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Abstract Writing effective stimulus in UVM can prove to be 

challenging for various reasons, but not knowing about the 

relevant coding design patterns should not be one of them. There 

are various alternative techniques for writing sequences and 

choosing the right approach requires mastery of several styles. 

This paper describes seven common sequence design patterns 

which should prove useful to all UVM sequence writers. These 

patterns can be used stand-alone or combined to solve practical 

stimulus generation problems using UVM sequences. 
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I.  INTRODUCTION  

The UVM sequence is designed to be a transitory, or short-
lived, class object that is constructed; used to generate 
stimulus; and then dereferenced, pending garbage collection. It 
contains a body() method, implemented as a SystemVerilog 
task, which is called when the sequence is started using its 
start() method. As the body() method executes it either 
generates and shapes sequence items, or it creates and starts 
other sequences. A sequence communicates with a driver via 
the sequencer component using sequence items.  

In practice, most sequences are quite simple, generating a 
few sequence items before completing. However, more 
complex stimulus generation requires the use of more advanced 
techniques. The purpose of this paper is to describe a number 
of common sequence design patterns. 

II. SEQUENCE BASICS 

The main purpose of the UVM sequence is to generate 
sequence_items and to send them to a UVM driver component 
using an API that is implemented in the UVM sequencer 
component.  

A. The sequence_item 

The sequence_item is an object that contains transaction 
level data that the driver is responsible for interpreting and 
converting into pin level activity. An example sequence_item is 
shown in Fig.1. This particular sequence_item contains data 
items that can notionally be used to describe a bus interface 
transaction and will be used in most of the design pattern 
examples that follow. It contains stimulus fields which are rand 
so that they can be randomized and response fields which are 
not. Generally, the sequence_item also contains a set of 
convenience methods which can be used to copy(), clone(), 
compare(), print(), convert2string(), pack() and unpack() the 

transaction, but these have been omitted from the example for 
the sake of brevity. 

class ex_seq_item extends uvm_sequence_item; 

 

`uvm_object_utils(ex_seq_item) 

 

// Stimulus data 

rand bit[31:0] addr; 

rand bit[31:0] wdata[16]; 

rand bit rnw; 

rand bit[3:0] length; 

 

// Response data 

bit[31:0] rdata[16]; 

bit[1:0] resp[16]; 

 

// Field convenience functions omitted 

 

endclass: ex_seq_item 

 

Figure 1- Example sequence_item 

B. The Sequence 

In its simplest form, a sequence creates a sequence_item, 
assigns values to its data fields and then sends it to the 
sequencer. The code example in Fig.2 shows how this is 
typically done. The active part of the sequence is the body() 
task method. In this method, the sequence_item is created, then 
the blocking start_item() method is called which returns when 
the sequencer is ready to send the sequence_item to the driver. 
In this example, the sequence_item is then randomized and sent 
to the driver using the blocking finish_item() method. The 
sequence ends when the driver unblocks the finish_item() 
method. 

class ex_seq extends uvm_sequence #(ex_seq_item); 

`uvm_object_utils(ex_seq) 

 

task body; 

  ex_seq_item item = ex_seq_item::type_id::create("item"); 

 

  start_item(item); 

  if(!item.randomize()) begin 

    `uvm_warning("ex_seq::body", "randomization failure") 

  end 

  finish_item(item); 

endtask: body 

endclass: ex_seq 

 

Figure 2 - Example sequence 

 

There are many potential variations on this theme, such as 
randomizing the sequence_item using in-line constraints; 
sending a series of sequence_items; or spawning sub-
sequences. Test cases for a particular verification environment 
are built up from a collection of sequences which are run in the 
context of the test function and the configured testbench 
topology. The design patterns that are described in this paper 
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address various common issues that are encountered when 
generating stimulus streams using sequences. 

III. SEVEN SEQUENCE DESIGN PATTERNS 

The example sequence in figure 2 generates stimulus by 
randomizing a sequence_item. However, in the absence of any 
constraints there is no control over the final value of the fields 
in the sequence_item. The process of adding control to allow 
the randomization of the field values is often referred to as 
shaping. One of the simplest sequence design patterns is 
therefore known as the shaped sequence. 

A. The Shaped Sequence 

Intent: To ensure that a sequence’s stimulus generation 
behavior can be controlled programmatically. 

Motivation: In order to reduce the overall number of 
sequences that have to be written, there is a need to generalize 
sequences so that they can be reused in different scenarios. 
This generalization can be used to shape the profile of the data 
content of the sequence item. 

Applicability: The shaped sequence pattern is of general 
use to ensure that sequences are not hard-wired and can be used 
in more than one specific context. Examples of shaping include 
setting the address and data values in a bus access sequence; 
controlling the number of iterations of a generation loop; and 
defining bounds for in-line constraints. 

Implementation: A sequence can be shaped by adding data 
fields as shown in the code example in Fig.3. The data fields 
can be assigned values, either directly or via methods 
implemented in the sequence, and these affect the way in which 
stimulus is generated within the sequence. In the example, the 
fields that control the stimulus side of the interface behavior are 
marked as rand allowing the value assignment to be made by 
calling the randomize() method of the sequence from a higher 
level sequence, together with any in-line constraints. The 
response fields of the sequence are not rand, and they can be 
assigned response information which can be accessed from 
outside the sequence. This allows a series of sequences to be 
chained together, using the result from one to guide the next. 

Note the use of the local namespace in the example (e.g. 
local::addr) to avoid confusion between the addr variable in the 
item and the addr variable in the sequence. 

class shaped_sequence extends uvm_sequence #(ex_seq_item); 

`uvm_object_utils(shaped_sequence) 

 

// Stimulus data 

rand bit[31:0] addr; 

rand bit rnw; 

rand bit[3:0] length; 

// Response data 

bit[31:0] data[16]; 

bit[1:0] resp[16]; 

 

task body; 

  ex_seq_item item = ex_seq_item::type_id::create("item"); 

 

  start_item(item); 

  // Randomize with shaped data 

  if(!item.randomize() with {addr == local::addr; 

                             rnw == local::rnw; 

                             length == local::length;}) 

 

  begin 

   `uvm_warning("body", "randomization failure") 

  end 

  finish_item(item); 

  // Get response data 

  if(rnw)begin 

    data = item.rdata; 

  end 

  else begin 

    data = item.wdata; 

  end 

  resp = item.resp; 

endtask: body 

endclass: shaped_sequence 

 

Figure 3 - Shaped Sequence Design Pattern Example 

 
As the number of control fields required to shape or control 

a sequence increases, it becomes easier to wrap the variables in 
an object which is passed to the sequence to configure it. This 
is particularly useful if there are a number of related sequences 
which share a common set of variables. This form of shaped 
sequence is referred to as the configurable sequence. 

B. The Configurable Sequence 

Intent: To control the behavior of a complex generalized 
sequence using a data object. 

Motivation: Sequences which have complex behavior or 
have a large number of control variables can more easily be 
configured using a data object, rather than using field 
assignments or configuration methods.  

Applicability: The configurable sequence pattern can be 
used in the situation where there are many variables which 
affect the behavior of the sequence or the shape of the 
sequence_items it produces. The pattern is particularly useful if 
there are several sequences which share common configuration 
information and the some configuration object can be shared 
with all of them. An example application is a bus traffic 
modeling sequence where the bus agent driver is capable of 
generating transactions for the complete bus protocol but the 
master in question is only required to generate a sub-set of the 
protocol. In this case, the configuration object is used to 
constrain the generation of bus transactions to the supported 
sub-set without having to modify the bus agent driver. 

class seq_config extends uvm_object; 

`uvm_object_utils(seq_config) 

 

// General stimulus shaping 

rand bit[31:0] start_addr; 

rand bit[31:0] wdata[16]; 

rand bit rnw; 

 

// The protocol sub-set supported: 

rand bit[3:0] burst_length[] = '{1, 4, 8, 16}; 

rand burst_type_e valid_bursts[] = '{INCR}; 

// ... Other protocol sub-set definitions 

rand protection_e prot[] = '{CODE_SECURE, DATA_TRUST_ZONE, 

                             DATA_USER}; 

 

endclass seq_config 

 

Figure 4 - Sequence Configuration Object 
 

Implementation: The configurable sequence pattern is 
implemented by pairing a sequence with a sequence 
configuration object. The sequence configuration object 
contains fields which are used by the sequence to either affect 



the way in which it behaves or to shape the sequence items that 
it generates.  

Fig.4 shows an implementation of a sequence configuration 
object for a bus orientated sequence. This contains a mix of 
variables which shape the generated bus traffic and variables 
that specify which sub-set of the bus protocol is supported by 
the bus master. The corresponding configurable sequence 
example is shown in Fig.5. Here, the bus sequence_item is 
randomized using constraints based on the shaping content of 
the configuration object and its protocol sub-set definition. The 
same configuration object could be used with other sequences 
to ensure that they only generate bus sequence_items that are 
constrained to be within the same protocol sub-set. 

class configurable_sequence extends  

                                uvm_sequence #(ex_seq_item); 

 

`uvm_object_utils(configurable_sequence) 

 

// Handle for sequence configuration object 

seq_config cfg; 

 

// Function to allow configuration to be set 

function void set_seq_config(seq_config s_cfg); 

  cfg = s_cfg; 

endfunction: set_seq_config 

 

task body; 

  ex_seq_item item = ex_seq_item::type_id::create("item"); 

 

  // Item constrained to be within protocol sub-set 

  // Driver supports the whole protocol 

  start_item(item); 

  if(!item.randomize() with  

   {addr == start_addr; 

    wdata == wdata; 

    rnw == rnw; 

    // Protocol sub-set constraints 

    burst_length inside {cfg.burst_length}; 

    valid_bursts inside {cfg.valid_bursts}; 

    // ... Other protocol sub-set constraints 

    protection inside {cfg.prot};}) begin 

     `uvm_error("body", "Constraint error with ex_seq_item") 

  end 

  finish_item(item); 

 

endtask: body 

endclass: configurable_sequence 

 

Figure 5 - Configurable Sequence Design Pattern Example 

 
The configurable sequence pattern works well in the 

situation where the sequence is self-contained and does not 
need to refer to anything else in the testbench to control or 
shape the stimulus. However, there are many situations where 
access to an external resource, such as a register model, is 
required to support the stimulus generation process. This 
requirement leads to the next sequence design pattern, the 
resourced sequence. 

C. The Resourced Sequence  

Intent: To allow a sequence to access resources within the 
testbench hierarchy. 

Motivation: In the UVM, sequences are not part of the 
testbench component hierarchy and cannot directly access 
resources which may be useful for stimulus generation. 

Applicability: The resourced sequence pattern ensures that 
a sequence can access data and methods available in other parts 
of the testbench, often giving visibility of system state or 

device configuration. Examples include register model handles 
and methods that give information on clock and reset states. 

Implementation: The resourced sequence pattern is 
usually implemented using a base class from which other 
sequences are derived. The base class contains handles to the 
required resources and is responsible for getting the handle 
from the UVM configuration database. 

class resourced_sequence_base extends  

                                uvm_sequence #(ex_seq_item); 

`uvm_object_utils(resource_sequence_base) 

// Configuration object containing resource handles 

// and methods 

env_config cfg; 

// Handle to register model 

asic_reg_model rm; 

 

// Handles to common register variables 

uvm_status_e status; 

uvm_reg_data_t data; 

 

function new(string name = "resourced_sequence_base"); 

  super.new(name); 

endfunction 

 

// Responsible for: 

// Getting handle to configuration object 

// Assigning register model handle 

task body; 

  if(!uvm_config_db #(env_config)::get(m_sequencer, "", 

"env_config", cfg)) begin 

    `uvm_error("body", "Unable to find env_config in 

uvm_config_db") 

  end 

  rm = cfg.rm; 

endtask: body 

endclass: resourced_sequence_base 

 

Figure 6 - Resourced Sequence base class 

 
Fig.6 shows an example implementation of such a base 

class. In its body() method, a handle for a configuration object 
is retrieved from the uvm_config_db using the sequencer 
handle (m_sequencer). The configuration object contains a 
number of methods and a handle for a UVM register model that  
inheriting sequences can use.  

class resourced_sequence extends resourced_sequence_base; 

`uvm_object_utils(resource_sequence) 

 

function new(string name = "resourced_sequence"); 

  super.new(name); 

endfunction 

 

task body; 

  super.body(); // Assigns resource handles 

  cfg.wait_for_reset(); // Config method 

  rm.lte.dsp.fltr_cfg.write(status, 32'hdeadbeef, 

                            .parent(this)); 

  // ... 

endtask: body 

endclass: resourced_sequence 

 

Figure 7 - Resourced Sequence Design Pattern 
 

An example of an inheriting resourced sequence is shown 
in Fig.7, this calls the body() method of the base sequence to 
assign handles to the testbench resources before calling a 
wait_for_reset() method available in the configuration object 
and then making a series of register accesses via the register 
model. The same sequence might also modify its behavior 
based on the device configuration information contained in the 
register model. 



All of the sequence patterns described so far concern the 
generation of stimulus on a single UVM agent, which in turn 
drives a single interface. In order to generate and control 
stimulus over several interfaces a variant of the resourced 
sequence pattern is required and this is known as the virtual 
sequence. 

Note that the virtual sequence design pattern described here 
is an alternative to the virtual sequencer/virtual sequence 
pattern described elsewhere. Its advantages are that it is more 
flexible and it avoids the use of a virtual sequencer component 
that quickly becomes redundant with vertical reuse. 

D. The Virtual Sequence 

Intent: To control the execution of stimulus on multiple 
interfaces. 

Motivation: Almost all practical testbenches use sequences 
to generate stimulus streams for more than one signal-level 
interface, this means that the separate sequence streams have to 
be controlled and coordinated by a central control thread. 

Applicability: The virtual sequence pattern is used to 
control the overall sequence stimulus generation process in 
most UVM test cases. An example of the flow of a virtual 
sequence running in a block level testbench would be to 
initialize and configure a block using sequences on a peripheral 
bus interface, and then to transfer data in and out of the block 
using sequences controlling other interfaces before checking 
the overall result via sequences running on the peripheral bus 
interface. 

Implementation: The virtual sequence contains handles for 
the sequencers for each of the target interfaces, it then runs sub-
sequences on the target sequencers as required to implement 
the test case functionality. The virtual sequence is an extension 
of the resourced sequence pattern and is usually implemented 
with a base class from which specific virtual sequences are 
derived. Such a virtual sequence base class is shown in Fig.8, it 
contains handles for three target sequencers and a register 
model.  

class vseq_base extends uvm_sequence #(ex_seq_item); 

`uvm_object_utils(vseq_base) 

 

// Sequencers 

target1_sequencer t1; 

target2_sequencer t2; 

target3_sequencer t3; 

 

// Register model 

asic_reg_model rm; 

 

function new(name = "vseq_base"); 

  super.new(name); 

endfunction 

 

endclass: vseq_base 

 

Figure 8 - Virtual Sequence base class 

 

An example virtual sequence is shown in Fig.9, this extends 
the base class and its body method contains a set of sequences 
each of which are written in the context of a particular target 
sequencer. These sequences are run in turn on the target 
sequencers to implement the test case. 

 

class sys_vseq extends vseq_base; 

`uvm_object_utils(sys_vseq) 

 

function new(name = "sys_vseq"); 

  super.new(name); 

endfunction 

 

task body; 

  // Sub sequences: 

  t1_setup setup_1 = t1_setup::type_id::create("setup_1"); 

  t3_setup setup_3 = t3_setup::type_id::create("setup_3"); 

  t2_slave slave_2 = t2_slave::type_id::create("slave_2"); 

  t1_t2_transfer t1_t2 = 

                 t1_t2_transfer::type_id::create("t1_t2"); 

  t2_t3_transfer t2_t3 = 

                 t2_t3_transfer::type_id::create("t2_t3"); 

 

  setup_1.rm = rm; 

  setup_2.rm = rm; 

  slave_2.rm = rm; 

  t1_t2.rm = rm; 

  t2_t3.rm = rm; 

 

  fork 

    t1_setup.start(t1); 

    t3_setup.start(t3); 

  join 

 

  fork 

    slave_2.start(t2); 

    begin 

      t1_t2.start(t1); 

      t2_t3.start(t3); 

    end 

  join_any; 

 

endtask: body 

 

endclass: sys_vseq 

 

Figure 9 - Virtual Sequence Design Pattern Example 
 

The virtual sequence is usually started by a UVM test class. 
In order to assign the target sequencer handles in the virtual 
sequence an initialization method is added to the test base 
class. The run_phase() method of the derived test case class 
calls this initialization method before starting the virtual 
sequence. This is illustrated in the code fragments in Fig.10. 

// From the test base class: 

function void test_base::init_vseq(vseq_base vseq); 

  vseq.rm = asic_rm; 

  vseq.t1 = env.ch_1.bus_agent.m_sequencer; 

  vseq.t2 = env.ch_3.bus_agent.m_sequencer; 

  vseq.t3 = env.ch_3.bus_agent.m_sequencer; 

endfunction 

 

// From the test class: 

task system_test::run_phase(uvm_phase phase); 

  sys_vseq vseq = sys_vseq::type_id::create("vseq"); 

 

  phase.raise_objection(this); 

  init_vseq(vseq); 

  vseq.start(null); 

  phase.drop_objection(this); 

endtask: run_phase 

 

Figure 10 - Test Class methods for initializing and starting a virtual 

sequence 

 
Virtual sequences can be used to combine several 

sequences running on different sequencers to define the 
stimulus generation for a whole test case. Another simple way 
to improve sequence creation productivity is to use abstraction 
layers built from hierarchical sequences. 



E. The Hierarchical Sequence 

Intent: To create abstraction layers for stimulus generation. 

Motivation: Introducing layers of abstraction makes 
stimulus easier to write and increases productivity by using 
proven lower level sequences.  

Applicability: The Hierarchical Sequence pattern can be 
used to build up layers of abstraction, starting with a layer of 
atomic sequences which are used by the next layer of the 
hierarchy to implement common functions and then by 
subsequent layers of hierarchy to implement increasingly more 
abstract functions. An example from a disk driver verification 
environment would be atomic sequences to handle tasks like 
finding an index, writing a header, writing data and verifying 
data. The next level of abstraction hierarchy would be sequence 
to write a file to disk based on the atomic sequences, and then 
the top level would be a sequence to write a file and then read it 
back. 

class write_burst_16 extends bus_base; 

`uvm_object_utils(write_burst_16) 

 

task body; 

  ex_seq_item item = ex_seq_item::type_id::create("item"); 

 

  start_item(item); 

  if(!item.randomize() with {addr == local::addr; 

                             length == 4'hf; 

                             rnw == 0;}) begin 

    `uvm_error("body", "Constraint error in randomization") 

  end 

  item.wdata = data; 

  finish_item(item); 

endtask: body 

endclass: write_burst_16 

typedef class read_burst16; 

typedef class single_read;; 

typedef class single_write; 

 

Figure 11 - Atomic Level Sequence 

 
Implementation: The Hierarchical Sequence pattern is 

implemented by creating a library of sequences which can be 
called in successive layers of abstraction. The lowest layer 
sequences have a specific function, but are generalized. As the 
layers become more abstract, the sequences become less 
general.  

Fig.11 shows an example atomic level sequence which 
implements a burst write. Included in the code excerpt are 
typedefs for other atomic level sequences. 

class setup_ch1 extends bus_base; 

`uvm_object_utils(setup_ch1) 

 

task body; 

  single_write write = 

single_write::type_id::create("write"); 

  write_burst_16 write_16 = 

write_burst_16::type_id::create("write_16"); 

 

  write.addr = `BUFFER1_START; 

  write.data[0] = addr; 

  write.start(m_sequencer); 

  // ... 

  // Set up area in memory 

  write_16.addr = addr; 

  write_16.start(m_sequencer); 

  // ... 

endtask: body 

endclass: setup_ch1 

 

Figure 12 – Mid-level of hierarchical sequence 

 

The next level of hierarchy is shown in Fig.12 where a 
setup sequence is defined in terms of atomic sequences, again 
typedefs are included for other sequences at this abstraction 
layer. A further level of sequence hierarchy is shown in Fig. 13 
this combines sequences from the middle abstraction layer to 
implement a complex function. 

  

class ch1_ch2_transfer extends bus_base; 

`uvm_object_utils(ch1_ch2_transfer) 

 

task body; 

  setup_ch1 setup_1 = setup_ch1::type_id::create("setup_1"); 

  setup_ch2 setup_2 = setup_ch2::type_id::create("setup_2"); 

  dma_transfer transfer =  

                  dma_transfer::type_id::create("transfer"); 

 

  setup_1.addr = `DMA_READ_ADDR; 

  setup_2.addr = `DMA_WRITE_ADDR; 

 

  setup_1.start(m_sequencer); 

  setup_2.start(m_sequencer); 

  transfer.start(m_sequencer); 

 

endtask: body 

endclass: ch1_ch2_transfer 

 

Figure 13 - Top level of hierarchical sequence 

Stimulus generated from a set of hierarchical sequences is 
well ordered, with each layer calling the next and so on. 
However, there may be situations where the exact stimulus that 
gets generated or the order in which it gets generated is not 
important. For instance the programming of registers in a DUT 
may be specified to be order independent, so it is important to 
test this by configuring the device in a random order. The 
sequence library pattern facilitates the generation of this type of 
stimulus. 

F. The Sequence Library 

Intent: To be able to select and execute one of several 
sequences at will. 

Motivation: Some stimulus generation scenarios require 
that a random choice be made from a set of available sequences 
in order to flush out subtle interactions in behavior. 

Applicability: The sequence library pattern is used when 
one of several stimulus options would be valid but it does not 
matter which one is selected and executed. The choice of which 
sequence gets executed is usually randomized. Examples 
include generating background irritant traffic where the 
selected sequence has the potential to cause an interaction with 
foreground traffic or randomizing the order in which the 
registers of a configurable device are programmed. 

package bus_sequence_lib_pkg; 

 

import uvm_pkg::*; 

`include "uvm_macros.svh" 

 

// Base class for the library 

`include "bus_seq_base.svh" 

// Library sequences extending from base class: 

`include "read_burst_seq.svh" 

`include "write_burst_seq.svh" 

`include "read_modify_write_seq.svh" 

`include "write_check_read_seq.svh" 

`include "read_block_seq.svh" 

`include "write_block_seq.svh" 

// Library sequence: 

`include "bus_seq_library.svh" 



// Irritant sequence: 

`include "bus_irritant_seq.svh" 

 

endpackage: bus_sequence_lib_pkg 

 

class bus_seq_library extends bus_seq_base; 

`uvm_object_utils(bus_seq_library) 

 

// Associative array of sequences, indexed by string 

bus_seq_base lib[string]; 

bus_seq_base sel_seq; 

string sel; 

 

task body 

  lib["read_burst"] = 

   read_burst_seq::type_id::create("read_burst"); 

  lib["write_burst"] = 

   write_burst_seq::type_id::create("write_burst"); 

  lib["read_mod_write"] = 

   read_modify_write_seq::type_id::create("read_mod_write"); 

  lib["write_chk_read"] = 

   write_check_read_seq::type_id::create("write_chk_read"); 

  lib["read_block"] = 

   read_block_seq::type_id::create("read_block"); 

  lib["write_block"] = 

   write_block_seq::type_id::create("write_block"); 

 

  // Choose a sequence at random by shuffling the array: 

  lib.shuffle(); 

  // Take the sequence at the top of the pile and start 

  sel_seq = lib.first(sel); 

  sel_seq.start(m_sequencer); 

endtask: body 

 

endclass: bus_seq_library 

 

Figure 14 - Library Sequence Design Pattern Example 

Implementation: The sequence library pattern can be 
implemented by exploiting polymorphism. This is illustrated 
by the code in Fig.14 which contains a sequence library class 
that contains an associative array of base sequence handles. In 
the body method of the library sequence, each element of the 
array is assigned a handle corresponding to one of the 
sequences declared in the sequence library package. The 
default behavior of the sequence library is then to shuffle the 
order of the array randomly and then start the first sequence in 
the array. 

class bus_irritant_seq extends bus_seq_library; 

`uvm_object_utils(bus_irritant_seq) 

 

rand int iterations = 1; 

 

constraint limit { 

  iterations inside {[1:20]}; 

} 

 

 

task body; 

  super.body(); 

  repeat(iterations) begin 

    lib.shuffle(); 

    sel_seq = lib.first(sel); 

    sel_seq.start(m_sequencer); 

  end 

endtask: body 

 

endclass: bus_irritant_seq 

 

Figure 15 - Bus irritant sequence extended from the bus_seq_library class 

 

An example extension to the bus_seq_library class is shown 
in Fig.15, this is an irritant sequence which will run up to 20 
sub-sequences randomly selected from the library. 

All of the design patterns examined so far have concerned 
the generation of stimulus in terms of sequence_items that are 

sent directly to a specific UVM driver attached to a target 
interface. In some cases, it is more convenient to generate 
stimulus in one form of sequence_item and convert it to 
another before it is applied to a target interface, this is where 
the layering sequence pattern comes into play. 

G. The Layering Sequence 

Intent: To transform one abstract representation of 
stimulus data to another. 

Motivation: Often it is convenient to generate data using 
one virtual or abstract representation that needs to go through a 
transformation process before it can be applied to a concrete 
interface. In other stimulus generation scenarios it may be 
necessary to map or combine several virtual data streams into a 
single data stream. 

Applicability: The layering sequence pattern is applicable 
to any situation where sequences are available that use one 
sequence_item but must transformed to another sequence_item 
to be executed on a target sequencer. An example of this would 
be converting a uvm_tlm_generic_payload item to a bus 
specific sequence_item.  

Layering

Sequence

SQR SQR DRV

SQRSQR

Upper

Layer

Sequence

SQR

Upper Layer Sequencer

Lower Layer Sequencer

 

Figure 16 - Layering Sequence Block Diagram 

 

Other applications would be modeling a layered protocol or 
where several types of data streams need to be mapped onto a 
common transport layer - for example, mixing streams of video 
data, voice data and pure data traffic onto an Ethernet or USB 
transport layer.  

The layering sequence pattern can also be stacked, or 
chained, to implement multiple conversion layers. 

class layering_sequence extends uvm_sequence #(usb_item); 

`uvm_object_utils(layering_sequence) 

 

// Upper-layer sequencer handle: 

uvm_sequencer #(audio_item) voice_sequencer; 

 

// Get a audio_item, start a usb_item 

// Translate the audio_item to the usb_item 

// finish the usb_item 

// Call item_done() on the audio_item 

task body; 

  audio_item voc; 

  usb_item usb = usb_item::type_id::create("usb"); 

 

  forever begin 

    voice_sequencer.get_next_item(voc); 

    start_item(usb); 

    convert_voc_2_usb(usb, voc); 

    finish_item(usb); 

    voice_sequencer.item_done(); 

  end 

endtask body; 

endclass: layering_sequence 



 

// From the env: 

// Create the layering sequence 

// Set its upstream sequencer to the audio sequencer 

// Start the sequence on the usb sequencer 

 

 

task run_phase(uvm_phase phase); 

  layering_sequence audio_2_usb = 

layering_sequence::type_id::create("audio_2_usb"); 

  audio_2_usb.voice_sequencer = audio.m_sequencer; 

  audio_2_usb.start(usb._m_sequencer); 

endtask: run_phase 

 

Figure 17 - Layering Sequence Design Pattern Example 
 

Implementation: The layering sequence is implemented by 
declaring the handle for the upper-layer sequencer. In the body 
method of the layering sequence, handles to sequence_items 
from the upper-layer sequencer are assigned via the sequencers 
get_next_item() method. (Normally accessed from the driver 
via the sequencers seq_item_export) The upper-layer 
sequence_items are then transformed into lower-level 
sequence_item(s) and then sent to the lower-layer sequencer 
using its start_item() and finish_item() methods. When the 
upper-layer sequence_item has been converted, the upper-layer 
sequencers item_done() method is called to complete the 
transfer. 

This process flow is illustrated by the code example in Fig. 
17. The example shows a layering sequence that converts audio 
format sequence_items to USB format sequence_items. The 
voice_sequencer is the upper-layer sequencer. In the body 
method, there is a loop where the audio sequence_items are got 
from the voice_sequencer, converted to USB sequence_items 
and then sent to the USB sequencer using the start/finish() item 
methods. When the finish_item() method completes, the 

audio_sequencers item_done() method is called before the loop 
starts over. The layering sequence is started in the run_phase() 
method of the env after the handle to the voice_sequencer has 
been assigned to the upper-layer sequencer in the layering 
sequence. The sequence stimulus stream for the audio data will 
run on the voice_sequencer with no modification but appear on 
the USB interface rather than an audio interface. 

This example shows a one to one layering, but it is possible 
to have a many to one layering e.g. Video, Audio, and data 
links over a physical transport layer such as USB or Ethernet or 
multiple levels of layering or any combination thereof. 

IV. CONCLUSION 

The seven sequence design patterns described in this paper 
can be used separately or combined to solve stimulus 
generation challenges. UVM sequences provide a powerful and 
flexible way of writing stimulus. Knowing about the design 
patterns described here is a useful addition to any verification 
engineer’s toolkit. 
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