

 intersect

 (##1 (des.des_f.des_s1.b1[5:0] == ‘h08)[=1]));

Running the cover statement in IFV produced a witness that
showed the desired value of signal b1 within
des_start/des_done cycle and, more importantly, the values of
des_in and des_key needed to drive b1 (see Fig. 6). These two
signals correspond to the registers that the CPU loads when
starting 3DES and their values can be used in a directed system
level test.

The trace shown in Fig. 6 was actually obtained by fixing
the value of des_key. This could be easily achieved by adding a
third subsequence to the cover statement:

cover_b1_08: cover property

…

 intersect

 (##1 (des.des_f.des_s1.b1[5:0] == ‘h08)[=1])

intersect

((des_key[63:0] == ‘hdeadbeef12345678)[*]));

The value of des_in needed to close coverage on the given
block was des_in[63:32] == ‘h000e6386 and des_in[31:0] ==
‘had365b75.

The same technique was applied to generate des_in values
for the other 4 uncovered blocks. To avoid copy and paste and
improve readability, a parametric SVA property
stage_and_value was defined:

property state_and_value(stage, value);

(des_start && !des_stop

 ##1 !des_start && !des_stop [*16]

 ##1 !des_start && des_stop)

 intersect

 (##1 (stage == value)[=1])

intersect

((des_key[63:0] == ‘hdeadbeef12345678)[*]);

endproperty

The above property was then instantiated for each
uncovered block:

cover_b1_08: cover property (

 stage_and_value (

 des.des_f.des_s1.b1[5:0], ‘h08));

…

cover_b3_17: cover property (

 stage_and_value (

 des.des_f.des_s3.b3[5:0], ‘h17));

Similarly to the described example, the stage and value for
each of the other uncovered blocks were derived from the
witness of the corresponding IFV automatic deadcode
assertion. The witness of each cover statement then provided
the des_in value for the system level test.

In this case study we had no specific difficulty in working
with the cover statements, which provided the desired results
within just a few minutes of runtime. However, it is not
uncommon when trying to cover a specific behavior to have to
deal with a “fail” result. In such a case no trace is provided, as
“fail” means that no trace exists. In order to make progress and
understand why the behavior cannot be covered, one would
relax parts of the behavior description to the point where a
trace can be produced. For example, in the cover statements of
this case study, one could start with removing one of the 3
sequences joined by the intersect operator. Or, if constraints
were specified by means of assume statements, one or more
constraints would be temporarily commented out. Once a trace
is generated, it is examined to understand in what way it
contradicts the desired behavior. The reason might be a mistake
in the behavior description, or an over-restrictive set of
environment constraints, or one might conclude that the
specific behavior is indeed unreachable and use the information
in the trace to understand why.

A. Creating the Missing Tests and Verifying Coverage

Once the formal tool was able to give us a pattern, it was
simple to take an existing directed test and replace the input
data with those produced by formal analysis and prove that the
resulting calculation indeed covered the logic that we had
targeted. For directed tests, we used a known good DES
calculator (Linux OpenSSL command line tool) to calculate the
expected result for comparison to the simulated result.

Given the new directed tests, we were able to run
simulation with coverage collection turned on and confirm that
the targeted blocks were indeed covered.

VI. CONCLUSIONS

Coverage closure is generally regarded as a resource
intensive and time consuming task. It requires two main

Figure 6. Witness for cover_b1_08

activities: a) separating the uncovered target into reachable and
unreachable; b) developing new test cases for the reachable
targets. Formal verification can ease both tasks. However,
applying formal verification has a cost in itself, in particular,
when environment modeling by means of constraints is needed.
In this paper we presented a case study in which we combined
formal verification and existing simulation results, instead of
environment modeling, to create the missing test cases. This
way of applying formal verification was very cost-effective,
while the effort required by simulation or formal alone would
have been a) well in excess of the few hours required by the
proposed technique and b) too high compared to the risk of
bugs in the block. Without the proposed technique, we would
have had to settle for a lower coverage.

The case study described is one of several successful
applications of formal verification in a mostly simulation-
driven verification methodology. During the IP8000 design
project, formal verification complemented the simulation effort
in the verification of critical blocks, protocols and algorithms.
Formal techniques were also very successfully applied for post-
silicon debugging and system level connectivity verification.

ACKNOWLEDGMENT

We thank Bin Ju and Joseph Hupcey III of Cadence,
Viranjit Madan, Nihar Shah, Scott Asakawa and Toshi Morita
of Ubicom and Dan Benua of the DVCon Technical Program
Committee for their comments and valuable suggestions.

REFERENCES

[1] T Kropf, “Introduction to Formal Hardware Verification”, Springer-
Verlag, New York, 1999.

[2] S. Tasiran, K. Keutzer, “Coverage Metrics for Functional Validation of
Hardware Designs”, IEEE Design and Test of Computers, July 2001, pp.
36-45.

[3] U.S. Department of Commerce – NIST: National Institute of Standards
and Technology "Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher", Revised 19 May 2008 William C.
Barker, http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf

[4] U.S. Department of Commerce – NIST: National Institute of Standards
and Technology, "Data Encryption Standard (DES)" Federal Information
Processing Standards Publication, October 25, 1999,
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[5] Ubicom IP8K Network Processor Family,
http://www.ubicom.com/products/pdfs/IP8100_IP8200_Product_Brief_r
12_PUB.pdf

[6] N. Kulshrestha, P. Chatterjee, S. Sridharan, M. Munishwar, “Automatic
Coverage Closure Using Magellan”, SNUG San Jose 2011 Proceedings.

[7] G. Faux, J. Müller, “Using Static Formal Analysis to improve Dynamic
Code Coverage”, CDNLive! EMEA.

[8] Cadence Incisive Enterprise Verifier-XL User Guide.

[9] A. J. Menezes, P. C. van Oorschot, S. A. Vanstone, “Handbook of
Applied Cryptography”, CRC Press, page 251.

[10] F. I. Haque, J. Michelson, K. A. Khan, “The Art of Verification with
SystemVerilog Assertions”, Verification Central.

http://csrc.nist.gov/publications/nistpubs/800-67/SP800-67.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://www.ubicom.com/products/pdfs/IP8100_IP8200_Product_Brief_r12_PUB.pdf
http://www.ubicom.com/products/pdfs/IP8100_IP8200_Product_Brief_r12_PUB.pdf

