Scalable, Re-usable UVM DMS AMS based Verification Methodology for Mixed-Signal SOCs

Nilesh Sonara, Noorulla Mohammad, Poonam Singh
David Stoops, Joseph Fernando and Kartik Sudarshana
Broadcom Limited
Agenda

• Motivation
• UVM DMS AMS bench - Reusability
• TestBench Configurations (real, wreal, VerilogAMS, Spice) - Scalability
• Regressions, Simulation data
• Conclusion
Motivation

- Growing complexities in mixed-signal SoCs with more digital and embedded SW based control having multiple feedback loop and interactions with analog
- Simple analog behavior model limit verification and coverage, need for realistic behavior models to cover more scenarios
- Adhoc verification by analog team, need for integrating latest digital verification methodologies for mixed-signal with coverage and checkers.
UVM DMS AMS bench
UVM DMS AMS bench

- UVM verification environment is reused for DMS (wreal) and AMS (VerilogAMS and spice) simulations
- Configurable analog UVC to drive and monitor interface activity, example waveform generation with freq, amplitude and phase controls
- Board components
 - Implemented using wreal, re-used for both DMS and AMS
 - Config view replacement is also possible
Testbench Configurations

UVM TESTBENCH

DUT

Digital
RTL/GATE

Analog
SV
UDN/VAMS/SPICE
Testbench Configurations

- UVM Verification testbench reused for different analog model abstraction
- Systemverilog user defined net (SV UDN) based wreal model, VerilogAMS, SPICE and mix of above can be selected
- Same test can be run for any of above configuration.
- Run script takes care of selecting the correct model depending on the argument supplied
Testbench Configurations

• SV UDN DMS model
 – allows multi-value nets and multiple drivers.
 – User defined resolution function used to combine multiple outputs together
 – Simulator automatically inserts virtual elements for logic2real and real2logic conversion
 – digital engine without need for analog solver

```plaintext
typedef struct{
   real field1; field2; field3;
} T

function automatic T Tsum(input T driver[]);
   Tsum.field1 = 0.0;
   foreach (driver[i])
      Tsum.field1 += driver[i].field1;
endfunction

nettype T wTsum with Tsum;

Ex: AMS Control File (ie)
amsd{
   ie vsup=1.8 rhi=0.1 rlo=0.1 rout=0.1
   ie vsup=1.1 instport="top.vdd1p1"
}
```
Testbench Configurations

- SV UDN DMS model
 - Bottom up generation from schematic
 - Has supply and ground nets
 - High performance with realistic behavior
 - Used for all functional verification
Testbench Configurations

- SV UDN DMS model: feedback loop example
 - Use of LCR filter to get clean ramping voltages
 - Analog assertions to check slew and voltage ramps
 - Overflow and underflow check
 - Voltage clipping check
 - A2D Assertions
 - Creation of Equivalent C Model for the digital controller path
Testbench Configurations

- VerilogAMS model
 - Replace SV UDN model with verilogAMS
 - UVM tests reused without modification
 - Bottom up generation from schematic
 - Low performance with more accuracy
 - Needs analog solver with digital event based simulator
Testbench Configurations

- Spice model
 - Replace SV UDN model with spice
 - UVM tests reused without modification
 - Bottom up generation from schematic
 - Very slow with very accurate
 - Needs analog solver with digital event based simulator
 - Assertions for checking internal analog nodes

```plaintext
// amsd portmap module simulator lang=spectre
amsd { //Default/Fallback discipline
  ie vsup=(1.5) rhi=(0.1) rlo=(0.1) rin=(20M) rout=(0.1) vdelta=(1.5/64.0)
  ie vsup=(1.8) rhi=(0.1) rlo=(0.1) rin=(20M) instport="sys.I_DUT.VDDO"
  portmap subckt=ANATOP porttype=name config cell=ANATOP use=spice
}
```
Testbench Configurations

• Mixed model
 – Selectively choose different model for different modules
 – Use one instance with spice rest with VAMS in case of multiple instance
 – Test decides different configurations

```plaintext
simulator lang=spectre
amsd {
    // Default/Fallback discipline
    ie vsup=(1.5) rhi=(0.1) rlo=(0.1) rin=(20M) rout=(0.1) vdelta=(1.5/64.0)
    ie vsup=(1.8) rhi=(0.1) rlo=(0.1) rin=(20M) instport="sys.I_DUT.VDDO"
    portmap subckt=ANATOP porttype=name config cell=ANATOP use=spice
    portmap module=USB_CPD_top porttype=name config cell=USB_CPD_top use=hdl
    portmap module=ADC12_top porttype=name config cell=ADC12_top use=hdl
}
```
Testbench Configurations

- Configurations are created as per test scenario
- CFG2 targets TX module for SPICE simulation

<table>
<thead>
<tr>
<th>Config</th>
<th>TX</th>
<th>Bias</th>
<th>RX</th>
<th>PMU</th>
<th>MISC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFG1</td>
<td>VAMS</td>
<td>VAMS</td>
<td>VAMS</td>
<td>VAMS</td>
<td>VAMS</td>
</tr>
<tr>
<td>CFG2</td>
<td>SPICE</td>
<td>VAMS</td>
<td>VAMS</td>
<td>VAMS</td>
<td>VAMS</td>
</tr>
<tr>
<td>CFG3</td>
<td>VAMS</td>
<td>VAMS</td>
<td>SPICE</td>
<td>VAMS</td>
<td>VAMS</td>
</tr>
<tr>
<td>CFG4</td>
<td>VAMS</td>
<td>VAMS</td>
<td>VAMS</td>
<td>SPICE</td>
<td>VAMS</td>
</tr>
<tr>
<td>CFG5</td>
<td>VAMS</td>
<td>SPICE</td>
<td>VAMS</td>
<td>SPICE</td>
<td>VAMS</td>
</tr>
<tr>
<td>CFG7</td>
<td>SPICE</td>
<td>SPICE</td>
<td>SPICE</td>
<td>SPICE</td>
<td>SPICE</td>
</tr>
</tbody>
</table>
Mixed signal Analog Assertions.
- Define precision clock to monitor the activity
- Limit checker
- Rise or fall time checker
- Range checker
- Frequency checker
- Slew rate checker

Analog Assertions

```verilog
bit node_check_slew_rate;
always @(*) begin
  if($cds_analog_exists(signal_path) != 1)
    `uvm_fatal("AMS",sformatf("cds_analog_exists() failed for : %s", signal_path))
  else begin
    vol_val = $cds_get_analog_value(signal_path);
    sr = 2 * 3.14 * freq * vol_val;
    if(!(sr > sr_lo ) & (sr < sr_high)) begin
      node_check_slew_rate = 1;
      $assert("slew rate check failed …at %t",$time);
    end
  end
end
```

```
vmw_max_ANA_Core_1 assert dev="ANA_Core.*" expr="V(n4)"
max=16.1 duration=1n message="[OV] VNW reverse biased"
level=warning anal_types=[dc tran]
vmw_min_ANA_Core_1 assert dev="ANA_Core.*" expr="V(n4)"
min=-0.5 duration=1n message="[OV] VNW forward biased"
level=warning anal_types=[dc tran]
```
Regressions

- Nightly regressions for all tests with SV model
- AMS plan created targeting required scenarios
- Mixed VAMS and spice config selection as per DV plan
- VAMS regression was run on need basis
- Selected tests were run with full SPICE
Simulation Data

- VAMS model issues: 2%
- Spec issues: 6%
- Digital design issues: 46%
- Verification issues: 9%
- SV UDT model issues: 23%
- Analog schematic/functional issues: 14%
Conclusion

• Reusable scalable UVM env used for verification
• Realistic SV UDN model helped to run more system level scenarios
• Helped in quickly finding schematic issues
• More tests available to run on VAMS sims
• Mixed config speeds up sims but still uses SPICE for targeted module
• More time available for analog team to debug and run as tests reused
• Scoreboards, checkers reused for mixed signal sims