SGEN2: Evolution of a Sequence-Based Stimulus Engine for Micro-Processor Verification

Stephan Bourduas (stephan.bourduas@cavium.com)
Christopher Mikulis (chris.mikulis@cavium.com)

1) Introduction

• SGEN is a sequence-based stimulus engine written in C++11 that generates assembly programs used to verify the Cavium ThunderX® ARM micro-processor.

SGEN1 was originally presented at DVCON'2017:

Limitations with the original methodology became apparent over time and a refactoring effort was undertaken to address them.

• SGEN2 is the *new and improved* version:

- OOP techniques and C++11 features were used to add layers of abstraction and to simplify creation of new sequences:
 - *Automates resource management and initialization.
 - *Reduces the amount of code required for new sequences.
 - *Facilitates code/sequence reuse.
 - *2x performance improvement.
- Support for machine learning was added to automate exerciser tuning:
 - *A genetic algorithm was used to improve the failure rate of a selected exerciser.

2) SGEN1

- SGEN evolved from a need to better control stimulus:
- Bridge the gap between directed and knob-based generation.
- C++11 was chosen for it's rich set of data structures, 3rd party libraries, fast compile and run times and ease of debugging.
- No constraints! randomization provided by C++11 lambda functions.
- Successfully used to create directed random sequences in production.
- First version required helper sequences and manual tracking of base registers to generate valid programs.
- This made sequences difficult to reuse and necessitates a lot of boilerplate.
 - Makes maintenance and reuse difficult.

3) SGEN2

- •SGEN2 provides layers of abstraction that automates repetitive tasks such as object configuration and resource reservation and release through the use of OOP techniques.
- The most important new classes are:
- The *register pool* centralizes and simplifies register management by using *RAII*.
- The instruction generator class provides a simple way for a user to create and randomize instruction objects.
 - * Uses *lazy initialization* as well as callback hooks to enable customization.
- The instruction generator factory class returns pre-configured generator objects using the most commonly used defaults.
 - *The user can override the defaults by attaching C++11 lamda functions.

- The figure above shows the new structure of a sequence:
 - 1. The sequence uses the generator factory to create a generator object.
 - 2. The factory configures the generator object by attaching callbacks.
 - 3. The sequence gets an instruction from the generator.
 - 4. The generator reserves registers from the register pool.
 - 5. The generator executes callbacks.
 - 6. Sequence terminates and goes out of program scope, causing the generator object to destruct which automatically returns registers to the pool.
- The listing below shows SGEN2 code that generates random SIMD instructions.
- The code is much more compact than the equivalent SGEN1 code.
- Only 7 total lines of code required!

auto num randutils::random_number<int>::select(500, 1500);
auto inst_gen = InstructionGeneratorFactory<inst::simd>::create(this, num);
for(auto i : inst_gen);
{
 i -> randomize();
 driver_p->do_item(*i);
};

4) Automation Through Machine Learning

- Hand-tuning exercisers is often necessary towards the end of a project when failure rates fall below 1%.
- Hand tuning is ad-hoc and time consuming.
- We attempted to automate tuning by using a genetic algorithm
 - *Our goal was to generate initial exerciser states that had a higher chance of failure.
- The final population of tuned exercisers were generated as follows:
 - 1. The initial population consisted of 1000 shortened exerciser runs.
 - 2. The pass/fail status of each test as well as configuration weights were saved.
 - 3. The next generation consisted of:
 - The weights of all failed tests from the prior generation.
 - Mutated weights from failing and passing tests.
 - Newly generated weights.
 - 4. Steps (2) and (3) were repeated a maximum of 10 times or until 100 failing tests were found.
- The algorithm generated 100 failing states after 6 generations.
- We ran 2000 exercisers initialized with the failing states and the failure rate *increased from* 1% to 2.5%.

5) Conclusions and Future Work

- The limitations of SGEN1 were addressed through a large refactoring effort to create SGEN2.
- OOP techniques such as factories, generators, lazy initialization and RAII
 were used to provide layers of abstraction that greatly reduce the overhead associated with creating new stimulus.
- Code reduction was significant often by as much as 70-90%!
- Resulting code was less buggy and easier to maintain and reuse.
- Please see full paper for examples of more complex sequence code.
- · A genetic algorithm was used to automate exerciser tuning.
- Initial results have been promising failure rates for a selected exerciser were increased from ~1% to ~2.5%.
- Future work includes:
- Continuing to improve SGEN by adding features suchs as multi-threading and stateful sequences.
- Explore other machine learning techniques such as clustering, partitioning and logarithmic regression to improve exerciser efficiency.