
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Safety and Security Aware Pre-silicon 
Concurrent Software Development and Verification

Frank Schirrmeister, Joe Fabbre, Max Hinson
Cadence Design Systems Inc., Green Hills Software LLC

Abstract

Simultaneously designing and testing both software and SoC 
designs before silicon is an enticing goal to reduce the time and 
cost of building embedded devices. The earlier that applications 
can run on a reliable representation of the SoC, the better. 
Merging the software and SoC paths before silicon saves time 
and money and creates a virtuous cycle that gets the embedded 
product to market faster. 
This paper describes a new pre-silicon continuum for concurrent 
SoC and software development and verification for safety and 
security critical systems, composed of a safety-certified RTOS 
and advanced C/C++ development tools that continuously 
support SoC verification from the earliest functional simulator 
(virtual prototype with Arm Fast Models) through RTL emulation 
and FPGA prototype stages on the path to first silicon. 
The continuous convergence brings more safety, security and 
verified reliability while establishing a more mature software 
enablement foundation for lead customers and partners at the 
time of first silicon.

Cost of Software Bugs

Safety and Security Considerations for Software

The most effective approach to developing a safe and secure 
system begins with decomposing the system into separate 
components. Each component is analyzed for its size, complexity, 
resource needs, and safety and security requirements. The 
components that will be certified for safety or security must be 
designed to be very small, simple, and isolated from other 
components in the system. In turn, these components will be 
much simpler to test and certify. Non-critical components, on the 
other hand, may be large and complex, as they will not need to 
be certified.
Proper separation of the safety or security-critical components 
from the non-critical components is critical. Without this isolation, 
the system design can be compromised. A Separation Kernel 
guarantees resource isolation between application-level 
programs, allowing a system architect to separate critical device 
drivers and applications from applications that may be less safe 
or secure. Additionally, a Separation Kernel provides the isolation 
required to safely and securely run guest operating systems 
alongside critical real-time applications. 

Chain of Trust in a Typical Software Stack

Security is multi-faceted and must address more than just 
architectural design. Functions such as secure software boot, key 
storage and infrastructure, software update systems, and 
cryptography for data at rest and in transit are critical parts of a 
safe and secure system. Figure 3 shows how the chain of trust is 
built across the software stack from bootloader, through operating 
systems, device drivers, middleware and user applications.

Safety and Security Considerations for Hardware

For hardware, safety and security have to be linked to the 
traditional design/verification and implementation flows, to include 
safety mechanisms and meet the hardware metrics according to 
ASIL standards. Safety metrics, Power Performance Area (PPA), 
verification time and automation have to be considered.

From a central cockpit, the flow of campaigns is controlled, 
campaign sessions and steps are executed. The result of fault 
session is collected from actual execution in dynamic engines like 
simulation and emulation, and accumulated, illustrating to the 
user the various attributes like classification of a detection. 

Fault Campaign Management Execution and Analysis

Shift Left with Early Hardware-Software Integration

Results

Early in the design flow, virtual prototypes at the transaction level 
can execute the same software that later is loaded on the board 
using register accurate descriptions in SystemC. 
At the register transfer level (RTL), simulation, emulation and 
prototyping provide different trade-offs between execution 
performance, debug insight, accuracy and bring-up time (i.e. the 
time to when the execution model runs functionally correctly). 
Simulation and emulation are initially focused on hardware 
verification, with prototyping focused on software development. 
Once chips are back from production, software development can 
proceed on the actual silicon.

An Arm-based virtual platform using a Cadence Virtual System 
Platform based on Xcelium SystemC simulation was developed. 
The virtual platform is executing an OS – in this case Linux – for 
early software bring-up. The virtual platform is connected to the 
Green Hills Multi IDE and debugger for software development.

Studies have shown that the relative cost to fix an error highly 
depends on the phase in which it is found. Compared to the 
requirements phase, the cost can be 3-6 times as high in the 
design phase, 10 times in the coding phase, 15-40 times in the 
development and testing phase, 30-70 times in acceptance 
testing, and 40-1000 times in the operational phase. 

Cost of Hardware Bugs

There are many opportunities to optimize for safety, security, and 
performance when software and hardware designers work 
together early in the process of system design. There are some 
functions that may be performed in hardware, rather than 
software, such as lock step cores, ECC memory, Spectre 
mitigations, and built-in self test (BIST). 
During the development phase, this reduces the amount of 
software that needs to be designed, written, tested, and certified, 
and reduces the number of bugs. It also reduces the software’s 
need for hardware resources.

Software teams use production-grade C/C++ development tools 
and RTOS on verification engines prior to silicon availability. 
The entire software schedule can experience a “shift-left”, where 
pre-silicon development engines, virtual prototyping, RTL 
simulation, emulation and FPGA-based prototyping can be used 
before first silicon to develop and debug software applications, 
middleware, RTOS and device drivers. They even enable more 
developers to simultaneously develop/test code after first silicon, 
as early-revision boards are often very scarce. 
Safety certified RTOS and C/C++ compilers allow system 
designers to take into account safety and security from the very 
beginning of the design process, allowing more complete 
software enablement on first silicon once it is available. 
Processor manufacturers can launch first silicon pre-tested 
devices with production-grade RTOSs.


	Slide Number 1

