
Safety-Verification Flow Sporting Gate-Level
Accuracy and Near Virtual-Prototype Speed

Bogdan-Andrei Tabacaru∗†, Moomen Chaari∗†, Wolfgang Ecker∗†,
Thomas Kruse∗, and Cristiano Novello∗

∗Infineon Technologies AG - 85579 Neubiberg, Germany
†Technische Universität München
Firstname.Lastname@infineon.com

Abstract—Efficient fault-effect analysis on gate-level (GL) and RTL models has become increasingly costly due
to rising complexity in today’s SoCs. Although transaction-level (TL) models speed-up simulations, faults injected
therein correlate poorly to faults from GL models. This leads to injection of false faults and over-engineering of safety
mechanisms. In this paper, we propose a fault-injection methodology for TL models maintaining 100% correlation
to GL models. Our approach’s key aspects are: matching points across abstraction levels and selective abstraction
of GL functionality using compiled-code simulation techniques. Measurements show an average 65-70x speed-up
over RTL models and three orders of magnitude speed-up over GL models. Moreover, speed-up increases with the
size of analyzed designs.

Keywords—Automotive; Fault Injection; ISO 26262; Safety Verification; SystemC; TLM; Virtual Prototyping

I. INTRODUCTION

Fault-effect simulation of digital circuits is a lasting problem in areas such as safety verification. The current
trend of increasing complexity affects not only the development of systems on chip (SoCs) but also slows down
fault injection and simulation campaigns as part of safety verification.

Presently, fault injection is mainly performed on register-transfer level (RTL) models (mostly transient faults)
and gate-level (GL) net-lists (stuck-at faults). Parts 5 and 10 of ISO 26262, the standard for safety-critical
automotive applications, refer to GL net-lists as “appropriate for fault injection” since they contain sufficient
information about a system’s structure [1]. Furthermore, RTL models are also “an acceptable approach for
stuck-at faults, provided that the correlation with gate level is shown” [1]. Thus, fault injection into lower
abstraction levels (e.g., transistor level) is not necessary for automotive-related SoCs.

Moreover, the interest in performing safety verification on virtual prototypes (VPs) using SystemC and TLM
[2] is increasing since VPs allow safety-architecture exploration early in the design phase [3]. However, the
insertion of a sufficient number of realistic faults into such models is an ongoing challenge.

Due to lack of access to implementation details, faults cannot be inserted into transaction-level (TL) models
using GL granularity but must be inserted at the TL model’s boundaries (i.e., interface) or into the TL model’s
limited number of internal variables.

As a consequence, not only single bit but also multi-bit errors must be injected into TL models to get a
realistic error footprint. The need for multi-bit fault injection can be easily explained utilizing a simple multi-bit
adder with carry-in. On the one hand, if both summands are 0, the effect of a stuck-at-1 fault at the carry-in
affects only one bit of the sum. On the other hand, if all bits of one summand are set to 1 and the other
summand is 0, a stuck-at-1 fault injected into the carry-in bit affects all bits of the sum. In other words, a
realistic fault-injection campaign performed on an add-operation in TLM must be able to insert any number of
faults in parallel. However, inserting any number of faults on high abstraction levels can result in analysis of
wrong (i.e., unrealistic) failures and, as a consequence, can also result in the implementation of unnecessary
safety mechanisms to correct the observed failures.

Our focus lies in the insertion of realistic faults into TL models. For this reason, we follow a structured
approach of fault abstraction as depicted in Fig. 1. We start at the transistor level since every fault originates
here. From there, we follow the classical abstraction via transistors and gates to RTL models. The stuck-at
faults conceptually remain the same; however, they are applied to different kinds of connectivity specifications.
It is important that some matching points remain visible over all abstraction levels. Therefore, we model our
systems at the TL so that some of the matching points can still be found.

Our definition of matching points includes, but is not limited to, module interfaces, buses, memories, and
important block states (e.g., special purpose registers). In our case, we have embedded behavioral components
into TLM methods, components which are reflected in RTL and GL models as well.

To address the problem of realistic fault injection, we have replaced primitive combinational TL models
(e.g., adders, barrel shifters) with refined implementations. Since the primitive combinational TL models contain
neither internal states, nor variables and execute a single operation (e.g., add, shift), their refined implementations

Abstraction Abstraction Abstraction

Manual Synthesis RTL Synthesis Place & Route

Figure 1. Fault matching-points on different abstraction levels

allow insertion of faults with GL granularity. Furthermore, we have co-simulated the new models utilizing a
compiled-code method [4] and fault-injection variables. In doing so, the TL models have gained all injectable
fault-locations (e.g., wires, ports) present in the GL net-list, while preserving their original functionality and
while maintaining a sufficient amount of the original TLM simulation speed. Next, we have randomly injected
faults into the refined implementation and, finally, observed the injected faults’ propagation effects through
the TL system. Thus, we have been able to replace the inaccurate multi-bit fault-injection approach at the
boundaries of TL models with GL-accurate single-bit fault injection into refined TL models. This work was
adapted from [5].

The remainder of this paper is structured as follows. Section II presents existing contributions related to the
topics of fault injection and safety verification. Section III contains a description of our TLM-GL co-simulation
and fault-injection frameworks. Simulation results and measurements made on several synthesizable circuits
and a MIPS CPU are described in section IV. Finally, this paper’s summary is presented in section V.

II. RELATED WORK

GL fault-injection techniques have been reported as highly effective for safety verification of SoCs [1], [6].
However, large-scale safety-critical microcontrollers such as the STMicroelectronics SPC5 family [7] or the
Infineon AURIXTMfamily [8] are too large for complete system-level safety verification.

Currently, RTL-based fault-injection techniques are widely used in safety-verification flows [9]. However,
such frameworks come with a series of drawbacks. First, many techniques inject faults only into RTL systems
and exclude comparisons with the corresponding GL model [10], [11]. Therefore, potential matching points
are not even analyzed. Second, it is difficult to find matching points to combinational GL net-lists even on the
RTL abstraction level [12]. Finally, fault-injection campaigns on RTL models suffer from slower development,
debugging, and simulation speeds compared to TLM.

Formal safety-verification approaches have been used to reduce the verification time of safety-critical
registers [13]. However, formal checking is still too computationally expensive and has limited scalability
on large designs.

FPGA (field-programmable gate arrays) emulation has been extensively researched in the last decades with
respect to safety verification [14], [15]. During this time, much progress has been made in the area of simulation
speed, improved debugging, and higher fault-injection controllability. However, FPGA emulation still presents
three fundamental drawbacks: i) high development cost, ii) complex usability for large net-lists (e.g., AURIX),
and iii) different timing properties between FPGA and target SoC technologies.

At the present time, SystemC-TLM-based VPs are created more frequently because they offer much faster
simulation speeds than RTL and GL models [16].

Moreover, mixed-level fault-injection methodologies (e.g., TLM-RTL) are constantly emerging [17]–[19].
In [17], a wrapper has been used to co-simulate TL and RTL models. The wrapper was responsible for adding
missing RTL signals to the TLM abstraction level (e.g., read/write enable signals). Furthermore, the
wrapper handles the communication synchronization between TLM and RTL. Faults have been injected at the
RTL model’s boundary and their propagation has been observed at the TLM outputs. Moreover, a concurrent
simulation approach has been used to perform the fault-injection campaigns. As mentioned in [20], the main
drawback of mixed-level safety-verification methodologies is that faults injected into TLM or RTL systems
provide sub-optimal results compared to fault injection into GL models. This inaccuracy is attributed: i) to the
lack of injectable fault-locations (e.g., wires, ports) and ii) to different propagation effects of the same faults
injected at different abstraction levels. This inaccuracy has a considerable negative impact on the efficient design
of sufficient safety mechanisms early in the development phase. Therefore, an approach is needed to provide
better matching points among multiple abstraction levels.

In this paper, we present a methodology to increase the number of injectable fault-locations on SystemC-
TLM-based VPs because the number of faults that can be injected into any model at a higher level of abstraction
is significantly smaller than in the equivalent GL implementation. Our work is complementary to that presented
in [17]. We also perform mixed-level safety verification but we apply our approach on TL and GL models
(not RTL). Moreover, we use saboteurs [21] instead of mutants to perform fault injection and a compiled-code
approach [4] to co-simulated TL and GL models. Furthermore, we use a model-based approach to transform GL
net-lists into C++ code, which we later integrate into TLM VPs. The generated C++ code replaces equivalent
functionality modeled in the VPs. Thus, we are able to successfully inject the same realistic GL faults into TL
models and still maintain a fast simulation speed slightly below TLM.

III. MIXED-LEVEL CO-SIMULATION

We have applied a top-down development approach, in which functionally equivalent TL and RTL models
have been simultaneously implemented from a common hardware specification. After the models have been
sufficiently tested (Fig. 2), the RTL models have been synthesized using a commercial synthesis tool [22].
Next, the resulting Verilog net-list has been transformed into C++ code using VERITAS [4]. This code has
been used to replace primitive combinational TL components (Fig. 3). Finally, we have injected faults into the
GL-accurate TL models using Monte Carlo during a safety-verification co-simulation campaign.

Develop/Update
TL Models

Develop/Update
RTL Models

Co-Simulate
Models

Same
Functionality

?

Synthesize
RTL Models

Transform
Net-List into C++

Replace Primitive
TL Models with

Generated C++ Models

Run Fault-Injection
Co-Simulation

Yes

No

Figure 2. SoC development flow until application of fault injection

We define GL-accurate TL models as TLM target components with GL granularity. Thus, TL models which
only represent one or more primitive operations (e.g., add, shift, multiply operations), become enriched with the
GL structure and behavior. In section IV, we will show that this enrichment only adds an acceptable simulation
overhead to the TL models.

For fault-injection purposes, we have extended VERITAS’ C++ generators to use a special fault-injection
object (FIO) class (section III-D).

GL-Accurate TL Model

TLM
Testbench

Generated C++ Code

TL Behavioral Code

Figure 3. Integration of GL-accurate C++ code into TLM-based virtual prototypes

A. Mixed-Level Fault Injection

SaVer (SystemC safety-verification platform) is a fault-injection framework for SystemC-TLM-based models.
Here, FIOs are used to inject faults into generated C++ code. Additionally, SaVer provides a means to create
fault-injection stimulus executed in the context of fault-injection campaigns.

B. Simulation Environment

The C++ code generated from VERITAS is integrated into existing SystemC-TL models. Afterwards, the
TL models are introduced into a fault-injection simulation environment (Fig. 4). The environment contains a
stimulus generator, a transaction monitor, and a fault injector. The stimulus generator drives data either randomly
or targeted (i.e., from a stimulus library) onto the SystemC model’s input ports. Additionally, the fault injector
accesses the model’s internal signals and injects faults therein from a fault library. The monitor detects changes
at the model’s output ports. When the output values change, the monitor sends the observed data to an analyzer
for processing. Finally, a controller regulates the driven stimulus, the injected faults, and the life time of a
simulation.

uses Fault
Lib

Monitor

Controller

GL-Accurate
TL Models

Fault
Injector

Stimulus
Generator

Data
Analyzer

uses Stimulus
Lib

Figure 4. SaVer’s verification environment with fault-injection features

C. Stimulus Generation

Hardware models require
∏P

i=1 2
ni input stimuli to be exhaustively verified, where P is the number of

input ports and ni is the number of bits for input port i. Of course, this exponential amount of stimuli makes
the exhaustive verification of even a simple 32-bit adder unfeasible.

To mitigate this computationally-expensive drawback, while still maintaining a high degree of accuracy,
SaVer’s stimulus generator creates only N input vectors for each TL model, where N is the TL model’s
number of input bits. Here, all input bits are ‘0’ except for one bit which is ‘1’ and shifted across the N input
bits. In this case, this approach ensures 100% toggle coverage on all TLM inputs.

Additionally, the stimulus generator provides cross stimuli for all combinations of input ports. As a result,
the total number of stimuli becomes

∏P
i=1 ni.

Finally, we also apply random and real-world patterns whenever necessary.

The accuracy of our linearized stimulus generator is discussed in section IV-D.

D. Fault-Injection Objects

The fault-injection object (FIO) class (fi_object) is effectively an objected-oriented-based saboteur [21].
Apart from the classic read and write methods of a SystemC signal, the FIO contains extra methods for
injecting permanent (inject_sa0, inject_sa1) as well as transient (inject_seu) faults. The method
inject_seu simply flips a signal’s value at a given bit location. This value can be overwritten by the simulator
during the FIO’s next write cycle. Conversely, the inject_sa0 and inject_sa1 methods effectively block
the FIO’s value update process during subsequent write cycles. The permanent fault’s effect can be removed
during a simulation by calling the FIO’s release method.

E. Fault-Injection Simulation Management

To comprehensively cover the safety-verification space of our hardware systems, we have randomly injected
one fault per co-simulation into the GL-accurate TL models. Additionally, the effects of the injected faults have
been monitored at the outputs of the TLM verification environment.

To test our compiled-code simulation, we have injected only permanent faults (i.e., stuck-at-0 and stuck-at-1)
since the effect of transient faults in combinational circuits is still relatively low [23]. Nevertheless, SaVer’s
FIO is able to inject transient faults as well.

We have injected each fault at the beginning of each simulation and maintained the fault’s effect until the
end of simulation.

We have chosen to only inject faults into internal signals and output ports (i.e., injectable fault-locations)
of a hardware system. Input ports have been excluded since they are already accessible from the stimulus
generator.

By only injecting one fault per simulation and only using two fault models for each internal signal, the
contribution of the fault verification-space to the total number of fault-injection simulations becomes 2·

∑S
i=1 ni,

where S and ni are the number of internal signals and output ports and the number of bits for signal or port
i, respectively.

F. Simulation Flow

All fault-injection co-simulations have been executed using SaVer’s flow (Fig. 5).

First, one reference simulation (i.e., without fault injection) has been executed for each workload to serve
as a golden run. Next, all fault-injection simulations calculated with the equation from Section III-E have
been run. Finally, the fault-injection simulation results have been compared to the reference-simulation results.
If no mismatch has been detected after a simulation, the fault has been considered masked. Otherwise, any

Execute
Reference Model

Execute
Faulty Model

Compare Outputs

Generate
Input Patterns

Generate
Single-Bit Faults

Phase 1 Phase 2 Phase 3 Phase 4

Process
Failure Coverage

Figure 5. SaVer’s fault-injection regression flow

mismatch between the compared simulation data has been considered to be the result of a failure detected at
the TL model’s outputs. In other words, the injected fault was propagated through the model until it reached
the model’s outputs.

IV. CASE STUDIES AND RESULTS

All simulations have been performed on a 64-bit machine with an Intel R© Xeon R© E5 CPU @3.00 GHz,
L3 cache 25600 kB, and 264 GB RAM.

We have measured the simulation speeds of all our case studies with the UNIX time -v command. We
have excluded the measurement of compilation and elaboration times of the co-simulated models.

We have simulated all Verilog GL net-lists as well as the MIPS-RTL models with an off-the-shelf HDL
simulator [24] and all (GL-accurate) TL models with the SystemC reference simulator [2].

A. Adder Architectures

We have chosen adders with overflow to analyze the relationship among different hardware architectures
and almost identical equivalent TL models (i.e., the carry bit is modeled on different bit positions).

The primitive TL model of an n-bit adder with overflow has no internal states and only implements the
add-operation. In this case, faults can only be injected into the model’s outputs (i.e., carry out and sum).

The GL-accurate TL models generated with VERITAS as C++ code contain the models’ complete GL
structure visited in topological order. Hence, all injectable fault-locations present in the GL models are pre-
served within the GL-accurate TL models. As shown in Table I, it is clear that the original primitive TL
models have significantly less fault-injection locations than the GL models. More precisely, there is on average
less than 17% correlation between the primitive TL models and the GL net-list. Moreover, the number of
injectable fault-locations increases notably with the adder’s size (i.e., the numbers of internal signals and bits
increase). Additionally, more complex adder implementations (e.g., carry look-ahead) provide a greater number
of injectable fault-locations in comparison to the TL model.

Model
Injectable Fault-Locations (#)

Correlation
Percentage

Simulation Time (s)
Slow-Down

Factor
Primitive
TL Model

Gate-Level-Accurate
TL Model

Gate-Level-Accurate
TL Model

Primitive
TL Model

full_adder 2 6 33.33% 0.041 0.040 1.03x

adder_2bit 3 9 33.33% 0.097 0.087 1.11x

nibble_adder 5 31 16.13% 0.260 0.122 2.13x

adder_4bit 5 35 14.29% 0.310 0.122 2.54x

addsub_8bit 9 69 13.04% 0.690 0.194 3.57x

adder_8bit 9 77 11.69% 1.600 0.194 8.27x

adder_16bit 17 163 10.43% 3.470 0.405 8.58x

adder_32bit 33 339 9.73% 13.550 1.142 11.87x

carry_lookahead_32bit 33 523 6.31% 16.040 1.142 14.05x

Average 16.48% Average 5.91x

Table I. COMPARISON IN NUMBER OF FAULT-INJECTION LOCATIONS AND SIMULATION SLOW-DOWN FOR SEVERAL ADDER
ARCHITECTURES

We have compared the co-simulation speed of our compiled-code approach against that of the original pure
TL model and the pure GL simulation. We have observed that: i) the GL-accurate TL models are about 6x
slower than the original primitive TL models (Table I) and ii) the GL-accurate TL models are on average
about 2-5x faster than the original GL models (Fig. 6). Moreover, Fig. 6 indicates that the GL-accurate TLM

simulations increase in performance with the size of the simulated model (i.e., the 32-bit adder is over 6x faster
than the 2-bit adder).

0%

50%

100%

TL
M

 v
s.

 G
L

Si
m

u
la

ti
o

n
-

Sp
e

e
d

 C
o

m
p

ar
is

o
n

Gate-Level-Accurate TL Model Verilog Gate-Level Model

Figure 6. Simulation-speed comparison between each gate-level and gate-level-accurate TL model

Since we have enriched the primitive TL models with extra functionality and structure, the effects on
simulation performance (i.e., faster than GL and slower than pure TLM) had already been expected. Nevertheless,
the results show that a successful trade-off between simulation speed and fault-injection accuracy can be reached
when co-simulating mixed-level hardware models using our compiled-code approach. Moreover, this trade-off
can be further improved by optimizing the generated compiled-code approach (e.g., generating a reduced amount
of fault-injection locations from the GL net-list).

B. MIPS CPU Architecture

The MIPS-RTL model contains an integer-based instruction set, five pipeline stages, hazard detection,
and forwarding. The MIPS-TL model is a pipelined behavioral model functionally equivalent to the RTL
implementation. We used components of a MIPS implementation to cover a wide range of design alternatives
(e.g., simple shifters in the logic unit and look-up tables in the instruction-decode control unit). Moreover, we
used the complete MIPS models to compare the performance of our GL-accurate TL models to the RTL and
GL implementations to show speed-up to today’s state-of-the-art technology.

Table II presents the impact of our method on the number of injectable faults added to the GL-accurate
TL models and their execution speed. The results are similar to those in the previous case study: there is on
average less than 17% correlation between TLM and the MIPS-GL net-list.

Model
Injectable Fault-Locations (#)

Correlation
Percentage

Simulation Time (s)
Slow-Down

Factor
Simulation Time

RTL (s)
Speed-Up

Factor
TL

Model
Gate-Level-Accurate

TL Model
Gate-Level-Accurate

TLM Model
TL

Model

adder 33 209 15.79% 2.593 0.24 10.80x 70.831 27.32x

ex_forwarding 4 38 10.53% 1.192 0.24 4.97x 70.831 59.40x

hazard_detection 4 73 5.48% 1.610 0.24 6.71x 70.831 43.99x

id_control 11 116 9.48% 1.914 0.24 7.98x 70.831 37.01x

jump 3 10 30.00% 0.408 0.24 1.70x 70.831 173.56x

logic_unit 32 266 12.03% 2.761 0.24 11.50x 70.831 25.65x

shift 32 931 3.44% 5.564 0.24 23.18x 70.831 12.73x

subtractor 33 174 18.97% 2.164 0.24 9.02x 70.831 32.73x

write_back 38 82 46.34% 0.380 0.24 1.58x 70.831 186.40x

Average 16.89% Average 8.60x Average 66.53x

Table II. COMPARISON IN NUMBER OF FAULT-INJECTION LOCATIONS AND SIMULATION SLOW-DOWN FOR A MIPS CPU

However, the main differences have been observed when comparing simulation speeds. The original MIPS
TL and RTL models have been simulated without fault injection and recorded into Table II. The GL-accurate
MIPS-TL models have been simulated by successively replacing each primitive TL mode with the enriched
C++ models generated from VERITAS.

We have observed an average slow-down of the GL-accurate TL models compared to the pure TL of less
than 10x but a surprising average 65-70x speed-up against the RTL simulation. Moreover, when compared
to the synthesized Verilog net-list simulation, the GL-accurate TL models are over three orders of magnitude
faster to simulate. These results offer a conclusive benefit for early and comprehensive fault-effect analysis and
safety-architecture exploration.

C. Fault-Injection Object’s Performance

We have benchmarked our fault-injection class against C++ Boolean variables using 232 read and write
accesses over 10 simulations. Our measurements have shown that after applying the GNU C++ compiler’s

optimizations, a simulation with our fault-injection class took an average of 253.706 ms, compared to the
simulation with C++ Boolean variables which needed an average of 248.639 ms. Thus, our fault-injection class
is only approximately 2% slower.

D. Fault-Effect Analysis

To calculate the accuracy of our linearized stimulus generator with respect to fault propagation, we have
measured how many of the injected faults have propagated to the outputs of our TL models. We have achieved
this by injecting faults into all fault-injection objects of a TL model and applying all input patterns per injected
fault. As illustrated in Fig. 7, although we have drastically reduced the number of input stimuli, only about
10% of the injected faults have been ultimately masked. In other words, although we did not exercise all input
vectors, around 90% of the faults injected into combinational circuits have propagated to the system’s output
and have become failures. We argue that the missing failures either can be easily triggered by extending the
current library of input vectors (i.e., workload library) with directed vectors instead of Monte Carlo simulation,
or cannot be reached with any input vector.

1

10

100

1000

In
je

ct
e

d
 F

au
lt

s
vs

.
O

b
se

rv
e

d
 F

ai
lu

re
s

Fault-Injection Simulations Observed Failures

Figure 7. Accuracy of our linearized stimulus generator based on the ratio of injected faults and observed failures

V. SUMMARY

In this paper, we have presented a comprehensive methodology to completely correlate injectable fault-
locations on mixed-level hardware models (i.e., SystemC-TL models and GL net-lists).

Additionally, we have presented a fault-injection framework to inject realistic faults into TL models. This
framework offers much faster fault-injection campaign speeds than RTL and GL simulations and those of classic
safety-verification flows as well (i.e., on average 65-70x).

After applying the concepts presented in this paper, TL models which originally contained less than 17%
of the total fault-injection locations of their equivalent GL models have been enhanced with all GL-specific
combinational fault-injection locations. Furthermore, our approach allows the simulation of all realistic single-
bit faults on the TLM abstraction level as requested by the ISO 26262. Therefore, we have effectively bridged
the safety-verification gap with respect to injecting faults on multiple abstraction levels.

In other words, the effectiveness of implemented safety mechanisms can be tested at GL accuracy and at
a simulation speed slightly slower than that of VPs. Additionally, analyses may be conducted which detect if
safety mechanisms are missing, ineffective, or redundant.

ACKNOWLEDGMENT

This work is partially supported by the German Federal Ministry of Education and Research (BMBF) in
the project EffektiV (contract no. 01IS13022).

REFERENCES

[1] ISO, CD, “26262, Road Vehicles–Functional Safety,” International Standard ISO/FDIS, vol. 26262, 2011.
[2] O. S. Initiative et al., “IEEE Standard SystemC Language Reference Manual,” IEEE Computer Society, 2006.
[3] J.-H. Oetjens, O. Bringmann, M. Chaari, W. Ecker, B.-A. Tabacaru et al., “Safety Evaluation of Automotive Electronics Using Virtual

Prototypes: State of the Art and Research Challenges,” in Design Automation Conference (DAC), 51st ACM/EDAC/IEEE. IEEE,
2014, pp. 1–6.

[4] B.-A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, and C. Novello, “Fault-Effect Analysis on Multiple Abstraction Levels in Hardware
Modeling,” DVCon USA, pp. 1–12, 2016.

[5] ——, “Gate-Level-Accurate Fault-Effect Analysis at Virtual-Prototype Speed,” ERCIM/EWICS/ARTEMIS Workshop on “Dependable
Embedded and Cyber-physical Systems and Systems-of-Systems” (DECSoS’16) – accepted, to be published, pp. 1–13, 2016.

[6] J. Espinosa, C. Hernandez, and J. Abella, “Characterizing Fault Propagation in Safety-Critical Processor Designs,” in On-Line Testing
Symposium (IOLTS), 2015 IEEE 21st International. IEEE, 2015, pp. 144–149.

[7] STMicroelectronics, “32-bit Power Architecture R© Microcontroller for Automotive SIL3/ASIL-D Chassis and Safety Applications,”
SPC56 Datasheet, Rev 11, 2014.

[8] I. T. AG, “AURIX–TriCore Datasheet.” Accessed: 2016-2-22. [Online]. Available: https://www.infineon.com/dgdl?folderId=
db3a304412b407950112b409ae660342&fileId=db3a30431f848401011fc664882a7648

[9] R. Leveugle, D. Cimonnet, and A. Ammari, “System-Level Dependability Analysis with RT-Level Fault Injection Accuracy,” in
Defect and Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings. 19th IEEE International Symposium on. IEEE, 2004,
pp. 451–458.

[10] M. Schwarz, M. Chaari, B.-A. Tabacaru, and W. Ecker, “A Meta-Model-Based Approach for Semantic Fault Modeling on Multiple
Abstraction Levels,” DVCon Europe, pp. 1–6, 2015.

[11] I.-D. Vidrascu, “Implementation of a Safety Verification Environment (SVE) Based on Fault Injection,” Master’s thesis, Fach-
hochschule Kärnten, Klagenfurt am Wörthersee, Austria, 2015.

[12] H. R. Zarandi, S. G. Miremadi, and A. Ejlali, “Dependability Analysis Using a Fault Injection Tool Based on Synthesizability of
HDL Models,” in Defect and Fault Tolerance in VLSI Systems, 2003. Proceedings. 18th IEEE International Symposium on. IEEE,
2003, pp. 485–492.

[13] H. Busch, “An Automated Formal Verification Flow for Safety Registers,” DVCon Europe, pp. 1–8, 2015.
[14] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for Aerospace Applications: Soft Errors and Fault-Tolerant Design.

Springer, 2015.
[15] C. Bernardeschi, L. Cassano, and A. Domenici, “SRAM-Based FPGA Systems for Safety-Critical Applications: A Survey on Design

Standards and Proposed Methodologies,” Journal of Computer Science and Technology, vol. 30, no. 2, pp. 373–390, 2015.
[16] K.-J. Chang and Y.-Y. Chen, “System-Level Fault Injection in SystemC Design Platform,” in Proceedings of 8th International

Symposium on Advanced Intelligent Systems (ISIS). Citeseer, 2007.
[17] R. Baranowski, S. Di Carlo, N. Hatami, M. E. Imhof, M. A. Kochte, P. Prinetto et al., “Efficient Multi-Level Fault Simulation of

HW/SW Systems for Structural Faults,” Science China Information Sciences, vol. 54, no. 9, pp. 1784–1796, 2011.
[18] M. Kochte, C. G. Zoellin, R. Baranowski, M. E. Imhof, H.-J. Wunderlich, N. Hatami et al., “Efficient Simulation of Structural Faults

for the Reliability Evaluation at System-Level,” in Test Symposium (ATS), 2010 19th IEEE Asian. IEEE, 2010, pp. 3–8.
[19] M. B. Santos and J. P. Teixeira, “Defect-Oriented Mixed-Level Fault Simulation of Digital Systems-on-a-Chip Using HDL,” in

Design, Automation and Test in Europe Conference and Exhibition 1999. Proceedings. IEEE, 1999, pp. 549–553.
[20] H. Cho, S. Mirkhani, C.-Y. Cher, J. A. Abraham, and S. Mitra, “Quantitative Evaluation of Soft Error Injection Techniques for

Robust System Design,” in Design Automation Conference (DAC), 2013 50th ACM/EDAC/IEEE. IEEE, 2013, pp. 1–10.
[21] H. Ziade, R. A. Ayoubi, R. Velazco et al., “A Survey on Fault Injection Techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp.

171–186, 2004.
[22] Synopsys R©, “Design Compiler R© User Guide,” Accessed: 2016-2-23. [Online]. Available: http://acsweb.ucsd.edu/∼coz004/DC

user guide.pdf
[23] P. E. Dodd, M. R. Shaneyfelt, J. A. Felix, and J. R. Schwank, “Production and Propagation of Single-Event Transients in High-Speed

Digital Logic ICs,” Nuclear Science, IEEE Transactions on, vol. 51, no. 6, pp. 3278–3284, 2004.
[24] M. Graphics R©, “Questa R© SIM User’s Manual,” Accessed: 2016-2-23. [Online]. Available: http://rise.cse.iitm.ac.in/people/faculty/

kama/prof/questa sim user manual.pdf

https://www.infineon.com/dgdl?folderId=db3a304412b407950112b409ae660342&fileId=db3a30431f848401011fc664882a7648
https://www.infineon.com/dgdl?folderId=db3a304412b407950112b409ae660342&fileId=db3a30431f848401011fc664882a7648
http://acsweb.ucsd.edu/~coz004/DC_user_guide.pdf
http://acsweb.ucsd.edu/~coz004/DC_user_guide.pdf
http://rise.cse.iitm.ac.in/people/faculty/kama/prof/questa_sim_user_manual.pdf
http://rise.cse.iitm.ac.in/people/faculty/kama/prof/questa_sim_user_manual.pdf

	Introduction
	Related Work
	Mixed-Level Co-Simulation
	Mixed-Level Fault Injection
	Simulation Environment
	Stimulus Generation
	Fault-Injection Objects
	Fault-Injection Simulation Management
	Simulation Flow

	Case Studies and Results
	Adder Architectures
	MIPS CPU Architecture
	Fault-Injection Object's Performance
	Fault-Effect Analysis

	Summary
	References

