
RTL2RTL Formal Equivalence:

Boosting the Design Confidence

M Achutha KiranKumar V, Aarti Gupta, Ss Bindumadhava

Intel Corporation

{ achutha.kirankumar.v.m, aarti.gupta, bindmadhava.ss } @intel.com

Abstract – Increasing Design Complexity driven by

Feature and Performance requirements and the Time to

Market (TTM) constraints force a faster design and

validation closure. This in turn enforces novel ways of

identifying and debugging behavioral inconsistencies

early in the design cycle. Addition of incremental

features and timing fixes would tamper the existing

legacy design behavior and would inadvertently result

in undesirable bugs. The most common form of

verifying the correctness of the design is running a

regression of existing proven test suite through dynamic

validation (DV) which is good but not exhaustive.

Modern Formal Verification (FV) techniques provide a

complete coverage of the design with the available

resources. Formal Methods of proving Sequential

Hardware Equivalence enabled a new set of solutions

for existing problems. Formal Equivalence can be

applied on a wide variety of problems ranging from

simple pipeline optimizations to state matching designs

to complex logic redistributions. We present here our

experience of successfully applying the RTL to RTL

(RTL2RTL) Formal Verification across a wide

spectrum of problems on a Graphics design and hence

guaranteeing design sanity in a very short time, thus

enabling faster and safer design churn. The techniques

presented in this paper are mostly applicable to any

complex hardware design.

Keywords – System Verilog, RTL, design, Formal

Verification, Equivalence, Validation

I. Introduction

Graphics designs are increasingly finding their relevance in

new market segments like smartphones, tablets and a faster

churn of optimized designs is most desirable. Verifying the

design correctness is an involved challenge and is the most

time consuming and critical aspect of the design process.

Traditional DV methods mandate a compromise between

breadth of coverage and resources available. We have

pioneered methodologies to enable formal verification at

the design stage which help a faster churn of RTL and early

stabilization.

Formal verification has proved to be an ideal candidate to

verify tough SoC design challenges due to its ability to

exhaustively verify all possible complex scenarios without

any need for a test bench or input stimulus. With formal, a

designer or verification engineer does not have to spend

time stimulating all possible scenarios as the formal

engines carry out this task under the hood and results in

increased confidence. This eliminates the uncertainty of not

verifying a scenario which is either difficult to think of or is

missed due to the complexity of the design.

Formal equivalence is a known field of research and the

most common application of the methodology is in

checking the correctness of the netlist churned out of the

design synthesis against the RTL which is synthesized. The

ability to formally determine functional equivalence

between RTL models is a key enabler in physically aware

front-end design methodologies that are being practiced in

high performance designs. Earlier Combinational

Equivalence checking tools needed state matching designs

which are tested with equivalent functional maps. With the

advent of new methodologies and sequential equivalence

tools where the sequentially different implementations of

the designs could be verified, a lot of problems which were

tough to be checked earlier formally, came under the gamut

of formal verification and hence the faster verification of

the design changes retaining the legacy behavior became a

reality.

Combinational equivalence checking (CEC) plays an

important role in EDA. Its immediate application is

verifying functional equivalence of combinational circuits

after multi-level logic synthesis [6]. In a typical scenario,

there are two structurally different implementations of the

same design, and the problem is to prove their functional

equivalence. This problem was addressed in numerous

research publications. But the CEC couldn’t solve the

problems when the logic was moved across the equivalent

states and selective disabling of the check of those unequal

states was an involved process. CEC had limitations when

the designs to be compared weren’t state matching. There

were some clever techniques applied to resolve individual

problems but a comprehensive solution needed checking

above CEC. With the increasing use of sequential

optimizations during logic synthesis, sequential

equivalence checking (SEC) has become an important

practical verification problem. SEC might employ symbolic

algorithms, based on binary decision diagrams (BDD) to

traverse the state space or any optimized methodology for

the specific state space traversal to check for the

equivalence of 2 circuits. On the other hand, the

equivalence problem could also be mapped to a model

checking problem where a set of properties are written to

define the equivalence between two circuits. Instead of a

set of properties, the formal sequential equivalence

checking (SEC) may adopt a reference model (RM), which

is a description at high-level abstraction of the

functionality.

As discussed, the SEC can be a check of RTL against the

high level reference model or the RM can be another piece

of RTL itself. The scope of discussion of this paper is

limited to the equivalency check between two different

RTL models and we prefer to refer to it as RTL2RTL

equivalency check.

The organization of this paper is as follows: Section II

gives a detailed explanation of all experimented areas of

application. Section III details the complexity reduction

techniques tried during the equivalence check and some

best practices that had been deployed successfully. Section

IV talks about some more applications where there could

be a definite potential of applying SEC and the paper

concludes in Section V detailing some of the results

achieved by employing the RTL2RTL FEV.

II. Areas of Application

A. Parameterization

Parameterization is the process of deciding and defining the

parameters necessary for a complete or relevant

specification of a design. Most of the legacy designs do

start with hard coding the parameters for a design and as

requirements press on the usage of the design in various

configurations, the design team resorts to parameterize

some of the common parameters. Figure 1 talks about the

many proliferations of one of the graphics design where it

could be targeted to a wide variety of markets.

As mentioned in the section I, the common form of proving

the correctness of the design is running an existing dynamic

regression over a selected set of seeds and number, just to

guarantee that the design hasn’t been compromised on the

legacy behavior. But Validation is never complete and

comprehensive and there were some corner cases which are

always exposed by just running the DV. An obvious

verification for this kind of problem is to run FV on the

design with the non-parameterized code as Specification

model (SPEC) and the parameterized code with the default

parameters as the implementation model (IMP).

Figure 1. Avatars possible through Parameterization

A positive validation for the base parameters against a non-

parameterized code is only possible with such equivalence.

For the other valid parameter settings, other dynamic /

formal validation techniques would be needed to assess the

correct programming. One interesting scenario was

observed when a negative formal equivalence was tried

with a non-default parameter setting. This kind of

equivalency check could be handled by CEC and SEC

tools.

B. Timing Fixes – Logic Redistribution

Fixing Critical timing paths is one of the common activities

for any synchronous design. One of the common solutions

for fixing critical paths is to redistribute the logic across the

different pipeline stages after resorting to all optimizations.

Studies suggest that a decent amount of functional bugs are

introduced while fixing the timing issues and are

unintentional. These kinds of failure scenarios could be

easily avoided by running formal verification that the

design retains its sanity irrespective of the logic

redistribution across pipelines.

Figure 2. Logic Redistribution for Timing Violation Fix

As shown above in Figure 2, there is a huge combo path in

between the first and second flops which would be

redistributed to fix the violation. In this kind of case, a

combinational equivalence checker would fail, as the states

wouldn’t match across the designs and the sequential

equivalence checker is the appropriate solution.

C. Timing Fixes – Critical Path Reduction

Where certain timing fixes wouldn’t have the flexibility to

redistribute the logic across pipe stages, the designers resort

to bifurcate the computation logic and redirect some of the

computation logic through a parallel flop path as shown in

Figure3.

Figure 3. Critical Path Reduction for Timing Fixes

Template RTL Configuration

Num_cores = 2-12

Num_slices = 1-2

Num_subslices = 1-4

Num_default_threads = 2

Power_enable = 0-1

Num_threads =

num_cores*Num_slices*num_subslices

+ num_default_threads* Power_enable

Phone Config

{ 4, 1, 2, 1,1 }

Laptop Config

{ 8, 2, 2, 2,1 }

Desktop Config

{ 6, 2, 4, 2,1 }

Server Config

{ 12, 2, 4, 2,1 }

Tablet Config

{ 4, 2, 2, 2,1 }

Hardcoded Design Configuration

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

As there is a new parallel pipeline path, this wouldn’t be a

straight forward problem for the combinational checker to

solve. Some tools allow skipping one identified stage of

checking but for convergence reasons, mandate the check

at the following pipeline stage. While some commercial

tools would be intelligently handling these kinds of cases,

sometimes, it would need a user intervention for

convergence reasons. SEC would be more ideal in these

kind of scenarios as CEC would find tough to converge in

this scenario.

D. Pipeline Optimizations

As manufacturing processes, algorithms, and

implementation methodologies mature over time,

computing pipeline depth gets optimized and the design

would be able to compute with a reduced depth. On the

contrary, some of the timing fixes and other algorithm

requirements would mandate the addition of additional

pipeline stages while retaining the functionality.

Figure 4. Pipeline Optimizations

In either of these cases, pipeline optimization or timing fix,

there would be additional states in one of the design which

couldn’t be mapped to its counterpart. Depending on the

case of optimization (pipeline/time), one of the above

depicted design portion can be SPEC and the other IMP.

But the end to end functionality would remain unperturbed

and hence formal verification would be the ideal solution to

guarantee the correctness. SEC would be more applicable

in this scenario. The tool would necessitate defining the

latency definitions for both the specification and

implementation models.

E. Chicken Bit Validation

Chicken bits are bits exposed to the driver to disable a

feature in silicon. It's intended to revert changes made in

which confidence is not high (confidence is directly

proportional to validation efforts). It is next to impossible

to hit every possible state in pre-silicon. Most of the design

fixes these days do implement chicken bits and many times,

these chicken bits unintentionally affect the real

functionality. Typically most of the critical features account

for chicken bits early in the design cycle. But there would

be a small fraction of the number of chicken bits that are

added towards the end of the design cycle, to give the

flexibility to disable those diffident features. Negative

validation of these kind of chicken bits is also a bit

challenging as the complete disabling of such features is as

intrusive as the feature itself.

Figure 5. Chicken bit added in the design

Most of the designs do implement the chicken bit in the

mode depicted as above in Figure 5. One way to guarantee

the correctness of the design changes is to run formal

equivalence verification of the earlier design against the

current design in question with chicken bit disabled.

Though this sort of verification doesn’t need a sequential

logic checker, a good debugging capability of the tool used

would ease the life of the designer to fix any issues

reported.

F. Clock gating Verification

One of the most commonly used low-power techniques in

any design is clock gating and proper clock gating is

necessary for data integrity. If clock is not shut down

properly for a piece of logic, improper state signals and

signal glitches can propagate and lead to data corruption.

 The default verification strategy for a clock-gated design is

to run the set of golden regression test suite from the pre-

clock-gated design on the post-clock-gated design, with the

assumption that the golden test suite exercises all corner-

cases when clocks would be gated. However this is not

always true, especially in less aggressive clock-gating

schemes. Coverage of those corner cases is always

challenging as the existing suite might not expose all such

scenarios. The best strategy is to use Sequential

equivalence checking tools for RTL vs. RTL comparison.

CEC might not be an obvious preference for this kind of

design check.

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

Chicken Bit

D

R

clk

D

R

clk

D

R

clk

Figure 6. Clock gating Verification

As depicted in the Figure 6. FEV is run on a design with

Clock gating enabled on IMP and disabled in SPEC, to

make sure that the design behaves exactly similar in all

scenarios. Some of the cases would need addition of

realistic assumptions and constraints on the inputs. These

assumptions would assist in verifying the real intent and

hence assist in convergence. These constraints are added as

pruning’s to the design like a model checking problem to

assist in fair checking. .

G. Power Aware Equivalence Verification:

Low power design continues to garner increased attention

in nearly every other application segment. Many design

techniques have been developed to reduce power and by

the judicious application of these techniques, systems are

tuned for the best power/performance trade-offs. Design

sign-off with great quality is essential to avoid re-spins

while meeting market pressure. Low power specification

defined in UPF (Unified Power Format) introduces certain

power-logic such as, insertion of isolation cells or retention

mapping during synthesis.

 With functional intent being separated from power-intent,

the need for power-aware logical equivalence check (EC)

methodology is indispensable. Formal equivalence of

designs with and without UPF could result in checking if

the power intent (UPF) is syntactically correct and checks

for incorrect/missing/inconsistent isolation rules.

Figure 7. Power Intent Equivalence Verification

There are various tools available in both CEC and SEC

which could handle such equivalence including the power

intent. A judicious selection of the tool which can help

faster debug and convergence is advised. Any low power

tool in industry can do these kind of checks.

H. Basic X-Checking: Uninitialized Flops

Almost all designs would have state elements in which

some of them would be initialized to a defined value post

reset and some which are not. Out of reset, these

uninitialized state elements can come out in any state on the

silicon and to represent the same, in simulation, most of the

non-2 valued simulators would bring out those elements as

“X”s. Formal Verification would also bring out those

uninitialized state elements in undefined state which can

take any value of 0/1. All RTL2RTL formal verification

tools provide a utility to define the behavior of all flops

inside the design that are not connected to reset. Our

methodology of checking on those types of Xs by first

initializing those elements to be 0s and make sure the

equivalence test passes, followed by removal of such

constraint which would bring out the Xs emanating from

those flops and the comparison at the output would result in

counter example for the same design used as SPEC and

IMP.

Figure 8. X checking from uninitalized flops

An X emanating from SPEC would not be equal to the X

from IMP and hence the counter example would point to

the differing state assignment. While deriving the Xs

because of the flops, the design could be elaborated where

the undriven nets and specific X assignments can be

considered as symbolic.

An alternate mode of checking such flops driving unwanted

values which matter in the design would be assigning all

non-resettable state elements to 0 in one design (SPEC) and

1 in the other (IMP). This method of checking is not

completely comprehensive, as some of the critical

combinations of 0s and 1s of different set of state elements

would matter more. But this mode of checking can

Design

With

Chicken bit == 0

Design

With

Chicken bit == 1

All Outputs Equivalent

All Inputs Tied and Driven same Value

Plain Design

Design

+

Power Intent Spec

(UPF/CPF)

RTL_1

With

Non reset regs driven

with 0

RTL_1

With

Non Reset Regs driven

with 0

Equivalence

RTL_1

With

drive on non reset flops

RTL_1

Without

Any drive on non reset

flops

Equivalence

Different Xs

from flops

get diff

values

Could be redundant

converge faster and can catch all the low hanging fruits

faster and useful in the bug hunting mode.

I. Basic X Checks: Xs from undriven nets or internal

assigned Xs or StopAts:

Xs in design can be due to various reasons other than just

from the state elements. Similar to the above X checking

methodology, the Xs emanating from the direct

assignments and the un-driven nets could be derived from

the design while comparing between the design elaborated

assuming X value to be 0/1 and the design elaborated

without any such assumption.

Figure9.X-checking on internal assigned or undriven nets

As a prelude to the X checking due to undriven or internal

assignments, the tools can be tuned to assume the non-

resettable flop elements come out with an equivalent

definitive value in both the designs. This methodology

would still avoid the checking of X’s due to out of bound

array interactions. A tool capable of X-controlling

capability can handle this kind of checks. As mentioned in

the subsection above, this methodology is very helpful in

the bug hunting mode. The constraints are absolutely

needed to thwart out Xs being reported from non-functional

cases. There had been a lot of cases where we experienced

bogus Xs because the inputs are not constrained for the

valid set of inputs and hence Xs for those vectors are truly

ignorable.

J. New Feature Addition with Backward Compatibility

There are certain designs which are very critical to the

product, as the operations of those units are exposed to the

external customer directly and the design has to stick to

some standards of functionality. As an example, the

execution unit of the design needs to stick to some standard

(IEEE, DX*, OCL, OGL, etc…). The operations handled

by the Execution unit will be the instruction set for the

design.

Figure10.Confirming Legacy behaviors with feature
addition

Most of such designs would have reverse compatibility

w.r.t the previous generations of the design, which would

mean that the instructions which were implemented in the

earlier generation would retain the same functionality and

the new feature or the instruction implemented shouldn’t

have tampered with all other features or instructions

implemented. This is not applicable to optimizations or

changes in the specified behavior of the previous

instructions/features.

Most of our new feature additions or opcode additions are

taken through the reverse compatibility analysis where the

inputs are constrained for disabling the new feature/opcode

being added and is checked against the legacy design. This

has helped us in maintaining the legacy behavior in spite of

new optimization/feature/opcode additions.

K. Replacing a Big Data regression with FEV

Most of the data path operations are taken through STE[8]

regression for the implemented proofs at Intel®. Proving

each and every operation for every model would take

anywhere between 3-5 days based on the net batch resource

availability and machine configuration.

Figure11. Operations divided into buckets for equivalence

(Change the diagram as comparison wrt STE regression)

RTL_1

Elaborate Without

Assuming X as 0/1

And no $isunknown at

the inputs

RTL_1

Elaborate With

Assume X as 0/1

 and

No $isunknown at the

inputs

Equivalence

Xs from

internal

assigned/

undriven nets

Unit RTL Unit RTL

New

Instr

Impl

eme

ntati

on

N
e

w

in
s
tr

D
is

a
b

le

Logical Ops

Bitwise Ops

Addition Ops

Multiplication Ops

Fused Multiply Add

Misc Arithmetic Ops

Select, Compare Ops

Math Functions

With the advent of powerful equivalence tools, one of the

optimization made in the recent times is to run the

regression against the previous STE proven

implementation. In order to assist in faster convergence, the

operations are subdivided into different buckets and the

whole regression completes in less than 1 hour on one

machine. Comparatively, the complete STE regression used

to take 10 machines and decent memory on these resources.

The above figure 11 depicts the percentage of the time

taken by different sets of operations in the whole regression

time.

L. Regular FPV:

One of the most popular techniques in formal property

verification is to write out an abstract model of the design

similar to RTL and write properties to define the

equivalence of the two design outputs. The same

methodology can be easily verified through equivalence

where the specification is the abstract model and

implementation is the real piece of code in the RTL. The

regular model checking engines aren’t as optimized as the

equivalence tool engines and the convergence of such

checks had always been challenging. Most of such abstract

models written might not match the states with the real

implemented design and hence the CEC wouldn’t be an

ideal choice for such comparison.

III. Complexity Reduction Techniques

Like any formal verification, RTL2RTL FEV also has

capacity limitations. A range of techniques are applied to

overcome the capacity issues. This section discusses in

detail about such techniques used to solve the complexity

of the FV task.

A. Divide and Conquer Approach:

To overcome the capacity issue, typically FV is handled

using a divide and conquer approach, similar to the

compositional verification []. A typical compositional

approach would be to decompose the whole problem into

number of sub proof tasks and prove each of them

independently and rework at the top level with these sub

blocks black boxed.

Figure 12. Block level diagram of a Design

A representative design for discussion is depicted in

Figure9. There are 5 blocks {A-E} with associated logic

which represent the complete functionality of the design.

When these independent blocks are of decent size, a

complete conglomeration of these blocks would be of a size

which crosses a typical limit of the tool handling. With an

RTL2RTL FEV, the total design size is twice the size of

one design and hence the complexity gets even more

cumbersome. Hence, we resort to first proving the largest

independent blocks or a set of blocks first, for example A

and B blocks separately and then black box them in the

design when we do the top level equivalence.

B. Selective Enabling and Careful Carving the logic:

Some of the changes in the design would be very limited to

a set of blocks and hence wouldn’t necessarily mandate a

complete block level equivalence. We would selective

enable certain blocks only while black boxing the

remaining unwanted logic. As the inputs to those block

boxes would be considered as outputs and the outputs of

those blocks would be considered as inputs, we would need

to have those kinds of tools or methodologies to

automatically map those black boxes and the respective

signals. Careful attention has to be taken while choosing

the logic that has to be black boxed making sure that we

don’t accidentally turn off certain blocks where the changes

might be influential.

Not all the times, the design changes are limited to one or

two blocks individually, but do span across those blocks

and hence individual equivalence is not always the

preferred solution. Then care needs to be taken to contain

the units under

C. Appropriate Input Constraints or Pruning:

The design would have certain definitive functionality in

case of a set of valid input constraints. It would be

definitely helpful if appropriate prunings are applied on the

design so that the input space is constrained and valid.

Though the argument that the design should behave similar

in case of invalid inputs, it doesn’t really add much value to

the validation in question at the cost of increased

complexity.

D. Case splitting:

Even after pruning the design, the complexity wouldn’t

have been completely controlled and needs additional

methods to converge the design. One of the best known

methods is to split the probable inputs into different

subsets. An example for the same sort of case splitting is

discussed in section II.K.

E. Helper Assertions:

One other technique of controlling the complexity is to pick

an intermediate point in both the designs and prove the

equality of such point. Once such a point is identified and

proven, we can use that as a helper assertion and prove the

Block A

Block B

Block E

Block D

Block C

downstream logic. Effectively the cone of influence (COI)

is subdivided into a simpler cone and a bigger portion of

the cone can converge at a faster pace. More such helper

assertions or equivalence points can help in much faster

convergence.

Figure 13. Helper Assertions for Faster Convergence

Figure 10 explains the case where there are certain points

P1, P2 and P3, where P3 is hard to converge, the

equivalence point in both the designs would reduce the

cone for the convergence which is depicted by the helper

cone and that could help in proving P3 faster.

F. State Splitting:

In cases where it becomes a little bit involved in finding an

exact equivalent point, a routine could be written to

selectively equate certain intermediate points (state

matching) and first prove those. If those intermediate points

fail in the equivalence, remove the mappings of those

points and use those particular points which are proven in

both the designs as the helpers and try to converge to the

final outputs. This kind of state splitting is very helpful in

the cases of timing fixes where certain logic is redistributed

across pipeline stages and the design size is huge and

convergence is an issue.

Figure 14. Automatic state mapping for faster convergence

Figure 14. depicts one such case of automatic state splitting

where the first two flop stages could be proved first and the

logic shown in the red structure would be allowed to be

proven by the checker. This was the convergence becomes

much faster and cleaner. There are indeed some cases

where we deployed scripts to first map all the flops across

the design between spec and imp and selectively removed

those failing state elements from the mapping and run it

iteratively. Our modus operandi for this kind of logic is

first enable the script and check for the equivalence by

brute force method. We also resorted to prove the cover

points for those points which should definitely be different

and convince ourselves that we indeed have exercised the

logic. Design knowledge is mandatory to do a diligent

equivalence check in some of these involved cases.

G. Abstracting the design as applicable:

One of the most common form of convergence in the

Bounded Model Checking (BMC) form of FPV is to

abstract some of the complex structures like FIFOs,

Counters, RAMs and memory elements. Some tools do

provide methodologies to easily abstract some of these hard

to crack nuts and help in faster convergence when such

logic couldn’t be completely avoided or black boxed for

proving the equivalence.

IV. Potential Areas of further Application

A. HLS Model Equivalence:

HLS is now an established methodology to synthesize the

RTL from a high level language specification like

C/SystemC. Some of the designs don’t start with the

regular high level model to start with, but take some base

from the existing design and recode the same in high level

language and take it through HLS and continue coding in

the high level, down further. Hence another form of usage

would be to equate the generated RTL against the base with

which the high level coding is started. Though this works

seamlessly for smaller blocks, working on bigger blocks is

still a challenge not yet solved by the current tool set.

V. Results and Conclusion

The RTL2RTL formal equivalence verification has been

very successful with its implementation in various flavors

at Intel. The beauty of this technique is that it wouldn’t

need a bigger validation environment setup or complex

assertions to be coded like the regular FPV. The debug also

would be much simpler as the spec is one of the standard

codes which were verified earlier through different means.

New additions to the code should not change the existing

status of the health of the model and that could be easily

guaranteed by deploying the formal equivalence for every

model release of the design. A great amount of net batch,

memory and human resources can be saved by diligent use

of the methodology proposed.

There were many cases where the regression time was

drastically cut down using the equivalence verification.

Figure11 depicts a sample of multiple units taken through

FEV against the sanity DV regression, where in the FEV

could guarantee 100% confidence in the verification, while

the DV failed to give any representative number for the

same. There were many instances where the DV passed but

the FV would catch such kind of corner cases which wasn’t

being exposed in the sanity check in regression. Some of

 P
3

P
1

P
2

H
e

lp
e

r

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

these would have been found in the weekly regression over

many more thousands of seeds, but all such effort was

clearly saved by deploying FEV for all the cases discussed

in the paper.

Figure 15. Sanity DV regression vs. FEV

Figure 15 shows the time spent on a sanity DV regression

which was effectively saved by deploying an formal

equivalence flow for the design changes while guaranteeing

100% coverage of all scenarios. Figure 16 talks about one

specific case of STE formal sanity regression replaced with

the RTL2RTL formal equivalence based on an earlier

proven model.

Figure 16. Execution time comparision of a complete
formal proof vs RTL2RTL equivalence

Over all the other forms of formal verification, the

equivalence verification is one of the easiest forms and

lowers the barrier for any designer or validator who haven’t

been FV experts or exposed to formal methods, to use

formal for their sign-off. We have deployed several scripts

and methodologies which help the designers use the

RTL2RTL Formal Equivalence as their first line of defense

to release the code to the model.

The tools have matured over the time and still striving to

enhance their convergence features and we strongly believe

that many such enhancements would make the embrace

much easier and converge designs much faster.

ACKNOWLEDGMENTS

Sincere Thanks to Archana Vijaykumar who has been

supporting us strong in the activity and enabling us to try

out on various designs. We would also like to thank Erik

Seligman and our design team members for the constant

support provided.

REFERENCES

 [1] C. Pixley, "A theory and implementation of sequential

hardware equivalence", IEEE Transactions on Computer-

Aided Design, Dec. 1992, pp. 1469-1478.

[2] K.N. Lalgudi and M.C. Papaefthymiou, "Fixed-Phase

Retiming for Low Power Design", Proceedings of the

International Symposium on Low Power Electronics

Design, Aug 1996.

[3] Z. Khasidashvili, M. Skaba, D. Kaiss and Z. Hanna,

"Theoretical Framework for Compositional Sequential

Hardware Equivalence in Presence of Design Constraints",

ICCAD 2004, pp. 58-65.

[4] Orly Cohen, Moran Gordon, Michael Lifshits,

Alexander Nadel, and Vadim Ryvchin

”Designers Work Less with Quality Formal Equivalence

Checking” DVCON’2010

[4] Nikhil Sharma, Gagan Hasteer and Venkat

Krishnaswamy, “Sequential equivalence checking for RTL

models” EETimes Now.

[5] Carlos Ivan Castro Marquez, Marius Strum , Wang

Jiang Chau “Formal Equivalence Checking between High-

Level and RTL Hardware Designs”

[6] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli,

“Multilevel logic synthesis”, Proc. IEEE, Vol. 78,

Feb.1990.

[7] C.A.J. van Eijk, “Sequential Equivalence Checking

without State Space Traversal” DATE 1998

[8] M Achutha KiranKumar V, Aarti Gupta, and Rajnish

Ghughal, “Symbolic Trajectory Evaluation: The primary

validation Vehicle for next generation Intel® Processor

Graphics FPU”, Proceedings of the 12th Conference on

Formal Methods in Computer-Aided Design (FMCAD

2012).

