

Scalable Reset Domain Crossing Verification Using Hierarchical Data Model

Soumya Palit, Anwesha Choudhury, Kurt Takara - Mentor Graphics, A Siemens Business

soumya palit@mentor.com, anwesha choudhary@mentor.com, kurt takara@mentor.com

Introduction: What is RDC

- Data crossing from one async reset domain to another
- Transmitting(Tx) flop async-reset assertion close to clock edge can cause metastability on receiving(Rx) flop

Techniques to Address RDC issues

- Reset Sequencing
 - Async-reset on Rx flop always asserts before async-reset on Tx flop
 - Rx flop already in reset state, so any change on Rx D-pin will not cause metastability

Techniques to Address RDC issues

- Isolation Techniques
 - Clockgate isolation
 - Turn off clock of Rx flop before Tx reset asserts
 - If clock is off, then any change on Rx D-pin will not cause metastability

- Data Isolation
 - Block Tx to Rx data transmission through isolation signal before Tx reset asserts

Need for Hierarchical RDC Verification

SoC comprises of diverse IP blocks that are developed and verified independently

 During RDC verification of SoC, re-verification of IPs leads to redundancy and increases verification effort

Desirable use-model is to verify integration of IPs in SoC without re-analysis
of IP internals

Requirements

- Reset Logic integrity
- Accurate RDC verification
- Reset ordering
- Reset synchronizer

Requirements

Reset logic detection across IPs

Identify RDC issues across IP interfaces

Hierarchical RDC Analysis

- What is the Hybrid Data Model (HDM)?
 - Binary data model
 - Stores IP information
 - Guarantees RDC verification accuracy
 - Extendable to provide additional functionalities
 - Directives-based modification allowed

I am handing over IP HDM. I have also embedded integration rules in it. You will see RDC or assumption violation in case of incorrect integration.

Use Model

- Run block-level analysis
 - Specify block constraints
 - Run RDC analysis and generate HDMs
 - Review and debug block-level results

do block_ctrl.tcl
rdc run block.v –d block -hrdc

hrdc_block.hierdb (**HDM**)

hrdc.rpt : Displays information extracted at

each port in user readable format

hrdc_block.tcl : Directives for each port

- Run top-level analysis with block-level HDMs
 - Review and debug top-level results

resetcheck load hierdb hrdc_block.hierdb resetcheck load hierdb hrdc_block2.hierdb resetcheck run top.v –d top

Reset Logic Integrity

Hierarchical methodology correctly detects reset logic distributed across IP

Accurate RDC verification

RDC crossing is accurately detected across IP interface

Provides accurate debug capabilities and shows complete path across IP interface

Reset ordering

• Seamless integration of reset ordering information

Reset Synchronizer

Correctly detects synchronizers in reset path across IP interface

Case Study Details

	Flat RDC	HDM-based	Gain
	Verification Methodology	RDC Verification Methodology	
Runtime	30min	10min	33%
Peak Memory	7 GB	2 GB	71%
RDC Violations	225753	31065	85%

	Flat RDC Verification Methodology	HDM-based RDC Verification Methodology	Gain
Runtime	97min	60min	~38%
Peak Memory	37 GB	28 GB	~24%
RDC Violations	4813096	4247822	~12%

Summary

 Proposed methodology leads to accurate RDC verification with complete debug capabilities

Ensures performance benefits

 Creates RDC IP models that can be shipped and reused across generations and SoCs

Q&A

