
Safety and Security Aware Pre-Silicon
Hardware / Software Co-Development

Nikola Velinov, nvelinov@ghs.com, Green Hills Software
Frank Schirrmeister, franks@cadence.com, Cadence Design Systems

© Accellera Systems Initiative 1

mailto:nvelinov@ghs.com
mailto:franks@cadence.com

Agenda

– Challenges
– Safety and Security
– Shift Left
– Benefits
– Questions

Verification Challenge: System & Chip + Software
Pr

oj
ec

t c
os

t (
$M

)

Source: IBS 2018

 $-

 $50

 $100

 $150

 $200

 $250

 $300

 $350

 $400

 $450

 $500

65nm 40nm 28nm 22nm 16nm 10nm 7nm 5nm

Software

Verification

Physical

Architecture

IP qualification

VERIFICATION
& SOFTWARE

2N

Automotive Design Chain & Software Challenges

Vehicle

Subsystem

ECU

MCU

OEM

Suppliers

Domain HW Scope View

ECU
Abstraction C

om
plex

drivers
Std.

Services

MCU
Abstraction

(MCAL)

Application
Layerf1 f2 fn

Middleware

task1 taskm
msg

1
msgz

Vehicle SW
§ 1 Billion lines of code

by 2010
§ > 2000 functions
§ Distributed on 75

ECUs (average)
§ Growing inter-

dependencies

SW Scope

Bosch
Semiconductor

Focus

Semiconductor
Focus

Software
Architectural

Design

System
Design

Code
Development

Unit
Test

System
Test

Integration
Test

Acceptance
Test

Requirements
Engineering

Where faults are introduced

Where faults are found

The estimated nominal cost for fault removal

20.5%, 300-1000x

1x

20%, 16%
5x

0%, 9%, 80x

70%, 3.5% 10%, 50.5% 20x

70% Requirements & system
interaction errors

80% late errordiscovery

exponential growth in SW size and complexity

Major cost savings through rework avoidanceby
early discovery and correction

A $10K architecture phase correction saves $3M

Component
Software
Design

Rework & certification is 70% of SW cost, and software
is 70% of system cost. Thus, 49% of system cost can

be attributed to software rework and cert.

Delivery Delays Not Known
Until Late into Project Schedule

Software Rework has Major Impact on System Cost

Approved for Public Release. Distribution is unlimited.

… and so does Hardware Rework!
… and requires a “Shift Left”

Relative cost of a bug

Bugs found late are costly
– Hard to debug
– Limited options to fix
– Increasing mask costs

SAFETY AND SECURITY

© Accellera Systems Initiative 7

Significance of Security in Safety

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

The Pattern in the Case Studies
• Mechanical functions are replaced by software

– Lane assist & distance control
– AD functions

• Traditionally closed systems are becoming connected
– A pacemaker can communicate with the world
– A car’s steering and throttle can be influenced via sensors
– The Internet of Things is all about connectivity

• Safety and security become more entangled
– A safe system must also be secure

© Accellera Systems Initiative 9

Safety vs. Security

Safety
• The system behaves according to the

requirements in all cases
• Protects humans from machines
• A safe system must be secure
• Techniques to achieve safety

– Requirements traceability
– Code coverage
– Comprehensive testing
– Redundancy

Security
• The system behaves according to the

requirements in all cases and does
nothing else

• Protects machines from humans
• Security does not imply safety
• Techniques to achieve security

– Security policy
– Penetration testing
– Covert channel analysis
– Practically all safety techniques

© Accellera Systems Initiative 10

How Does a System Look Like?

© Accellera Systems Initiative 11

Operating System & Device Drivers

Middleware

Hardware

Applications
• Abstraction and functionality moves from

the bottom to the top
• Dependencies move from the top to the

bottom
• You can make a “safe system” with “unsafe

hardware”
• Can you make a secure system without

secure hardware?
– Who would you trust?

Building a Chain of Trust

Time

Software
Abstraction

T(0)=device power on

bootloader

Operating system

Middleware (FS, USB, TCP/IP, etc)

App FOTAApp

Chain of
Trust

© Accellera Systems Initiative

Building Safe and Secure Software
• Separation is key for both
• Separation in the time domain

– Paramount for safety – real time behavior
– Required for security – prevent DoS

• Separation in the memory domain
– Significant enabler for complex systems
– Significant cost redactor

• Maintaining flexibility in the system could become difficult
– The right choice of technology is important

© Accellera Systems Initiative 13

Separation Architecture + Virtualization

Separation Kernel

Virtual Machine MonitorCr
iti

ca
l D

ev
ic

e
Dr

iv
er

Cr
iti

ca
l A

pp
lic

at
io

n
Guest OS

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

Driver Driver

Multicore SOC

Planning for Safety and Security in Software
• Partitioning system resources

– Separation allows greater flexibility

• Certifying mixed criticality components
– SEooC can be leveraged to reduce total cost
– Safety decomposition
– Separation is essential

• Security policy enforcement
– Separation allows you to be cost efficient
– Can also help for a clean and simple design

© Accellera Systems Initiative 15

The Right Tools for the Right Job
• Safety standards mandate tool qualifications

– Could be replaced by testing in some scenarios
• Safety standards mandate tools for the whole lifecycle

– Requirements definition and traceability
– Code coverage
– Reports

• Security is more challenging
– Penetration testing requires sophisticated frameworks
– Different code analysis tools are available
– Run-Time agents & utilities for additional security

© Accellera Systems Initiative 16

Hardware Considerations for Safety and Security

FS verification
(Fault Injection)

Map failure modes to safety goals

Functional requirements and failure modes
Estimate and distribute FIT

Design Verification

Implementation

Safety Optimization
(Safety Mechanism Insertion)

FS-aware P&R
(countermeasures)

Functional Safety Analysis links to the traditional design/verification and implementation flow:
• To include safety mechanisms and meet the HW metrics/ASIL
• Safety metrics, PPA, verification time, automation are all to be considered

Safety Architecture

Requirements
Planning and Optimization
Execution

Safety Plan
FMEA, FMEDA

Benefiting From Cooperation
• Hardware can greatly reduce the cost of safety

– Reduce the overall resource demand
– Replace software safety mechanisms
– Provide a secure trusted platform

• Use safe hardware as early as possible!

© Accellera Systems Initiative 18

SHIFT LEFT IN VERIFICATION

© Accellera Systems Initiative 19

Vehicle
requirements

System
Design

Subsystem
Design

ECU
specification

Vehicle
validation

System
verification

Subsystem
integration

ECU test

Shift Left in the V Diagram – Automotive Example

ECU Development
9 to 24 months

Vehicle
requirements

System
Design

Subsystem
Design

ECU
specification

Vehicle
validation

System
verification

Subsystem
integration

ECU test

ECU development

Virtual
integration

Embedded Software Challenges …
… addressed by Virtual and Hybrid Platforms!

Embedded Software Challenges
• Register interface out of synch with drivers
• Missing Registers or, incorrect register definitions
• Incorrect routing logic or, incorrect memory map
• Software Memory Accesses to unmapped memory
• Missing Interrupt events
• Verification of SW drivers in the context of an OS boot
• Embedded SW Programming Errors and bottlenecks
• First time OS Bring up

Applications

IP

Sub-System

Bare-metal SW

OS and Drivers
(Linux, Android)

System on Chip

Middleware
(Graphics, Audio)

SoC in System

Integration HW and SW Early
Applications

(Basic to Complex)

IP

Sub-System

Bare-metal SW

OS and Drivers
(Linux, Android)

System on Chip

Middleware
(Graphics, Audio)

SoC in System

Only small
gate
level

changes
and ECOs

RTL
becomes

stable

Bug rate

Idea to spec Production Post-silicon
validation

Spec
Post SiNetlist to GDSII

RTL-Design and IP Integration and Verification
FabIP Qualification

Time for critical bugs in
system environment to be removed

SW
development

on chip
Shift Left

Virtual
Platforms

What Do Users Care About?

Accuracy
More is better

Speed
Faster is better

Time of
Availability
Earlier is better

Execution
Control

System
Connections

Software Debug

Development
Cost

Less is better

Replication
Cost

Less is better

Capacity
More is better

Hardware Debug Value Links
(Power,

Performance)

Bring-Up Time
Less is better

Wouldn’t It Be Nice If “One Tool Would Rule Them
All”? … like that German Fable?

• Eierlegende Wollmilchsau
• "egg-laying wool-milk-sow“

• Perfect farm animal uniting several
qualities:
– chickens (laying eggs)
– sheep (producing wool)
– cows (giving out milk) and
– pigs (can be turned into bacon)

• Produces all the daily necessities and is
tasty to boot, it is an animal that only
has good sides to it … Source: Wikimedia Commons: http://bit.ly/2fFtsK1

http://bit.ly/2fFtsK1

System Verification Characteristics

Xcelium™
Simulation

Protium™ X1
&S1

Prototyping

Performance

Debug Flexibility & Compile Time

FPGA
X86

Server

Palladium®
Z1

Emulation

Custom
Processor

Bare Metal Compute Options

Arm Server
2018

Hardware/Software Co-Verification during SoC Design

Applications
(Basic to Complex)

Bare-metal SW

OS and Drivers
(Linux, Android)

System on
Chip

Middleware
(Graphics, Audio)

Chip
Production

Silicon
Bringup

Post SiFab

Software based hardware tests

Functional
Simulation

Virtual System
Platform 1st Silicon Board

Architecture
Exploration

&
Spec

Definition
Phase

RTLSystem-C RTL RTL

HW/SW
Emulation

Frontend Design & Functional Verification Place&
Route,

Tape Out

SoC Development

6 month 12 month 4 month 3 month

Functional Bug rate

Typical Duration:

FPGA
Prototyping

Virtual Platforms to the Rescue
Embedded Software Development

• Instruction Accurate software model of hardware
system, at the transaction-level

• Full programmers view of design

• Runs unmodified target code
• Runs very fast (sometimes faster than real-time)

• Available 6-12 months before silicon or boards,
depending on model availability

• Enables early integration of hardware and
software, improves quality

• Could provide insight into performance
bottlenecks, architectural analysis

• Includes SW stack

• Easy to distribute to many users

Speed, Controllability, Observability, Repeatability

Signal Level RTL
1Hz to KHz

Gate
Well below Hz

Transistor

Layout

Transaction
Level

100MHz

Speed

Tim
e to M

odel

Hybrid

LPDDRDRAM NAND
FLASH

NAND
FLASH

Cellular
Modem

WiFi
LLI

DigRF

LP
DD

R
2

eM
M

C
4.

5
UF

S

LP
DD

R
3

SD
 3

.0
SD

 4
.0

UF
S

SLIMbus

DSI

CSI2
CSI3

Bluetooth

SDIO

FM
Receiver

GPS
Receiver

RF
FE

SL
IM

bu
s

Motion
Sensors cJTAG

GBT

SP
M

I

Power
Control

Multimedia
Processor

I2C

US
B

2.
0

Memory
Card

HDMI 1.4

Touch Screen
Controller

Display
Driver

Audio
Interface

Camera
Interface

USB 3.0 OTG

OCP 2.0
OCP 3.0

Low-Speed
Peripherals

General-
Purpose

Peripherals

High Speed,
Wired Interface

Peripherals

Customer’s
Application-Specific

Components

Compute
Sub System

SoC Interconnect Fabric

Modem

Application Specific ComponentsCPU Subsystem

3D
GFX

DSP
A/V

High speed, wired interface peripherals

DD
R

PH
Y

Other peripherals

SAT
A

MIPI

HDM
I

WLA
N

LTE Low-speed
peripheral
subsystemLow speed peripherals

PMU

MIPI

JTAG

INTC

I2C

SPI

Timer

GPIO

Display

UART

Boot
CPU

CPU

L2 Cache

USB

P
H
Y

P
H
Y

PCIe

PHY

ET
H

PH
Y

CPU CPU

L2 Cache

CPU

Cache coherent fabric

Low-Speed
Peripherals

General-
Purpose

Peripherals

High Speed,
Wired Interface

Peripherals

Customer’s
Application-Specific

Components

Compute
Sub System

B
ar

e
M

et
al

So

ftw
ar

e

D
SP

 S
of

tw
ar

e

B
ar

e
M

et
al

So

fw
ta

re RTOS

Drivers

Communications L2

Communications L1

Firmware / HAL

Communications L3

Operating Systems (OS)

Drivers

Applications

Middleware

Firmware / HAL

Hardware/Software Integration
System Debug: Software

Hardware Debug: RTL

Software Debug: C Code

System Debug: Hardware

Image sources: Cadence, Arm, Green Hills

Virtual Platform Debug
SystemC/TLM Aware Debug

SystemC
Threads and
Methods in

sidebar

SystemC/
C++/C

Variable
Watch

Window

Call
Stack

Source Code
View

Debug and
Simulation
Console

Activation of
SystemC
processes

SystemC
Module

Hierarchy

Device
Registers
with Bit
Fields

Logviewer

Hardware Debug: RTL

Probes

Software Debug: C Code

Green Hills – Cadence Integration Points for Verification

JTAG /
CADI

Drivers
Operating System

Applications
Middleware

Firmware / HAL

Software

SoC interconnect fabric

PHY

SATA
MIPI

HDMI

WLA
NLTE

PMU
MIPIJTA

G

INT
CI2C

SPITime
r

GPI
ODispla
y

UAR
T

Boot
CPU

Modem

USB
3.
0
P
H
Y

2.
0
P
H
Y

PCIe

PHY

Eth
er
netPH
Y

Board, SoC, Sub-System or IP

Low-Speed
Peripherals

General
Purpose

Peripherals

High Speed,
Wired Interface

Peripherals

Compute
Sub-System GFX

Application-Specific
ComponentsDSP

Cadence

Green Hills

MULTI
eSW Debug IDE

Example Integration

Green Hills MULTI Debugger
connected to Arm

Versatile Express Platform
modeled as Virtual Platform

on VSP on Xcelium®

Virtualization with Emulation Enables SW Shift-Left
Using virtual platforms and hybrids to accelerate SW development and HW/SW validation

All RTL, Silicon
Final HW/SW Validation

All Virtual
Pre-RTL SW Development

SoC Virtual Platform

OS SoC Drivers

Tests and Benchmarks

IP
RTL

IP Hybrid
Pre-SoC IP / Driver

Validation & Optimization
RTL – Palladium or Xcelium

RTL
Memory

CPU Virtual Platform

OS IP Driver

RTL IP

Tests and Benchmarks

SoC
RTL

SOC Hybrid
Pre-Tapeout HW/SW

Validation

D D R 3

Display

INTC
Timer CSI

DSI

UART

GPUMC

SATA
USB3

…

System
Boot

USB2

Ethernet

MMP IP 2

CPU Virtual Platform

OS SoC Drivers

Tests and Benchmarks

OS SoC Drivers

Tests and Benchmarks

Design Flow
Shift Left

Virtual Models - VSP

SW stack

RTL Models -

Color Code

D D R 3

Display

INTC
Timer CSI

DSI

UART

GPU
MC

SATA
USB3

…

System
Boot

USB2

Ethernet

Mem IP 2

CPU CPU

Emulation, FPGA Proto
Pre-Tapeout Fully

Accurate HW/SW Validation

SoC RTL

OS SoC Drivers

Tests and Benchmarks

D D R 3

Display

INTC
Timer CSI

DSI

UART

GPU
MC

SATA
USB3

…

System
Boot

USB2

Ethernet

Mem IP 2

CPU CPU

Hardware and Virtual/Hybrids

Virtual
Emulation

Virtual
solutions

Virtual
Prototyping

Virtual System
Platform (VSP)

Simulation
Acceleration

In-Circuit
Emulation

Emulator

Hybrid Prototyping

FPGA
Prototype

Protium S1

Virtual
Peripherals

Physical
Peripherals

RTL/UVM
Simulation

DUTSame
Design under Test

Key Trend: Unified Flow for Emulation and
Prototyping

(Source: Toshiba, CDN-Live 2019)

Palladium and Protium used together
Hardware verification and firmware development

Protium at 4.6x of Palladium

http://bit.ly/2VXCjcC

Hardware Debug: RTL

Cadence & Green Hills Software
Safe & Secure Aerospace & Defense System Design

Requirements
Engineering

System Design

Architecture
Design

Component
Design

Code
Development

Unit Test

Integration Test

System Test

Acceptance Test

Software Debug: C Code

Cadence Virtual System Platform

Software Debug: C Code

Cadence Palladium Z1, Protium X1, Xcelium

Safety/Security Certified RTOS

Safety/Security Certified Embedded Tool Suite

BENEFITS

Architecture
Exploration

&
Spec

Definition
Phase

SoC Development

More Robust Hardware and Software!

Applications
(Basic to Complex)

Bare-metal SW

OS and Drivers
(Linux, Android)

Middleware
(Graphics, Audio)

Functional Bug rate

Chip
Production

Board
Bringup

Post SiFab

Test 1000s of SW
Scenarios

Before Tape Out!

Emulation Chamber

SoC User
(Company B)

SoC
Developer
(Company A)

FPGA
Prototyping

(Dozens
of users)

Virtual System
Platform

(Hundreds of users)

Board
Bringup

Post Si

Shorten
Board

Bringup
Time!

Note: Illustration timeline not to scale!

Vehicle Processor

SoC interconnect fabric

Secure
Subsystem

Memory
Interface

Compute
Sub-System

DSP
Subsystem

AI
Accelerator

Sensor
Interfaces

Vehicle
Interfaces

System-On-Chip

More Robust Hardware and Software!
Greatly accelerated Time-to-Market!

Shorten
Board

Bringup
Time!

Note: Illustration timeline not to scale!

Architecture
Exploration

&
Spec

Definition
Phase

SoC Development

Applications
(Basic to Complex)

Bare-metal SW

OS and Drivers
(Linux, Android)

Middleware
(Graphics, Audio)

Functional Bug rate

Chip
Production

Fab

Test 1000s of SW
Scenarios

Before Tape Out!

Emulation Chamber

SoC User
(Company B)

SoC
Developer
(Company A)

FPGA
Prototyping

(Dozens
of users)

Virtual
System
Platform

(Hundreds
of users)

Board
Bringu

p

Post Si

Vehicle Processor

SoC interconnect fabric

Secure
Subsystem

Memory
Interface

Compute
Sub-System

DSP
Subsystem

AI
Accelerator

Sensor
Interfaces

Vehicle
Interfaces

System-On-Chip
Application
Software

Development

Integration &
Performance

Tuning

Test &
Certification

RTOS Enablement
&

Board Support
Package

Development

Software Development

SOP

More Robust Hardware and Software!
Greatly accelerated Time-to-Market!

Note: Illustration timeline not to scale!

SoC Development

Functional Bug rate

Chip
Production

Fab

Test 1000s of SW
Scenarios

efore Tape Out!

Emulation Chamber

SoC User
(Company B)

SoC
Developer
(Company A)

FPGA Prototyping
(Dozens of users)

Virtual System Platform
(Hundreds of users)

Board
Bring

up

Post Si

Application
Software

Development

Integration &
Performance

Tuning

Test &
Certification

RTOS Enablement
&

Board Support
Package

Development

Software Development

SOP

Improved HW/SW
System Integrity

& Greatly Accelerated
Time-to-Market

Questions

Finalize slide set with questions slide

© Accellera Systems Initiative 43

