Stephan Bourduas (stephan.bourduas@cavium.com)

Christopher Mikulis (chris.mikulis@cavium.com)

1) Introduction

SGEN is a sequence-based stimulus engine written in
C++11 that generates assembly programs used to ver-
ify the Cavium ThunderX® ARM micro-processor.

SGEN1 was originally presented at DVCON2017:

Limitations with the original methodology became apparent over
time and a refactoring effort was undertaken to address them.

SGEN2 is the version:

OOP techniques and C++11 features were used to add layers of
abstraction and to simplify creation of new seguences:
Automates resource management and initialization.
Reduces the amount of code required for new sequences.
Facilitates code/sequence reuse.
2x performance improvement.
Support for machine learning was added to automate exerciser
tuning:
A genetic algorithm was used to improve the failure rate
of a selected exerciser.

2) SGENT

SGEN evolved from a need to better control stimulus:

Bridge the gap between directed and knob-based generation.

C++11 was chosen for it's rich set of data structures, 3" party
libraries, fast compile and run times and ease of debugging.

— randomization provided by C++11 lambda
functions.

Successfully used to create directed random sequences in pro-
duction.

First version required helper sequences and manual
tracking of base registers to generate valid programs.

This made sequences difficult to reuse and necessitates a lot
of

Makes maintenance and reuse difficult.

foo seq

preamble

reg init seq

main body

i

3) SGEN2

SGEN?2 provides layers of abstraction that automates repet-
itive tasks such as object configuration and resource reser-
vation and release through the use of OOP techniques.

The most important new classes are:

The centralizes and simplifies register management by
using
The class provides a simple way for a user to cre-
ate and randomize instruction objects.

Uses as well as callback hooks to enable customization.
The class returns pre-configured genera-

tor objects using the most commonly used defaults.

The user can override the defaults by attaching functions.

factory

callbacks

sequence

register

pool

5

generator
3 -
4

The figure above shows the new structure of a sequence:
The sequence uses the generator factory to create a generator ob-
ject.

The factory configures the generator object by attaching callbacks.
The sequence gets an instruction from the generator.

The generator reserves registers from the register pool.

The generator executes callbacks.

Sequence terminates and goes out of program scope, causing the
generator object to destruct which automatically returns registers to
the pool.

6

The listing below shows SGEN2 code that generates random
SIMD instructions.

The code is much more compact than the equivalent SGEN1 code.

lauto num randutils::random_number<int>::select(500, 1500);
auto inst_gen = InstructionGeneratorFactory<inst::simd>:.create(this, num);
for(auto i : inst_gen);

{

i —>randomize();
driver_p—>do_item(*i);

SGEN2: Evolution of a Sequence-Based Stimulus Engine for
Micro-Processor Verification

& CAVIUM

4) Automation Through
Machine Learning

Hand-tuning exercisers is often necessary towards the end of
a project when failure rates fall below 1%.

Hand tuning is ad-hoc and time consuming.
We attempted to automate tuning by using a :
Our goal was to generate initial exerciser states that had a higher chance of failure.

The final population of tuned exercisers were generated as fol-
lows:

The initial population consisted of 1000 shortened exerciser runs.

The pass/fail status of each test as well as configuration weights were

saved.
The next generation consisted of:
The weights of all failed tests from the prior generation.
Mutated weights from failing and passing tests.
Newly generated weights.
Steps (2) and (3) were repeated a maximum of 10 times or until 100
failing tests were found.

The algorithm generated 100 failing states after 6 generations.

We ran 2000 exercisers initialized with the failing states and the failure
rate

5) Conclusions and Future Work

The limitations of SGEN1 were addressed through a large refac-
toring effort to create SGEN2.

OOP techniques such as : , and
were used to provide layers of abstraction that greatly reduce the over-
head associated with creating new stimulus.

Code reduction was — often by as much as
Resulting code was and :
Please see full paper for examples of more complex sequence code.

A was used to automate exerciser tuning.

Initial results have been promising — failure rates for a selected exerciser
were increased from ~1% to ~2.5%.

Future work includes:
Continuing to improve SGEN by adding features suchs as multi-threading
and stateful sequences.

Explore other machine learning techniques such as clustering, partition-
ing and logarithmic regression to improve exerciser efficiency.




