
Seven Separate Sequence Styles Speed Stimulus Scenarios

Mark Peryer

Mentor Graphics (UK) Ltd

Rivergate, London Road, Newbury,

Berkshire, RG14 2QB., UK

mark_peryer@mentor.com

Abstract Writing effective stimulus in UVM can prove to be

challenging for various reasons, but not knowing about the

relevant coding design patterns should not be one of them. There

are various alternative techniques for writing sequences and

choosing the right approach requires mastery of several styles.

This paper describes seven common sequence design patterns

which should prove useful to all UVM sequence writers. These

patterns can be used stand-alone or combined to solve practical

stimulus generation problems using UVM sequences.

Keywords—UVM; sequences; stimulus generation; design

patterns; sequence_items; configuration; sequence layering

I. INTRODUCTION

The UVM sequence is designed to be a transitory, or short-
lived, class object that is constructed; used to generate
stimulus; and then dereferenced, pending garbage collection. It
contains a body() method, implemented as a SystemVerilog
task, which is called when the sequence is started using its
start() method. As the body() method executes it either
generates and shapes sequence items, or it creates and starts
other sequences. A sequence communicates with a driver via
the sequencer component using sequence items.

In practice, most sequences are quite simple, generating a
few sequence items before completing. However, more
complex stimulus generation requires the use of more advanced
techniques. The purpose of this paper is to describe a number
of common sequence design patterns.

II. SEQUENCE BASICS

The main purpose of the UVM sequence is to generate
sequence_items and to send them to a UVM driver component
using an API that is implemented in the UVM sequencer
component.

A. The sequence_item

The sequence_item is an object that contains transaction
level data that the driver is responsible for interpreting and
converting into pin level activity. An example sequence_item is
shown in Fig.1. This particular sequence_item contains data
items that can notionally be used to describe a bus interface
transaction and will be used in most of the design pattern
examples that follow. It contains stimulus fields which are rand
so that they can be randomized and response fields which are
not. Generally, the sequence_item also contains a set of
convenience methods which can be used to copy(), clone(),
compare(), print(), convert2string(), pack() and unpack() the

transaction, but these have been omitted from the example for
the sake of brevity.

class ex_seq_item extends uvm_sequence_item;

`uvm_object_utils(ex_seq_item)

// Stimulus data

rand bit[31:0] addr;

rand bit[31:0] wdata[16];

rand bit rnw;

rand bit[3:0] length;

// Response data

bit[31:0] rdata[16];

bit[1:0] resp[16];

// Field convenience functions omitted

endclass: ex_seq_item

Figure 1- Example sequence_item

B. The Sequence

In its simplest form, a sequence creates a sequence_item,
assigns values to its data fields and then sends it to the
sequencer. The code example in Fig.2 shows how this is
typically done. The active part of the sequence is the body()
task method. In this method, the sequence_item is created, then
the blocking start_item() method is called which returns when
the sequencer is ready to send the sequence_item to the driver.
In this example, the sequence_item is then randomized and sent
to the driver using the blocking finish_item() method. The
sequence ends when the driver unblocks the finish_item()
method.

class ex_seq extends uvm_sequence #(ex_seq_item);

`uvm_object_utils(ex_seq)

task body;

 ex_seq_item item = ex_seq_item::type_id::create("item");

 start_item(item);

 if(!item.randomize()) begin

 `uvm_warning("ex_seq::body", "randomization failure")

 end

 finish_item(item);

endtask: body

endclass: ex_seq

Figure 2 - Example sequence

There are many potential variations on this theme, such as
randomizing the sequence_item using in-line constraints;
sending a series of sequence_items; or spawning sub-
sequences. Test cases for a particular verification environment
are built up from a collection of sequences which are run in the
context of the test function and the configured testbench
topology. The design patterns that are described in this paper

mailto:mark_peryer@mentor.com

address various common issues that are encountered when
generating stimulus streams using sequences.

III. SEVEN SEQUENCE DESIGN PATTERNS

The example sequence in figure 2 generates stimulus by
randomizing a sequence_item. However, in the absence of any
constraints there is no control over the final value of the fields
in the sequence_item. The process of adding control to allow
the randomization of the field values is often referred to as
shaping. One of the simplest sequence design patterns is
therefore known as the shaped sequence.

A. The Shaped Sequence

Intent: To ensure that a sequence’s stimulus generation
behavior can be controlled programmatically.

Motivation: In order to reduce the overall number of
sequences that have to be written, there is a need to generalize
sequences so that they can be reused in different scenarios.
This generalization can be used to shape the profile of the data
content of the sequence item.

Applicability: The shaped sequence pattern is of general
use to ensure that sequences are not hard-wired and can be used
in more than one specific context. Examples of shaping include
setting the address and data values in a bus access sequence;
controlling the number of iterations of a generation loop; and
defining bounds for in-line constraints.

Implementation: A sequence can be shaped by adding data
fields as shown in the code example in Fig.3. The data fields
can be assigned values, either directly or via methods
implemented in the sequence, and these affect the way in which
stimulus is generated within the sequence. In the example, the
fields that control the stimulus side of the interface behavior are
marked as rand allowing the value assignment to be made by
calling the randomize() method of the sequence from a higher
level sequence, together with any in-line constraints. The
response fields of the sequence are not rand, and they can be
assigned response information which can be accessed from
outside the sequence. This allows a series of sequences to be
chained together, using the result from one to guide the next.

Note the use of the local namespace in the example (e.g.
local::addr) to avoid confusion between the addr variable in the
item and the addr variable in the sequence.

class shaped_sequence extends uvm_sequence #(ex_seq_item);

`uvm_object_utils(shaped_sequence)

// Stimulus data

rand bit[31:0] addr;

rand bit rnw;

rand bit[3:0] length;

// Response data

bit[31:0] data[16];

bit[1:0] resp[16];

task body;

 ex_seq_item item = ex_seq_item::type_id::create("item");

 start_item(item);

 // Randomize with shaped data

 if(!item.randomize() with {addr == local::addr;

 rnw == local::rnw;

 length == local::length;})

 begin

 `uvm_warning("body", "randomization failure")

 end

 finish_item(item);

 // Get response data

 if(rnw)begin

 data = item.rdata;

 end

 else begin

 data = item.wdata;

 end

 resp = item.resp;

endtask: body

endclass: shaped_sequence

Figure 3 - Shaped Sequence Design Pattern Example

As the number of control fields required to shape or control

a sequence increases, it becomes easier to wrap the variables in
an object which is passed to the sequence to configure it. This
is particularly useful if there are a number of related sequences
which share a common set of variables. This form of shaped
sequence is referred to as the configurable sequence.

B. The Configurable Sequence

Intent: To control the behavior of a complex generalized
sequence using a data object.

Motivation: Sequences which have complex behavior or
have a large number of control variables can more easily be
configured using a data object, rather than using field
assignments or configuration methods.

Applicability: The configurable sequence pattern can be
used in the situation where there are many variables which
affect the behavior of the sequence or the shape of the
sequence_items it produces. The pattern is particularly useful if
there are several sequences which share common configuration
information and the some configuration object can be shared
with all of them. An example application is a bus traffic
modeling sequence where the bus agent driver is capable of
generating transactions for the complete bus protocol but the
master in question is only required to generate a sub-set of the
protocol. In this case, the configuration object is used to
constrain the generation of bus transactions to the supported
sub-set without having to modify the bus agent driver.

class seq_config extends uvm_object;

`uvm_object_utils(seq_config)

// General stimulus shaping

rand bit[31:0] start_addr;

rand bit[31:0] wdata[16];

rand bit rnw;

// The protocol sub-set supported:

rand bit[3:0] burst_length[] = '{1, 4, 8, 16};

rand burst_type_e valid_bursts[] = '{INCR};

// ... Other protocol sub-set definitions

rand protection_e prot[] = '{CODE_SECURE, DATA_TRUST_ZONE,

 DATA_USER};

endclass seq_config

Figure 4 - Sequence Configuration Object

Implementation: The configurable sequence pattern is
implemented by pairing a sequence with a sequence
configuration object. The sequence configuration object
contains fields which are used by the sequence to either affect

the way in which it behaves or to shape the sequence items that
it generates.

Fig.4 shows an implementation of a sequence configuration
object for a bus orientated sequence. This contains a mix of
variables which shape the generated bus traffic and variables
that specify which sub-set of the bus protocol is supported by
the bus master. The corresponding configurable sequence
example is shown in Fig.5. Here, the bus sequence_item is
randomized using constraints based on the shaping content of
the configuration object and its protocol sub-set definition. The
same configuration object could be used with other sequences
to ensure that they only generate bus sequence_items that are
constrained to be within the same protocol sub-set.

class configurable_sequence extends

 uvm_sequence #(ex_seq_item);

`uvm_object_utils(configurable_sequence)

// Handle for sequence configuration object

seq_config cfg;

// Function to allow configuration to be set

function void set_seq_config(seq_config s_cfg);

 cfg = s_cfg;

endfunction: set_seq_config

task body;

 ex_seq_item item = ex_seq_item::type_id::create("item");

 // Item constrained to be within protocol sub-set

 // Driver supports the whole protocol

 start_item(item);

 if(!item.randomize() with

 {addr == start_addr;

 wdata == wdata;

 rnw == rnw;

 // Protocol sub-set constraints

 burst_length inside {cfg.burst_length};

 valid_bursts inside {cfg.valid_bursts};

 // ... Other protocol sub-set constraints

 protection inside {cfg.prot};}) begin

 `uvm_error("body", "Constraint error with ex_seq_item")

 end

 finish_item(item);

endtask: body

endclass: configurable_sequence

Figure 5 - Configurable Sequence Design Pattern Example

The configurable sequence pattern works well in the

situation where the sequence is self-contained and does not
need to refer to anything else in the testbench to control or
shape the stimulus. However, there are many situations where
access to an external resource, such as a register model, is
required to support the stimulus generation process. This
requirement leads to the next sequence design pattern, the
resourced sequence.

C. The Resourced Sequence

Intent: To allow a sequence to access resources within the
testbench hierarchy.

Motivation: In the UVM, sequences are not part of the
testbench component hierarchy and cannot directly access
resources which may be useful for stimulus generation.

Applicability: The resourced sequence pattern ensures that
a sequence can access data and methods available in other parts
of the testbench, often giving visibility of system state or

device configuration. Examples include register model handles
and methods that give information on clock and reset states.

Implementation: The resourced sequence pattern is
usually implemented using a base class from which other
sequences are derived. The base class contains handles to the
required resources and is responsible for getting the handle
from the UVM configuration database.

class resourced_sequence_base extends

 uvm_sequence #(ex_seq_item);

`uvm_object_utils(resource_sequence_base)

// Configuration object containing resource handles

// and methods

env_config cfg;

// Handle to register model

asic_reg_model rm;

// Handles to common register variables

uvm_status_e status;

uvm_reg_data_t data;

function new(string name = "resourced_sequence_base");

 super.new(name);

endfunction

// Responsible for:

// Getting handle to configuration object

// Assigning register model handle

task body;

 if(!uvm_config_db #(env_config)::get(m_sequencer, "",

"env_config", cfg)) begin

 `uvm_error("body", "Unable to find env_config in

uvm_config_db")

 end

 rm = cfg.rm;

endtask: body

endclass: resourced_sequence_base

Figure 6 - Resourced Sequence base class

Fig.6 shows an example implementation of such a base

class. In its body() method, a handle for a configuration object
is retrieved from the uvm_config_db using the sequencer
handle (m_sequencer). The configuration object contains a
number of methods and a handle for a UVM register model that
inheriting sequences can use.

class resourced_sequence extends resourced_sequence_base;

`uvm_object_utils(resource_sequence)

function new(string name = "resourced_sequence");

 super.new(name);

endfunction

task body;

 super.body(); // Assigns resource handles

 cfg.wait_for_reset(); // Config method

 rm.lte.dsp.fltr_cfg.write(status, 32'hdeadbeef,

 .parent(this));

 // ...

endtask: body

endclass: resourced_sequence

Figure 7 - Resourced Sequence Design Pattern

An example of an inheriting resourced sequence is shown
in Fig.7, this calls the body() method of the base sequence to
assign handles to the testbench resources before calling a
wait_for_reset() method available in the configuration object
and then making a series of register accesses via the register
model. The same sequence might also modify its behavior
based on the device configuration information contained in the
register model.

All of the sequence patterns described so far concern the
generation of stimulus on a single UVM agent, which in turn
drives a single interface. In order to generate and control
stimulus over several interfaces a variant of the resourced
sequence pattern is required and this is known as the virtual
sequence.

Note that the virtual sequence design pattern described here
is an alternative to the virtual sequencer/virtual sequence
pattern described elsewhere. Its advantages are that it is more
flexible and it avoids the use of a virtual sequencer component
that quickly becomes redundant with vertical reuse.

D. The Virtual Sequence

Intent: To control the execution of stimulus on multiple
interfaces.

Motivation: Almost all practical testbenches use sequences
to generate stimulus streams for more than one signal-level
interface, this means that the separate sequence streams have to
be controlled and coordinated by a central control thread.

Applicability: The virtual sequence pattern is used to
control the overall sequence stimulus generation process in
most UVM test cases. An example of the flow of a virtual
sequence running in a block level testbench would be to
initialize and configure a block using sequences on a peripheral
bus interface, and then to transfer data in and out of the block
using sequences controlling other interfaces before checking
the overall result via sequences running on the peripheral bus
interface.

Implementation: The virtual sequence contains handles for
the sequencers for each of the target interfaces, it then runs sub-
sequences on the target sequencers as required to implement
the test case functionality. The virtual sequence is an extension
of the resourced sequence pattern and is usually implemented
with a base class from which specific virtual sequences are
derived. Such a virtual sequence base class is shown in Fig.8, it
contains handles for three target sequencers and a register
model.

class vseq_base extends uvm_sequence #(ex_seq_item);

`uvm_object_utils(vseq_base)

// Sequencers

target1_sequencer t1;

target2_sequencer t2;

target3_sequencer t3;

// Register model

asic_reg_model rm;

function new(name = "vseq_base");

 super.new(name);

endfunction

endclass: vseq_base

Figure 8 - Virtual Sequence base class

An example virtual sequence is shown in Fig.9, this extends
the base class and its body method contains a set of sequences
each of which are written in the context of a particular target
sequencer. These sequences are run in turn on the target
sequencers to implement the test case.

class sys_vseq extends vseq_base;

`uvm_object_utils(sys_vseq)

function new(name = "sys_vseq");

 super.new(name);

endfunction

task body;

 // Sub sequences:

 t1_setup setup_1 = t1_setup::type_id::create("setup_1");

 t3_setup setup_3 = t3_setup::type_id::create("setup_3");

 t2_slave slave_2 = t2_slave::type_id::create("slave_2");

 t1_t2_transfer t1_t2 =

 t1_t2_transfer::type_id::create("t1_t2");

 t2_t3_transfer t2_t3 =

 t2_t3_transfer::type_id::create("t2_t3");

 setup_1.rm = rm;

 setup_2.rm = rm;

 slave_2.rm = rm;

 t1_t2.rm = rm;

 t2_t3.rm = rm;

 fork

 t1_setup.start(t1);

 t3_setup.start(t3);

 join

 fork

 slave_2.start(t2);

 begin

 t1_t2.start(t1);

 t2_t3.start(t3);

 end

 join_any;

endtask: body

endclass: sys_vseq

Figure 9 - Virtual Sequence Design Pattern Example

The virtual sequence is usually started by a UVM test class.
In order to assign the target sequencer handles in the virtual
sequence an initialization method is added to the test base
class. The run_phase() method of the derived test case class
calls this initialization method before starting the virtual
sequence. This is illustrated in the code fragments in Fig.10.

// From the test base class:

function void test_base::init_vseq(vseq_base vseq);

 vseq.rm = asic_rm;

 vseq.t1 = env.ch_1.bus_agent.m_sequencer;

 vseq.t2 = env.ch_3.bus_agent.m_sequencer;

 vseq.t3 = env.ch_3.bus_agent.m_sequencer;

endfunction

// From the test class:

task system_test::run_phase(uvm_phase phase);

 sys_vseq vseq = sys_vseq::type_id::create("vseq");

 phase.raise_objection(this);

 init_vseq(vseq);

 vseq.start(null);

 phase.drop_objection(this);

endtask: run_phase

Figure 10 - Test Class methods for initializing and starting a virtual

sequence

Virtual sequences can be used to combine several

sequences running on different sequencers to define the
stimulus generation for a whole test case. Another simple way
to improve sequence creation productivity is to use abstraction
layers built from hierarchical sequences.

E. The Hierarchical Sequence

Intent: To create abstraction layers for stimulus generation.

Motivation: Introducing layers of abstraction makes
stimulus easier to write and increases productivity by using
proven lower level sequences.

Applicability: The Hierarchical Sequence pattern can be
used to build up layers of abstraction, starting with a layer of
atomic sequences which are used by the next layer of the
hierarchy to implement common functions and then by
subsequent layers of hierarchy to implement increasingly more
abstract functions. An example from a disk driver verification
environment would be atomic sequences to handle tasks like
finding an index, writing a header, writing data and verifying
data. The next level of abstraction hierarchy would be sequence
to write a file to disk based on the atomic sequences, and then
the top level would be a sequence to write a file and then read it
back.

class write_burst_16 extends bus_base;

`uvm_object_utils(write_burst_16)

task body;

 ex_seq_item item = ex_seq_item::type_id::create("item");

 start_item(item);

 if(!item.randomize() with {addr == local::addr;

 length == 4'hf;

 rnw == 0;}) begin

 `uvm_error("body", "Constraint error in randomization")

 end

 item.wdata = data;

 finish_item(item);

endtask: body

endclass: write_burst_16

typedef class read_burst16;

typedef class single_read;;

typedef class single_write;

Figure 11 - Atomic Level Sequence

Implementation: The Hierarchical Sequence pattern is

implemented by creating a library of sequences which can be
called in successive layers of abstraction. The lowest layer
sequences have a specific function, but are generalized. As the
layers become more abstract, the sequences become less
general.

Fig.11 shows an example atomic level sequence which
implements a burst write. Included in the code excerpt are
typedefs for other atomic level sequences.

class setup_ch1 extends bus_base;

`uvm_object_utils(setup_ch1)

task body;

 single_write write =

single_write::type_id::create("write");

 write_burst_16 write_16 =

write_burst_16::type_id::create("write_16");

 write.addr = `BUFFER1_START;

 write.data[0] = addr;

 write.start(m_sequencer);

 // ...

 // Set up area in memory

 write_16.addr = addr;

 write_16.start(m_sequencer);

 // ...

endtask: body

endclass: setup_ch1

Figure 12 – Mid-level of hierarchical sequence

The next level of hierarchy is shown in Fig.12 where a
setup sequence is defined in terms of atomic sequences, again
typedefs are included for other sequences at this abstraction
layer. A further level of sequence hierarchy is shown in Fig. 13
this combines sequences from the middle abstraction layer to
implement a complex function.

class ch1_ch2_transfer extends bus_base;

`uvm_object_utils(ch1_ch2_transfer)

task body;

 setup_ch1 setup_1 = setup_ch1::type_id::create("setup_1");

 setup_ch2 setup_2 = setup_ch2::type_id::create("setup_2");

 dma_transfer transfer =

 dma_transfer::type_id::create("transfer");

 setup_1.addr = `DMA_READ_ADDR;

 setup_2.addr = `DMA_WRITE_ADDR;

 setup_1.start(m_sequencer);

 setup_2.start(m_sequencer);

 transfer.start(m_sequencer);

endtask: body

endclass: ch1_ch2_transfer

Figure 13 - Top level of hierarchical sequence

Stimulus generated from a set of hierarchical sequences is
well ordered, with each layer calling the next and so on.
However, there may be situations where the exact stimulus that
gets generated or the order in which it gets generated is not
important. For instance the programming of registers in a DUT
may be specified to be order independent, so it is important to
test this by configuring the device in a random order. The
sequence library pattern facilitates the generation of this type of
stimulus.

F. The Sequence Library

Intent: To be able to select and execute one of several
sequences at will.

Motivation: Some stimulus generation scenarios require
that a random choice be made from a set of available sequences
in order to flush out subtle interactions in behavior.

Applicability: The sequence library pattern is used when
one of several stimulus options would be valid but it does not
matter which one is selected and executed. The choice of which
sequence gets executed is usually randomized. Examples
include generating background irritant traffic where the
selected sequence has the potential to cause an interaction with
foreground traffic or randomizing the order in which the
registers of a configurable device are programmed.

package bus_sequence_lib_pkg;

import uvm_pkg::*;

`include "uvm_macros.svh"

// Base class for the library

`include "bus_seq_base.svh"

// Library sequences extending from base class:

`include "read_burst_seq.svh"

`include "write_burst_seq.svh"

`include "read_modify_write_seq.svh"

`include "write_check_read_seq.svh"

`include "read_block_seq.svh"

`include "write_block_seq.svh"

// Library sequence:

`include "bus_seq_library.svh"

// Irritant sequence:

`include "bus_irritant_seq.svh"

endpackage: bus_sequence_lib_pkg

class bus_seq_library extends bus_seq_base;

`uvm_object_utils(bus_seq_library)

// Associative array of sequences, indexed by string

bus_seq_base lib[string];

bus_seq_base sel_seq;

string sel;

task body

 lib["read_burst"] =

 read_burst_seq::type_id::create("read_burst");

 lib["write_burst"] =

 write_burst_seq::type_id::create("write_burst");

 lib["read_mod_write"] =

 read_modify_write_seq::type_id::create("read_mod_write");

 lib["write_chk_read"] =

 write_check_read_seq::type_id::create("write_chk_read");

 lib["read_block"] =

 read_block_seq::type_id::create("read_block");

 lib["write_block"] =

 write_block_seq::type_id::create("write_block");

 // Choose a sequence at random by shuffling the array:

 lib.shuffle();

 // Take the sequence at the top of the pile and start

 sel_seq = lib.first(sel);

 sel_seq.start(m_sequencer);

endtask: body

endclass: bus_seq_library

Figure 14 - Library Sequence Design Pattern Example

Implementation: The sequence library pattern can be
implemented by exploiting polymorphism. This is illustrated
by the code in Fig.14 which contains a sequence library class
that contains an associative array of base sequence handles. In
the body method of the library sequence, each element of the
array is assigned a handle corresponding to one of the
sequences declared in the sequence library package. The
default behavior of the sequence library is then to shuffle the
order of the array randomly and then start the first sequence in
the array.

class bus_irritant_seq extends bus_seq_library;

`uvm_object_utils(bus_irritant_seq)

rand int iterations = 1;

constraint limit {

 iterations inside {[1:20]};

}

task body;

 super.body();

 repeat(iterations) begin

 lib.shuffle();

 sel_seq = lib.first(sel);

 sel_seq.start(m_sequencer);

 end

endtask: body

endclass: bus_irritant_seq

Figure 15 - Bus irritant sequence extended from the bus_seq_library class

An example extension to the bus_seq_library class is shown
in Fig.15, this is an irritant sequence which will run up to 20
sub-sequences randomly selected from the library.

All of the design patterns examined so far have concerned
the generation of stimulus in terms of sequence_items that are

sent directly to a specific UVM driver attached to a target
interface. In some cases, it is more convenient to generate
stimulus in one form of sequence_item and convert it to
another before it is applied to a target interface, this is where
the layering sequence pattern comes into play.

G. The Layering Sequence

Intent: To transform one abstract representation of
stimulus data to another.

Motivation: Often it is convenient to generate data using
one virtual or abstract representation that needs to go through a
transformation process before it can be applied to a concrete
interface. In other stimulus generation scenarios it may be
necessary to map or combine several virtual data streams into a
single data stream.

Applicability: The layering sequence pattern is applicable
to any situation where sequences are available that use one
sequence_item but must transformed to another sequence_item
to be executed on a target sequencer. An example of this would
be converting a uvm_tlm_generic_payload item to a bus
specific sequence_item.

Layering

Sequence

SQR SQR DRV

SQRSQR

Upper

Layer

Sequence

SQR

Upper Layer Sequencer

Lower Layer Sequencer

Figure 16 - Layering Sequence Block Diagram

Other applications would be modeling a layered protocol or
where several types of data streams need to be mapped onto a
common transport layer - for example, mixing streams of video
data, voice data and pure data traffic onto an Ethernet or USB
transport layer.

The layering sequence pattern can also be stacked, or
chained, to implement multiple conversion layers.

class layering_sequence extends uvm_sequence #(usb_item);

`uvm_object_utils(layering_sequence)

// Upper-layer sequencer handle:

uvm_sequencer #(audio_item) voice_sequencer;

// Get a audio_item, start a usb_item

// Translate the audio_item to the usb_item

// finish the usb_item

// Call item_done() on the audio_item

task body;

 audio_item voc;

 usb_item usb = usb_item::type_id::create("usb");

 forever begin

 voice_sequencer.get_next_item(voc);

 start_item(usb);

 convert_voc_2_usb(usb, voc);

 finish_item(usb);

 voice_sequencer.item_done();

 end

endtask body;

endclass: layering_sequence

// From the env:

// Create the layering sequence

// Set its upstream sequencer to the audio sequencer

// Start the sequence on the usb sequencer

task run_phase(uvm_phase phase);

 layering_sequence audio_2_usb =

layering_sequence::type_id::create("audio_2_usb");

 audio_2_usb.voice_sequencer = audio.m_sequencer;

 audio_2_usb.start(usb._m_sequencer);

endtask: run_phase

Figure 17 - Layering Sequence Design Pattern Example

Implementation: The layering sequence is implemented by
declaring the handle for the upper-layer sequencer. In the body
method of the layering sequence, handles to sequence_items
from the upper-layer sequencer are assigned via the sequencers
get_next_item() method. (Normally accessed from the driver
via the sequencers seq_item_export) The upper-layer
sequence_items are then transformed into lower-level
sequence_item(s) and then sent to the lower-layer sequencer
using its start_item() and finish_item() methods. When the
upper-layer sequence_item has been converted, the upper-layer
sequencers item_done() method is called to complete the
transfer.

This process flow is illustrated by the code example in Fig.
17. The example shows a layering sequence that converts audio
format sequence_items to USB format sequence_items. The
voice_sequencer is the upper-layer sequencer. In the body
method, there is a loop where the audio sequence_items are got
from the voice_sequencer, converted to USB sequence_items
and then sent to the USB sequencer using the start/finish() item
methods. When the finish_item() method completes, the

audio_sequencers item_done() method is called before the loop
starts over. The layering sequence is started in the run_phase()
method of the env after the handle to the voice_sequencer has
been assigned to the upper-layer sequencer in the layering
sequence. The sequence stimulus stream for the audio data will
run on the voice_sequencer with no modification but appear on
the USB interface rather than an audio interface.

This example shows a one to one layering, but it is possible
to have a many to one layering e.g. Video, Audio, and data
links over a physical transport layer such as USB or Ethernet or
multiple levels of layering or any combination thereof.

IV. CONCLUSION

The seven sequence design patterns described in this paper
can be used separately or combined to solve stimulus
generation challenges. UVM sequences provide a powerful and
flexible way of writing stimulus. Knowing about the design
patterns described here is a useful addition to any verification
engineer’s toolkit.

REFERENCES

[1] Accellera, Universal Verification Methodology (UVM) 1.1 Users Guide,

2011

[2] Meyer, A., 2009, Overview of Sequence Based Stimulus Generation in
OVM 2.0 – Application note, Mentor Graphics Corporation

[3] Verification Academy, UVM Cookbook,
https://verificationacademy.com/cookbook

[4] Verification Academy, UVM Cookbook Sequences/Overview,
https://verificationacademy.com/cookbook/Sequences/Overview.

https://verificationacademy.com/cookbook
https://verificationacademy.com/cookbook/Sequences/Overview

