

1

Scalable Multi-Domain Multi-Variant Reset

Management in Complex Verification IPs

Kaustubh Kumar, Verification Architect, SiliConch Systems, Bengaluru, India

(k.kaustubh@siliconch.com)

Munnangi Sirisha, Verification Architect, SiliConch Systems, Bengaluru, India

(sirisha.munnangi@siliconch.com)

Lokesh Kumar, Verification Lead, SiliConch Systems, Bengaluru, India

(lokesh@siliconch.com)

Abstract— Reset Modeling in verification IPs is a crucial part of functional verification and its complexity increases

with the architecture complexity. Reset testing might vary from resetting the complete environment (global reset) to

resetting only a set of components (domain-specific reset) in the environment. With the growing complexity of protocols

and design features, multiple variations of resets and other power-related features need to be tested and modeled in

verification IPs as well. A standardized, scalable and protocol-independent approach is needed to handle all the possible

complex scenarios to achieve a well synchronized reset across the testbench. This paper will present our technique of

standardizing the reset management by deploying a centralized UVM-based Reset Handler which handles and manages

all the possible reset conditions at both levels, global as well domain specific. This paper will also present the

extensibility of the proposed technique to handling different kinds of reset using the proposed Reset Handler.

Keywords—reset management; domain-specific resets; reset variations; reset master-slave relationship; asynchronous

reset handling

I. INTRODUCTION

A major requirement in Verification IPs (VIPs) is to handle dynamic resets, targeted to a certain set of VIP

components or to the entire VIP. Modeling resets in the verification IPs is a crucial part of functional verification

and its complexity increases with the architecture complexity. Reset testing might vary from resetting the complete

environment (global reset) to resetting only a set of components (domain-specific reset) in the environment. With

the growing complexity of protocols and design features, multiple variations of resets and other power-related

features need to be tested and modeled in verification IPs as well.

This paper presents a scalable, protocol independent and a centralized way to handle reset assertion and

execution throughout the VIP. This standardization is achieved by deploying a centralized UVM-based

reset_handler component which handles the reset assertion conditions and invokes the concerned VIP entities

to execute the reset operation. Some of the reset-based scenarios common in VIPs, that are expected to be handled

by reset_handler, are mentioned below:

1) VIP Initial Reset/Global VIP Reset: Initial reset of VIP components is required to put the logical

threads/variables/interfaces in their reset state. This initialization step may happen at simulation time 0 or any non-

zero time instant as well to introduce reset delay randomization. Again, based on protocol/scenario requirements,

entire VIP environment might be required to undergo reset operation dynamically/asynchronously.

2) Domain-specific Reset: Based on the protocol under verification, only a subset of all the VIP components

might be required to undergo reset operation at any time instant. These subsets of VIP components constrained to

undergo reset together, form a reset-domain.

3) Modes/Variants of Reset: VIP might be required to undergo different varieties of reset operations, for

example, “COLD” and “WARM” resets. The VIP components undergoing the reset operation in this case may

expect an input about the mode of reset in order to execute the operation differently, as per protocol requirements.

Apart from “reset” functionality alone, reset_handler functionality can be extended to execute operations

such as disable, clock gating, clock un-gating, etc.

2

The proposed technique declares reset_handler as a centralized singleton class, which works on a

principle of Master-Slave relationship. In this relationship, a VIP component responsible for asserting reset(s) to

other component(s) is defined as the Reset Master (abbreviated as RM). The VIP component(s) which are invoked

because of reset assertion by an RM is/are defined as Reset Slave(s) (abbreviated as RS). Based on the VIP

architecture, some of the components can serve as both master and slave (RMS). Hence, the various groups of RMs

and RSes/RMSes together form the multiple reset-domains. A reset operation execution in a reset-domain can be

confined to that domain alone, without impacting other reset-domains and without changing the phase of any of the

UVM components.

Existing technique of UVM phase jumping [3] to reset_phase() is suitable for resetting all the components

in the environment but cannot be used where only a set of components in a verification environment need to be

reset. It is also difficult to handle different types of resets that can applied to the components using UVM phase

jumping approach as it requires proper coordination between the components. Our approach solves these problems

by creating multiple reset-domains and handling different modes of reset.

 Another technique [4] involves plugging a virtual interface to monitor reset assertion and using a

uvm_thread instance as reset_handler and calling reset_handler.notify(ACTIVATE)to assert reset. The

disadvantage of this technique is the inability to handle domains-specific reset using a single instance of

uvm_thread. Also, this technique is not scalable to different modes of reset.

II. IDENTIFICATION OF RESET DOMAINS

The proposed reset_handler can manage Global VIP Reset or Domain-specific Reset. This is achieved by

using Reset Master and Slaves relationship with optional Reset Master/Slaves in between (RM-RMS-RS). Creating

multiple-reset domains in a VIP environment employs following initial steps:

1) Identifying the RM components as VIP components which can assert reset based on any simulation event,

such as a unique sequence item, trigger of a UVM event/callback, etc. At this step, it is possible that a Reset Master

may qualify for reset assertion based on multiple simulation events as well as standalone. In Figure 1 below,

components C1 and C3 are identified as Reset Masters.

RESET DOMAINS

COMPONENT
C3

COMPONENT
C1
M M

RM

Figure 1. Identifying Reset Master (RM) components

2) Identifying the VIP components which depend on another reset event triggered by a Reset Master (RM) to

assert reset to a set of VIP components and labeling them as Reset Master/Slaves (RMS). RMS components may

undergo reset operation apart from issuing resets to another set of components. In Figure 2 below, component C2

is identified as an RMS component.

RESET DOMAINS

COMPONENT
C3

COMPONENT
C2

COMPONENT
C1

S

M M

MRMS

Figure 2. Identifying Reset Master/Slave (RMS) components

3

3) Identifying the VIP components which undergo reset operation based on reset event triggered by an

RM/RMS and labeling them as Reset Slaves (RS). These components are the endpoints of a reset assertion hierarchy

and issue no further resets to any other component. In Figure 3 below, components C4, C5 and C6 are identified as

Reset Slaves.

RESET DOMAINS

COMPONENT
C3

COMPONENT
C2

COMPONENT
C1

COMPONENT
C5

COMPONENT
C6

COMPONENT
C4

S

M

S

M

S

M

S
RS

Figure 3. Identifying Reset Slave (RS) components

4) Link each of the RMs to the respective RMSes and RSes into separate reset-domains based on every

simulation event which can cause the RM to assert reset operation. In case the RM asserts reset to the same set of

RMSes/RSes for multiple simulation events, group all the simulation events into a single reset-domain. Figure 4

below shows the final reset hierarchy of the components in a sample VIP environment.

RESET DOMAINS AND RELATIONSHIPS

COMPONENT
C3

COMPONENT
C2

COMPONENT
C1

COMPONENT
C5

COMPONENT
C6

COMPONENT
C4

S

M

S

M

S

M

S RESET MASTER RESET SLAVES
C1
C2
C3

C2 C5
C6
C4

SIM EVENT
 EVENT_X
 EVENT_Y
 EVENT_Z

Figure 4. Linking Reset Master and Slaves based on simulation events

Hence, there can be multiple Reset Masters (RMs) in a VIP environment, each of them associated with one or

many reset domains. This relationship can be visualized as a database of a Reset Master associated with its Reset

Master/Slaves or Reset Slaves, the index to this database being the unique simulation event that causes the RM to

assert reset.

III. RESET INTERFACE

A System Verilog interface class reset_interface is declared comprising of pure virtual

System Verilog task do_reset(). Any VIP component qualified as an RM/RMS/RS shall implement the

reset_interface and hence override the do_reset() task to specify the details of handling of the reset

operation based on the protocol implementation.

interface class reset_interface;

 pure virtual task do_reset(string reset_type= “”);

4

endclass : reset_interface

Figure 5. Declaration of reset_interface

<<interface>>
reset_interface

+do_reset(reset_type:string)

uvm_component

C1 C2 C3

reset_interface reset_interface reset_interface

Figure 6. UVM hierarchy for RM/RMS/RS components

IV. RESET HANDLER OPERATION

Major operations handled by reset_handler is abbreviated as R-A-N-C (Registration-Assertion-

Notification-Completion). Each of these operations are summarized in below points and described in detail in

further sub-sections:

1) Registration of Reset Master and Slave components to the reset_handler database

2) Servicing Assertion of reset request by a registered Reset Master

3) Notification of asserted reset request to the registered Reset Master/Slaves or Slaves.

4) Monitoring for the Completion of the notified reset requests

Below code in Figure 7 shows the reset_handler class declaration. Note that since reset_handler is

a singleton class, there is no factory registration done, as factory overrides are not required.

class reset_handler extends uvm_component;

 protected static reset_handler _m_reset_handler;

 local function new (string name, uvm_component parent);

 super.new(name, parent);

 endfunction : new

 static function reset_handler get(uvm_component parent);

 if(_m_reset_handler == null) begin

 _m_reset_handler = new("reset_handler", parent);

 end

 return _m_reset_handler;

 endfunction : get

 …

 …

endclass : reset_handler

Figure 7. Reset Handler singleton class definition

A. Master and Slave Registration

The database of RMs, RMSs, RSs indexed by simulation event can be easily represented by associative array.

The reset_handler maintains the associative array, with following properties:

1) Domain ID (string type) as the index of the array; string representation of the simulation event.

2) Each element of the array is a System Verilog queue of type reset_interface. Each element of the

queue is a reset_interface handle to the RM/RMS/RS associated with the Reset Domain. First element of

the queue is the RM of the Reset Domain, followed by the RMSs and RSs associated with the domain.

Another database to maintain status of Reset Master registration is also maintained by reset_handler.

Singleton handle

Inaccessible by external
classes

Accessible by external
classes

5

QUEUE OF RESET INTERFACE HANDLES
{C1, C2, C5}

{C2, C6}
{C3, C4}

DOMAIN_ID
 DID_0
 DID_1
 DID_2

MASTER REGN STATUS
1
1
1

DOMAIN_ID
 DID_0
 DID_1
 DID_2

Figure 8. Reset Handler local databases

class reset_handler extends uvm_component;

 protected static reset_handler _m_reset_handler;

 typedef reset_interface t_reset_if_q[$];

 // Database declarations

 protected t_reset_if_q m_reset_db [string] ;

 protected bit m_master_sts_db [string] ;

 …

 …

endclass : reset_handler

Figure 9. Reset Handler singleton class definition and databases

Each of the VIP components associated with the Reset Domains registers itself with the reset_handler.

This registration can be done in the UVM build_phase() of the VIP components, where the singleton handle

of the reset_handler can be received and reset_handler.register() function called. There are two

modes of register() function call, each for an RM and an RS. For RMS components, two register()

function calls are required, one as an RM, another as an RS. Following are the inputs arguments for register()

function:

1) is_master (bit): Single-bit flag to specify whether the VIP component being registered is a Reset

Master (is_master = 1) or a Reset Slave (is_master = 0).

2) h_component (uvm_component): Handle of the VIP component being registered.

3) domain_id (string): String representation of the Domain ID of the VIP component being registered.

Based on implementation, string representation of master name with optional suffixes can also be used as Domain

ID.

class C1 extends uvm_component implements reset_interface;

 `uvm_component_utils(C1)

 reset_handler m_reset_handler ;

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 // Retrieve reset_handler singleton handle and register the component

 m_reset_handler = reset_handler::get(this);

 m_reset_handler.register(.is_master (1'b1) ,

 .h_component (this) ,

 .domain_id (this.get_name())

);

 endfunction : build_phase

 virtual task do_reset(string reset_type = "");

 //implementation details

 endtask : do_reset

endclass : C1

Figure 10. Registering a Reset Master component with Reset Handler

class C2 extends uvm_component implements reset_interface;

 `uvm_component_utils(C2)

 reset_handler m_reset_handler ;

Overriding do_reset task as C1

implements reset_interface

Registering C1 master with
Domain ID = “C1”

6

 virtual function void build_phase(uvm_phase phase);

 super.build_phase(phase);

 // Retrieve reset_handler singleton handle and register the component

 m_reset_handler = reset_handler::get(this);

 m_reset_handler.register(.is_master (1'b0) ,

 .h_component (this) ,

 .domain_id (“C1”)

);

 endfunction : build_phase

 virtual task do_reset(string reset_type = "");

 //implementation details

 endtask : do_reset

endclass : C2

Figure 11. Registering Reset Slave component with Reset Handler

The registration process is order independent, implying any RS can register itself before the RM registration.

Order independence is mandatory as registering a component as RM/RS is done in UVM build_phase() and

reset hierarchy can be different from the UVM hierarchy of the components. In other words, the order in which the

VIP components are built in build_phase() may not be the same as an RM to RS relationship/hierarchy. This

might cause a problem as there may be chances of a Reset Domain having no registration of a Reset Master, as

there is no such compulsion in build_phase().

To guarantee that all Reset Domains have a Reset Master registered, the reset_handler validates the

associative array queues and master registration status database in the UVM connect_phase(). In the

validation process, the reset_handler checks and flags errors, if found, in the following cases:

1) A Reset Slave does not exist for a Reset Master in a domain

2) A Reset Domain has no Reset Master registered

B. Reset Assertion

 When a Reset Master needs to assert reset operation to its associated slaves, it uses the reset_handler

handle to call reset_handler.assert_reset() function. assert_reset() is a System Verilog

function and takes following input arguments:

1) domain_id (string): String name of the reset domain for which reset is being asserted

2) h_component (uvm_component): Handle of the Reset Master component from which reset is being

asserted.

3) reset_type (string): String representation of the type/mode of the reset being asserted. This is an

optional argument.

4) slaves_only (bit): Single bit to specify whether the reset operation must be performed on the Reset

Slaves only (slaves_only=1) or on Reset Master as well as associated Reset Slaves (slaves_only=0). This

is an optional argument, and the default value for slaves_only is 0.

class C1 extends uvm_component implements reset_interface;

 `uvm_component_utils(C1)

 reset_handler m_reset_handler ;

 virtual task run_phase(uvm_phase phase);

 …

 …

 //Below code to assert reset to the associated Reset Slave(s)

 m_reset_handler.assert_reset(.domain_id (this.get_name()),

 .h_component (this),

 .slaves_only (1)

);

Registering C2 slave with Domain
ID = “C1”

7

 …

 …

 endtask : run_phase

 virtual task do_reset(string reset_type = "");

 // implementation details

 endtask : do_reset

endclass : C1

Figure 12. Reset assertion from Reset Master

C. Reset Notification

 When an assert_reset() call is done from a Reset Master, the reset_handler validates the Reset

Master handle and locally updates a list of all active Reset Domains that have been requested reset. In

run_phase() task, reset_handler performs following operations:

1) Waits for the list of active Reset Domains (Reset Domains that have been requested reset) to contain at least

one element.

2) Gets the queue of reset_interface handles of all the RMs, RMSs and RSs in the reset domain

requested

3) Parallelly, calls do_reset() task of all the RMs (if slaves_only = 0), RMSes and RSes. Since the

number of parallel threads initiating do_reset() calls depends on the number of VIP components registered in

the domain, the number of such threads is variable for each reset assertion. To handle triggering of variable number

of threads each time reset is asserted, fork…join_none can be used inside a loop over all queue elements.

Initiating parallel do_reset() calls is mandatory, as sequential calls may violate the purpose of achieving the

simultaneous resets of all targeted VIP components.

Note that the assert_reset() function does not directly call do_reset() per VIP component, but

instead just updates a list of active Reset Domains. This is necessary as assert_reset() must be non-time

consuming so that the Reset Master can proceed ahead without consuming any simulation time or blocking other

operations while waiting for reset completion.

class reset_handler extends uvm_component;

 // Local Databases

 protected t_reset_if_q m_reset_db [string] ;

 protected bit m_master_sts_db [string] ;

 …

 protected bit reset_sts ; // bit to notify reset assertion

 protected string active_domain_list[$]; //queue to store active reset domains

 function void assert_reset(string domain_id, …);

 reset_sts = 1 ;

 active_domain_list.push_back(domain_id);

 // Add code to record slaves_only option

 endfunction : assert_reset

 virtual task run_phase(uvm_phase phase);

 forever begin

 wait(reset_sts == 1);

 // Loop over all active reset domains

 while(active_domain_list.size > 0) begin

 automatic string curr_domain = active_domain_list.pop_front();

 if(m_reset_db.exists(curr_domain)) begin

 // Loop over all the elements of the curr_domain

Asserting reset for “C1” domain
ID only for slaves

8

 foreach(m_reset_db[curr_domain][i]) begin

 fork

 automatic int comp_id = i ;

 m_reset_db[curr_domain][comp_id].do_reset(…);

 join_none

 …

 end

 end

 else begin

 // Throw Error Message

 end

 end

 reset_sts = 0 ;

 end

 endtask : run_phase

endclass : reset_handler

Figure 13. Handling reset notification to RM/RMS/RS components in the requested Reset Domain

D. Reset Completion

 Once all the do_reset() calls are parallelly triggered through multiple fork…join_none threads, it

becomes mandatory for reset_handler to track all the launched threads and ensure all of them are completed

and notify the completion. Reset Master may wait for reset completion using a separate task

reset_handler.wait_reset_done() since assert_reset() call is non-time consuming. To track

all the parallelly launched do_reset() threads, process IDs of all the threads are recorded at the launch time.

After all the threads are launched, the recorded process IDs are used to wait for threads to get finished. Reset

completion is notified when await() calls on all the process IDs are completed.

class reset_handler extends uvm_component;

 // Local Databases

 protected t_reset_if_q m_reset_db [string] ;

 …

 protected bit reset_done_sts [string]; // Stores reset completion status of

each reset domain

 function void assert_reset(string domain_id, …);

 // Update initial status of requested domain

 reset_done_sts [domain_id] = 0;

 endfunction : assert_reset

 // wait_reset_done task: to be used by master for waiting on reset completion

 task wait_reset_done(string domain_id);

 wait(reset_done_sts[domain_id] == 1);

 endtask : wait_reset_done

 virtual task run_phase(uvm_phase phase);

 forever begin

 …

 // Loop over all active reset domains

 while(active_domain_list.size > 0) begin

 automatic process pid_q [$];

 …

 if(m_reset_db.exists(curr_domain)) begin

 // Loop over all the elements of the curr_domain

 foreach(m_reset_db[curr_domain][i]) begin

 fork

 …

do_reset() call for the

RM/RMS/RS components in the

requested reset domain

task to wait for reset completion of
the requested reset domain

9

 m_reset_db[curr_domain][comp_id].do_reset(…);

 pid_q.push_back(process::self());

 join_none

 …

 end

 fork

 foreach(pid_q[i]) begin

 wait(pid_q[i] != null);

 pid_q[i].await();

 end

 reset_done_sts[curr_domain] = 1;

 join_none

 end

 else begin

 // Throw Error Message

 end

 end

 reset_sts = 0 ;

 end

 endtask : run_phase

endclass : reset_handler

Figure 14. Monitoring for Reset Completion of Active Reset Domains

V. BEYOND PLAIN RESET HANDLING

A. Clock Gating and Un-Gating

When verifying a design with clock gating features, the VIP environment might also be required to model clock-

gating of a set of VIP components. Like reset management, reset_handler can be used to manage clock-gate

assertions and notifying respective VIP components. Note that a VIP component must employ implementation

dependent mechanism to clock-gate its own processes when notified to do so by reset_handler. One of the

ways that VIP component can use to clock-gate its own processes is to use suspend() calls on all its process

IDs.

To achieve clock-gating management, two tasks are added to reset_interface: do_suspend() and

do_resume(). These tasks shall be overridden in the VIP component which implements the

reset_interface. When a Reset Master asserts clock-gating in a Reset Domain using

reset_handler.assert_suspend() function, reset_handler calls do_suspend() on all the

RMs, RMSes and RSes registered in the requested Reset Domain. Similarly, a Reset Master uses

reset_handler.assert_resume() function call to issue do_resume() for the requested Reset

Domain and mimics clock un-gating feature.

B. Disable vs Reset

Expanding the scope further, reset_handler can also be used to trigger disabling of a set of VIP

components registered in a Reset Domain. A task do_disable can be added to the reset_interface. A

VIP component implementing the reset_interface in this case, shall also override do_disable task to

implement disabling of the processes in the component. The difference between do_disable and do_reset is

that the component which is disabled does not start running the processes again automatically until a do_reset

call is made to the component. On the other hand, do_reset call is intended to perform both, disabling of the

processes in the component as well as re-starting and re-initialization of the processes.

C. Multi-Variant Reset Management

As mentioned earlier, assert_reset() call from a Reset Master has a string input argument

reset_type. This argument can be used by a Reset Master to specify the mode/variant of reset to be issued to

the Reset Slaves. For example, the argument reset_type can be set to “COLD_RESET” or “WARM_RESET”.

Recording process IDs of all launched
threads

Waiting for all launched threads
to complete using the recorded
process IDs

Updating reset completion status

10

The reset_handler takes no action based on reset_type and directly forwards it to the Reset Slaves by

passing the same argument to the do_reset() call for each Reset Slave. Since, the Reset Slaves are protocol

dependent, the do_reset() task in the Reset Slave shall be implemented to handle all the reset types according

to the protocol. Hence, it becomes simpler for a VIP component writer to handle different varieties of resets based

on the string input argument of the do_reset() task.

class C1 extends uvm_component implements reset_interface;

 `uvm_component_utils(C1)

 reset_handler m_reset_handler ;

 virtual task run_phase(uvm_phase phase);

 …

 …

 // Below code to assert “COLD” reset to the associated Reset Slave(s)

 m_reset_handler.assert_reset(.domain_id (this.get_name()),

 .h_component (this),

 .slaves_only (1),

 .reset_type (“COLD_RESET”)

);

 …

 …

 endtask : run_phase

endclass : C1

Figure 15. Asserting “COLD RESET” from Reset Master

class C2 extends uvm_component implements reset_interface;

 `uvm_component_utils(C2)

 reset_handler m_reset_handler ;

 virtual task do_reset(string reset_type = "");

 case(reset_type)

 “COLD_RESET” : begin

 // Handling of “COLD RESET” feature

 end

 // Handle other variants of resets below

 …

 …

 endcase

 endtask : do_reset

endclass : C2

Figure 16. Handling “COLD RESET” in a Reset Slave

VI. DEPLOYMENT IN USB POWER DELIVERY VIP

The proposed technique is deployed successfully in USB Power Delivery (PD) Verification IP environment and

various possibilities like resetting sub-components with different types of resets have been extensively tested. The

overall structure of environment for USB PD Verification IP and reset relationship is shown in Figure 17 below.

Asserting “COLD_RESET” for
“C1” domain ID only for slaves

11

USB VERIFICATION IP RESET MANAGEMENT

DEVICE POLICY
MANAGER

TYPE-C
CONNECTOR

USB DATA
CONTROLLER

USB POWER
DELIVERY

S

M

S

M

S

USB
AUTHENTICATION

S

Figure 17. USB PD Verification IP Reset Hierarchy

This technique is also extended for disabling and suspending the sub-components apart from resetting. Also, it

is used to handle SOFT_RESET and HARD_RESET variations in USB Power Delivery protocol. The failure

debugs related to reset testing were faster and simpler using the proposed technique.

VII. CONCLUSION

This paper defines a standard flow which helps in performing dynamic reset operations and modeling reset

management in a scalable, efficient and graceful way. Maintaining a central database eases the development of

Reset Master/Slave components, which just need to define the handler tasks: do_reset(), do_disable, etc.

Structuring the VIP with a centralized reset_handler also helps in faster debugs, modification of existing

scenarios and adding new scenarios.

REFERENCES

[1] Accellera, Universal Verification Methodology 1.2, June 2014.

[2] IEEE Computer Society, System Verilog, 2017.

[3] Brian Hunter, Ben Chen and Rebecca Lipon, “Reset Testing Made Simple with UVM Phases,” in Synopsys User Group, 2013.

[4] Courtney Fricano, Stephanie McInnis, Uwe Simm and Phu Huynh, “Reboot your Reset Methodology: Resetting Anytime with the UVM

Reset Package,” in Design and Verification Conference, Europe, 2014.

	I. Introduction
	II. Identification of Reset Domains
	III. Reset Interface
	IV. Reset Handler Operation
	A. Master and Slave Registration
	B. Reset Assertion
	C. Reset Notification
	D. Reset Completion

	V. Beyond Plain Reset Handling
	A. Clock Gating and Un-Gating
	B. Disable vs Reset
	C. Multi-Variant Reset Management

	VI. Deployment in USB Power Delivery VIP
	VII. Conclusion
	References

