Run-time Configuration of a Verification
Environment - A Novel Use of the OVM/UVM
Analysis Pattern

Paul Marriott
Verilab Canada
Montreal, Canada
Email: paul.marriott@verilab.com

Abstract—This paper describes a novel approach to
modeling the real-time variation of delays required for the
functional verification of a DIMM (Dual In-Line Memory
Module) system consisting of DDR3 memory and other
interface devices using an OVM environments analysis
pattern to provide run-time delay control. The system
requirements could not be verified without the ability to
provide temporal control of the delay elements in the
environment. Different approaches to solving this problem
were examined before determining the solution adopted
was the best fit for the task at hand.

Index Terms—Design patterns; OVM/UVM; ASIC de-
sign; timing simulation; SystemVerilog

I. INTRODUCTION

Verification environments typically have several mech-
anisms for communicating information to their elemen-
tary components. Values can be set directly, modified
via an API (application program interface) or sent as a
transaction through TLM ports and exports. The type of
mechanism used is often determined by the frequency
with which information has to be communicated. A
single value set at the start of simulation might just be
forced into an RTL net via a backdoor mechanism; data
which is changing at run-time may better be transmitted
using a well-defined TLM approach.

There is also a distinction between data that comprises
the stimulus to the design (including responses from
the DUT) and data used to configure the operation of
components. This latter data usually is restricted to the
start of a test.

The OVM []] provides several mechanisms for data
communication in a verification environment, as well as
the facility to store and retrieve configuration data. Data
communication is normally performed through TLM

Mark Ronan
Diablo Technologies Inc.
Ottawa, Canada
Email: mronan@diablo-technologies.com

connections (port to export) and is essentially point-to-
point.

Verification components can retrieve configuration
data from the OVM’s configuration database. Indeed,
this facility is encouraged and so components are usually
responsible for retrieving their own configuration param-
eters at the start of a test. However, the requirement for
the problem at hand was to be able to change configu-
ration settings at run-time as well as to have groups of
components all using the same configuration data. An
examination of the system under verification will reveal
the exact requirements that lead to the solution adopted.

II. THE SYSTEM UNDER VERIFICATION

The board-level system under verification consists of
a DDR3 RPLL (Register Phase Locked Loop) device
interfaced with memory organized into byte lanes and
therefore appears as a DIMM to the host system. A repre-
sentative DIMM is shown in Fig. [I] The RPLL [4] device
re-times and re-drives all the signals required in a DDR3
interface. This allows for the highest operational speed
possible. The physical interface (PHY) of the DDR3
memory contains several DLLs (Delay Locked Loops)
and PLLs (Phase Locked Loops). The DLLs allow the
timing of all of the control signals to be adjusted to
each memory chip, allowing for board trace delays etc.,
in order to meet the DDR3 timing specifications [3].

To achieve the highest system speed possible, the
DLLs, which control the launch time of all the memory
interface signals, have to be calibrated to the actual board
and physical conditions (temperature, voltage and the
process corner of the silicon used) present. This cali-
bration is performed automatically by the RPLL device
at the time of board manufacturing. Once calibrated, the

internal DLLs compensate for variations in temperature
and voltage during the operation of the board.

From a verification completeness perspective, it is
essential to be able to model the board delays as well
as all the internal DLL loop-control delays to ensure
that the automatic calibration can be achieved. Even
though the simulation environment is purely digital, all
of the sub-cycle timing behavior needs to be verified.
The DLL models themselves are essentially black-boxes
as far as the verification environment is concerned, but
their behavior is such that the sub-cycle timing can be
observed and verified. For this latter aspect, assertions
were created to check the timing requirements in the
DDR3 specification were being met. However, they are
beyond the scope of this paper but are covered in [7.

III. VERIFICATION CHALLENGES

Verification of this kind of timing is different from the
usual gate-level simulations or static timing analysis. The
system-level verification environment has delay elements
inserted to model both board and trace delays and the
internal loop-control delays in the DLLs. Even though
the initial verification was performed purely at the RTL
level, models were available of the DLLs that meant that
it was feasible to use a realistic model of the actual
board delays, even without resorting to mixed-signal
simulation. Several aspects of the overal board-level
environment used behavioural models which accurately
accounted for the actual timings of the DDR3 interface
signals.

To achieve the verification requirements, several dif-
ferent delay conditions have to be modeled. In reality,
temperature and voltage variations mean the DLLs’ delay

s ks

i s i i

Fig. 1: Typical DIMM

Fig. 2: DIMM showing board delays

values change over time. To verify the robustness of
the DLL control algorithms, a verification environment
allowing delay values to be changed on-the-fly during
a simulation is required. The challenge was to come
up with a mechanism to allow this run-time control
but allow some flexibility as well. As the project was
progressing, the design of the PHY was being optimized
and this meant the usage of its internal delay elements
was not necessarily fixed. Since certain groupings of
delay elements were necessary for correct operation, the
modeling of their timing variation over time (to model
the effects of temperature changes, for example), meant
that all elements in a particular group would need to
have their delay value updated at the same time (and by
the same amount).

Figure [2] shows a simplified representation of the
board-level delays and a representative PHY showing the
internal delays is given in Fig. |3| (from [6]).

IV. SOLUTION ADOPTED
A. Conventional OVM Approach

In an OVM environment, a typical example of which
is shown in Fig.d] a component can get its own configu-
ration from the internal database via a get_config ()
call.

This approach is fine for components that need to
be configured once, but, for various reasons, would be
inconvenient and inefficient for the problem at hand. The
main reason is due to the run-time variation requirement.
To store all the run-time values in the configuration
database would be quite onerous, though one could
contemplate that all the values could be computed at
the beginning of simulation and stored in the database.

Page 2 of @

Another reason is the overhead required to retrieve the
configuration values at run-time. As As the database is
essentially an array indexed by string, a string lookup
is required each time a value is retrieved from it. String
search operations are relatively costly in SystemVerilog
and would add an unwanted overhead to the simulation
time. As there could be hundreds of delay elements, each
time a new value would be retrieved from the database
many hundred lookups would be required.

1) Use of Sequences: An investigation was made into
using some kind of sequence to generate the required
updated values, but this was somewhat limited in that
each delay element potentially needed its own set of
values again with several hundred delay elements in use,
the testbench structure to connect all of these together
appeared to be too complex.

2) Drawbacks of Conventional Approach: With an
analysis of the architecture of the PHY, it was apparent
that many of the delay elements were, in some way,
related and would have to be updated at the same
points in time during a simulation. These updates would
potentially require hundreds of get_config () calls
which, as well as being inefficient, would make for
unnecessary duplication of data as many of the values
would, in fact, be the same for many of the elements.
Also, the configuration of the association of elements
with one another was not completely determined when

Sequences
register
model —

DUT f Connection
/ Verification IP

driver seq

mon AP

@
o
&
=
<
2
£

config cov

Ei;:

Base Class Library

oK 3% ooy yall
™ cLock | pre REFERENCE
jok_|BUFFER[™ DELAY LINE
fok |
S5k bbb
REFERENCE [_{/PHc>
REF.CK|CONTROWLER S | |= |
2 E R B
2 SR FrO
S 320
370 oy Yy -y =455
. N
FSM 2 MULTIPLEXER [0 |
! |
rE E E E !
| 340 |
! Dce Ve
SEL.BIAS | PHASEMIXER | oo ycTL
i AL
e 2
MIX_CLK IMIX_CLK
356 L350 360
pEF k| FINE |ve pn BRI
z FINE DELAY CORRECTION
ptl !
CONTROLLER LINE MK | AVPLIFIER
B 3
L
LYol gy ?
MODEL S
L—— DLL CLK

Fig. 3: PHY with delay elements

Fig. 4: Typical OVM Environment

the verification environment was being created. Having
to update both the configuration database as well as
the connectivity of the point-to-point control connections
was not an attractive proposition.

B. Adaption of the Analysis Pattern

The ”Analysis Pattern” [3] is a software engineering
construct used to provide a subscription service, of zero
or more subscribers, to a broadcaster. In the OVM
and related methodologies, the analysis pattern [2] is
normally used to attach scoreboards and coverage objects
to transaction monitors, as it provides an implementa-
tion of the subscription mechanism that allows multiple
interested objects to receive the stream of transactions
from a source. As such, it is usually used for data trans-
actions, rather than configuration and control. Typical
usages of analysis ports (shown connecting monitors to
scoreboards) is shown in Fig. |§] (from Paradigm Works).
It was quickly recognized that the analysis pattern would
present an ideal solution to the association of delay
elements with a particular stream of timing updates.
Groups of elements could be created and each group
subscribed to the output of a generator that would
provide the updated values during a simulation. The
subscription mechanism is flexible enough that it was
trivial to re-arrange the groupings as the RTL structure
of the PHY crystallized.

1) Groups of Subscribers: Allowing a generator to
invoke an update method in one or more verification
components asynchronously could have been met ei-
ther by direct method calls or by a TLM blocking
port connection. However, the normal TLM connection
mechanism is one-to-one and so this would create un-
necessary complexity in connecting up the plethora of

Page 3 of @

. packet -
pw_router g scoreboard o
env pw_router
monitor
. interrupt L
g scoreboard ©

host - packet Config:

env Config: env master=1

master=1 Savend
Ik active | I__ls sctive | L_lsacwe |

master i master i slave i

agent 1 1 agent L _4‘_ agent L 1

Fig. 5: Typical OVM Analysis Port Usage

delay elements, especially as many of them are in the
same group. The attraction of using analysis ports is that
they provide an especially convenient support for one-to-
many and one-to-none connectivity. This latter aspect is
important as, during the evolution of the project, certain
delay elements were deemed to not vary or be set to
zero. With the analysis port approach, it was trivial to
remove such elements from a ports list of subscribers.
Indeed, certain groups ended up with no subscribers.
The analysis pattern is exactly suited to broadcasting
common values to groups of subscribers.

2) Configuration Issues: The verification environment
itself is configured and built from a randomized con-
figuration object and this was also used to specify the
subscriptions of the delay elements into appropriate
groups. In the general case, this mechanism provides a
way to decouple the connectivity of the testbench from
its configurability. Since the analysis pattern allows for
zero subscribers to a particular analysis port [2], this
gives the maximum possible flexibility as a component
can elect not to subscribe at all. Though the control
transactions in the environment in question were simple
time offsets, the same methodology could easily support
a more complex protocol. The groupings of subscribers
provide for an arbitrarily complex control orchestration
that allows associated components to be configured in
concert as may be required.

V. IMPLEMENTATION DETAILS

A. Delay Elements and Control API

The delay elements were implemented as interfaces
with a non-blocking signal assignment with the delay
value specified as a member of the interface. Both uni-
and bi-directional delays were created and techniques

employed to ensure the ordering of events, should the
delay change with a signal already in-flight.

Listing 1.
initial begin
out = in;
forever @(in) begin
out <= #(delay_val)
end

Simple delay element

in;
end

A concrete implementation of an abstract API class
was used to set the delay_val member. This mecha-
nism allowed both procedural access to the delay value
or update via the analysis port connection.

Listing 2. Abstract API class

virtual class delay_api_abstract

extends ovm_pkg:: ovm_subscriber#(time signed);

time signed default_delay = 0;
time signed current_delay;

virtual function void set_default_delay ();
current_delay = default_delay;

endfunction

virtual function void set_delay (time signed the_delay)
current_delay = the_delay;
// assign the interface delay_val signal
// with the_delay in the derived class

endfunction

virtual function void offset_delay (

time signed the_offset);

endfunction
virtual function void write (time signed t);
endfunction

endclass delay_api_abstract

In the concrete implementation, the actual interface
member which is used to store the delay time is as-
signed and an implementation of the analysis export’s
write () method is created.

Listing 3. Concrete API class
unidir_delay_api
extends global_type_Pkg::delay_api_abstract;
virtual function void set_default_delay ();
super.set_default_delay ();
delay_val = default_delay;
endfunction

class

virtual function void offset_delay (
time signed the_offset);
super.offset_delay (the_offset);

endfunction

virtual function void write(time signed
super . write (t);
this.offset_delay (t);

endfunction

t);

endclass unidir_delay_api

Page 4 of @

In the interface, an instance of the API class is
constructed and a function created to allow the analysis
export to be connected, recalling that the API class is
derived from ovm_subscriber. Handles to the API classes
are wrapper in an interface wrapper class which is then
made available to the OVM agent responsible for that
particular interface. An initial block in the interface
sets the default delay value. Updates can then be made
either by calling the appropriate API method, or via the
analysis connection. For this project, the ability to vary a
delay from its current value was required so the method
used is called offset_delay. Of course, in the general case,
any transaction received through the analysis interface
could be decoded and further processed.

Listing 4. Partial interface code
unidir_delay_api api = new(

$psprintf (7%m.%s” ,”delay—api”), null);

function void connect_ap (ovm_analysis_port
#(time signed) ap);
ap.connect(api.analysis_export);
endfunction connect_ap

initial begin
api.set_default_delay ();

end

endinterface

The use of "%$m.%s" in the format string gives the
class instance name in the OVM registry the actual
path it has in the design hierarchy. This is exploited in
the connect () methods used to connect the analysis
subscribers to their associated broadcast port.

B. Delay Variations

Generators were created that used wavetables in order
to create the ability to vary the delay values according
to different “shapes” such as ramp, DC triangle (delay
increasing and decreasing from a set value), AC triangle
(delay increasing and decreasingm centered around a
norminal value), sinewave and 32-element random values
summed to an average of zero. Fig. [] shows the visual-
ization of several groups varying with different frequency
AC triangle patterns.

The following code snippets show part of the function
generator classes for the DC triangle wave and the zero-
sum noise wave respectively.

Listing 5. Function generator classes
triangle_wave
extends delay_function_abstract_lut;
‘ovm_component_utils (triangle_wave)

class

virtual function void initialize_table

Fig. 6: Varying Delay Values for different groups

(int num_elements=128);

table_elements = num_elements;
delay_function_table = new[table_elements];
for (int i=0; i<table_elements/2; i++)

delay_function_table[i] = 1;
for (int i=table_eclements/2;
i<table_elements; i++)

delay_function_table[i] = —1;
endfunction: initialize_table

endclass: triangle_wave
class noise_wave
extends delay_function_abstract_lut;
‘ovm_component_utils (noise_wave)

rand bit signed [5:0] temp_function_table[32];
virtual function void initialize_table
(int num_elements=32);
assert(randomize (temp_function_table)
with { temp_function_table.sum() == 0;};
foreach (temp_function_table[i])

delay_function_table[i]=temp_function_table[i];

endfunction :
endclass:

initialize_table
noise_wave

The delay variation generators create an instance of
the appropriate function generator class (specified in the
overall environment configuration) and then loop through
the function table to obtain the new offset value to
apply to the delay element. Care was taken to ensure
the offset values would sum to zero over an entire
cycle, to prevent the nominal value of the delay from
drifting. Various checks were included (not shown here
for reasons of brevity) to ensure negative delay values
could not be used. Each generator’s start time and update
rate were specified from the environment configuration,
allowing for each group’s updates to happen essentially
asynchronously with respect to each other. This might
not quite model reality, but it was deemded important to
be able to stress all of the DLL’s algorithms in order to
uncover any corner-cases.

Page 5 of @

C. Connection and Control

The poster presentation (which will be in the DVCon
archive) will have full details of the connection and
control code which, due to formatting constraints, will
not fit here. However, there are two use cases which can
be shown.

1) Setting board delays: . Board delays are not varied
in simulation as it has been determined from measure-
ments of actual boards that they are essentially invarient,
for a given board layout. However, each bytelane has
a unique set of trace delays and so these are stored in
the environment configuration object and then initialized
through the delay control API directly at the start of
simulation. The values are set via constaints of the con-
figuration object, which is then read and applied through
the interface wrapper classes (which hold references to
the concrete delay control class’s APIs). The following
code shows snippets of this:

Listing 6. Time-invarient delay configuration
// configuration object
constraint bytelane_delay_config {
(this.board_timing_case typical_case)

- {
bytelane_configs [0].dq[0] == 626;
bytelane_configs [0].dq[1] == 626;
bytelane_configs [0].dq[2] == 626;
bytelane_configs [0].dq[3] == 626;
bytelane_configs [0].dq[4] == 626;
bytelane_configs [0].dq[5] == 626;
bytelane_configs [0].dq[6] == 626;
bytelane_configs [0].dq[7] == 626;
bytelane_configs [0].dgs == 626;
bytelane_configs [0].dqs_b == 626;
}

//delay control driver
function void configure_byteif_delays (int
time dq[8], time dqs, time dqs_b);

detail of the code will be presented in the poster.

VI. CONCLUSION

This paper describes how sub-cycle timing require-
ments for the verification of a complex DIMM system
were controlled in order to model real-world variations
in order to meet the designs verification objectives. The
OVM implementation of the analysis pattern was used
to build a flexible control mechanism for the timing
configuration and control and allowed various patterns
of temporal change to be applied. In concert with [3],
a powerful verification environment was built to allow
sub-cycle verification to be performed at the RTL level.
The configuration and control mechanism described has
applicability in many different verification environments
where the flow of control and configuration information
is separate from the normal flow of data transactions.

REFERENCES
(11

Mentor Graphics and Cadence Design Systems, Open verification
methodology, http://en.wikipedia.org/wiki/Open_ Verification_
Methodology, January 2008.

, Open verification methodology analysis ports, http:
/Iverificationacademy.com/verification-methodology-reference/
ovmworld/docs_2.1.2/html/files2/tlm_ifs_and_ports-txt.html#
Analysis, 2012.

Huygens, Software analysis pattern, http://en.wikipedia.org/wiki/
Software_analysis_pattern,

JEDEC, SSTE32882 registering clock driver item 104 with parity
and quad chip selects for ddr3 rdimm applications specification,
http://www.jedec.org, 2010.

, JESD79-3 ddr3 sdram specification, http://www.jedec.
org, 2012.

Sang-hoon Kim, Se-jun; Hong and Jae-bum Ko, Analog delay
locked loop having duty cycle correction circuit, http://www.
freepatentsonline.com/7078949.html, 2006.

Anders Nordstrom, Sub-cycle functional timing verification using
systemverilog assertions, SNUG San Jose, March 2013.

(2]

(3]
(4]

(3]

(6]

(7]

bytelane ,

byte_if_wrap.dqs_delay_api[bytelane].set_delay (dqs);
byte_if_wrap.dqs_b_delay_api[bytelane].set_delay (dqs_b);

for (int i=0; i<8; i++)

byte_if_wrap.dq_delay_api[bytelane][i].set_delay(dq[i]);

endfunction

//delay control agent
virtual function void connect();
for (int bytelane=0; bytelane<N; bytelane++)
this.delay_timing_drv.configure_byteif_delays
(bytelane ,

this .parent_cfg.delay_timing_config.bytelane_configs[bytelane].dq,

this .

parent_cfg.delay_timing_config.bytelane_configs[bytelane].dqs,

this .parent_cfg.delay_timing_config.bytelane_configs[bytelane].dqs_b);

2) Updating dynamic delays: These updates are made
via writes to each delay group’s analysis port. More

Page 6 of @

http://en.wikipedia.org/wiki/Open_Verification_Methodology
http://en.wikipedia.org/wiki/Open_Verification_Methodology
http://verificationacademy.com/verification-methodology-reference/ovmworld/docs_2.1.2/html/files2/tlm_ifs_and_ports-txt.html#Analysis
http://verificationacademy.com/verification-methodology-reference/ovmworld/docs_2.1.2/html/files2/tlm_ifs_and_ports-txt.html#Analysis
http://verificationacademy.com/verification-methodology-reference/ovmworld/docs_2.1.2/html/files2/tlm_ifs_and_ports-txt.html#Analysis
http://verificationacademy.com/verification-methodology-reference/ovmworld/docs_2.1.2/html/files2/tlm_ifs_and_ports-txt.html#Analysis
http://en.wikipedia.org/wiki/Software_analysis_pattern
http://en.wikipedia.org/wiki/Software_analysis_pattern
http://www.jedec.org
http://www.jedec.org
http://www.jedec.org
http://www.freepatentsonline.com/7078949.html
http://www.freepatentsonline.com/7078949.html

	Introduction
	The System Under Verification
	Verification Challenges
	Solution Adopted
	Conventional OVM Approach
	Use of Sequences
	Drawbacks of Conventional Approach

	Adaption of the Analysis Pattern
	Groups of Subscribers
	Configuration Issues

	Implementation Details
	Delay Elements and Control API
	Delay Variations
	Connection and Control
	Setting board delays
	Updating dynamic delays

	Conclusion
	References

