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Abstract – Increasing Design Complexity driven by 

Feature and Performance requirements and the Time to 

Market (TTM) constraints force a faster design and 

validation closure. This in turn enforces novel ways of 

identifying and debugging behavioral inconsistencies 

early in the design cycle. Addition of incremental 

features and timing fixes would tamper the existing 

legacy design behavior and would inadvertently result 

in undesirable bugs. The most common form of 

verifying the correctness of the design is running a 

regression of existing proven test suite through dynamic 

validation (DV) which is good but not exhaustive. 

Modern Formal Verification (FV) techniques provide a 

complete coverage of the design with the available 

resources. Formal Methods of proving Sequential 

Hardware Equivalence enabled a new set of solutions 

for existing problems. Formal Equivalence can be 

applied on a wide variety of problems ranging from 

simple pipeline optimizations to state matching designs 

to complex logic redistributions. We present here our 

experience of successfully applying the RTL to RTL 

(RTL2RTL) Formal Verification across a wide 

spectrum of problems on a Graphics design and hence 

guaranteeing design sanity in a very short time, thus 

enabling faster and safer design churn. The techniques 

presented in this paper are mostly applicable to any 

complex hardware design.   

Keywords – System Verilog, RTL, design, Formal 

Verification, Equivalence, Validation 

 

I. Introduction 

Graphics designs are increasingly finding their relevance in 

new market segments like smartphones, tablets and a faster 

churn of optimized designs is most desirable. Verifying the 

design correctness is an involved challenge and is the most 

time consuming and critical aspect of the design process. 

Traditional DV methods mandate a compromise between 

breadth of coverage and resources available. We have 

pioneered methodologies to enable formal verification at 

the design stage which help a faster churn of RTL and early 

stabilization.  

 

Formal verification has proved to be an ideal candidate to 

verify tough SoC design challenges due to its ability to 

exhaustively verify all possible complex scenarios without 

any need for a test bench or input stimulus. With formal, a 

designer or verification engineer does not have to spend 

time stimulating all possible scenarios as the formal 

engines carry out this task under the hood and results in 

increased confidence. This eliminates the uncertainty of not 

verifying a scenario which is either difficult to think of or is 

missed due to the complexity of the design. 

Formal equivalence is a known field of research and the 

most common application of the methodology is in 

checking the correctness of the netlist churned out of the 

design synthesis against the RTL which is synthesized. The 

ability to formally determine functional equivalence 

between RTL models is a key enabler in physically aware 

front-end design methodologies that are being practiced in 

high performance designs. Earlier Combinational 

Equivalence checking tools needed state matching designs 

which are tested with equivalent functional maps. With the 

advent of new methodologies and sequential equivalence 

tools where the sequentially different implementations of 

the designs could be verified, a lot of problems which were 

tough to be checked earlier formally, came under the gamut 

of formal verification and hence the faster verification of 

the design changes retaining the legacy behavior became a 

reality. 

 

Combinational equivalence checking (CEC) plays an 

important role in EDA. Its immediate application is 

verifying functional equivalence of combinational circuits 

after multi-level logic synthesis [6]. In a typical scenario, 

there are two structurally different implementations of the 

same design, and the problem is to prove their functional 

equivalence. This problem was addressed in numerous 

research publications. But the CEC couldn’t solve the 

problems when the logic was moved across the equivalent 

states and selective disabling of the check of those unequal 

states was an involved process. CEC had limitations when 

the designs to be compared weren’t state matching. There 

were some clever techniques applied to resolve individual 

problems but a comprehensive solution needed checking 

above CEC. With the increasing use of sequential 

optimizations during logic synthesis, sequential 

equivalence checking (SEC) has become an important 

practical verification problem. SEC might employ symbolic 

algorithms, based on binary decision diagrams (BDD) to 

traverse the state space or any optimized methodology for 

the specific state space traversal to check for the 

equivalence of 2 circuits.  On the other hand, the 

equivalence problem could also be mapped to a model 

checking problem where a set of properties are written to 

define the equivalence between two circuits. Instead of a 

set of properties, the formal sequential equivalence 

checking (SEC) may adopt a reference model (RM), which 

is a description at high-level abstraction of the 

functionality. 

 

As discussed, the SEC can be a check of RTL against the 

high level reference model or the RM can be another piece 

of RTL itself. The scope of discussion of this paper is 

limited to the equivalency check between two different 

RTL models and we prefer to refer to it as RTL2RTL 



equivalency check.  

 

The organization of this paper is as follows: Section II 

gives a detailed explanation of all experimented areas of 

application. Section III details the complexity reduction 

techniques tried during the equivalence check and some 

best practices that had been deployed successfully. Section 

IV talks about some more applications where there could 

be a definite potential of applying SEC and the paper 

concludes in Section V detailing some of the results 

achieved by employing the RTL2RTL FEV. 

 

II. Areas of Application 

 

A. Parameterization 

 

Parameterization is the process of deciding and defining the 

parameters necessary for a complete or relevant 

specification of a design. Most of the legacy designs do 

start with hard coding the parameters for a design and as 

requirements press on the usage of the design in various 

configurations, the design team resorts to parameterize 

some of the common parameters. Figure 1 talks about the 

many proliferations of one of the graphics design where it 

could be targeted to a wide variety of markets. 

 

As mentioned in the section I, the common form of proving 

the correctness of the design is running an existing dynamic 

regression over a selected set of seeds and number, just to 

guarantee that the design hasn’t been compromised on the 

legacy behavior. But Validation is never complete and 

comprehensive and there were some corner cases which are 

always exposed by just running the DV. An obvious 

verification for this kind of problem is to run FV on the 

design with the non-parameterized code as Specification 

model (SPEC) and the parameterized code with the default 

parameters as the implementation model (IMP).  

  

 
Figure 1. Avatars possible through Parameterization 

A positive validation for the base parameters against a non-

parameterized code is only possible with such equivalence. 

For the other valid parameter settings, other dynamic / 

formal validation techniques would be needed to assess the 

correct programming. One interesting scenario was 

observed when a negative formal equivalence was tried 

with a non-default parameter setting. This kind of 

equivalency check could be handled by CEC and SEC 

tools. 

B. Timing Fixes – Logic Redistribution 

 

Fixing Critical timing paths is one of the common activities 

for any synchronous design. One of the common solutions 

for fixing critical paths is to redistribute the logic across the 

different pipeline stages after resorting to all optimizations. 

Studies suggest that a decent amount of functional bugs are 

introduced while fixing the timing issues and are 

unintentional. These kinds of failure scenarios could be 

easily avoided by running formal verification that the 

design retains its sanity irrespective of the logic 

redistribution across pipelines.  

 

 
Figure 2. Logic Redistribution for Timing Violation Fix 

As shown above in Figure 2, there is a huge combo path in 

between the first and second flops which would be 

redistributed to fix the violation. In this kind of case, a 

combinational equivalence checker would fail, as the states 

wouldn’t match across the designs and the sequential 

equivalence checker is the appropriate solution. 

 

C. Timing Fixes – Critical Path Reduction 

 

Where certain timing fixes wouldn’t have the flexibility to 

redistribute the logic across pipe stages, the designers resort 

to bifurcate the computation logic and redirect some of the 

computation logic through a parallel flop path as shown in 

Figure3.  

 

 
Figure 3. Critical Path Reduction for Timing Fixes 

Template RTL Configuration

Num_cores = 2-12

Num_slices = 1-2

Num_subslices = 1-4

Num_default_threads = 2

Power_enable = 0-1

Num_threads = 

num_cores*Num_slices*num_subslices 

+ num_default_threads* Power_enable

Phone Config

{ 4, 1, 2, 1,1 }

Laptop Config

{ 8, 2, 2, 2,1 }

Desktop Config

{ 6, 2, 4, 2,1 }

Server Config

{ 12, 2, 4, 2,1 }

Tablet Config

{ 4, 2, 2, 2,1 }

Hardcoded Design Configuration
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As there is a new parallel pipeline path, this wouldn’t be a 

straight forward problem for the combinational checker to 

solve. Some tools allow skipping one identified stage of 

checking but for convergence reasons, mandate the check 

at the following pipeline stage. While some commercial 

tools would be intelligently handling these kinds of cases, 

sometimes, it would need a user intervention for 

convergence reasons. SEC would be more ideal in these 

kind of scenarios as CEC would find tough to converge in 

this scenario. 

 

D. Pipeline Optimizations 

 

As manufacturing processes, algorithms, and 

implementation methodologies mature over time, 

computing pipeline depth gets optimized and the design 

would be able to compute with a reduced depth. On the 

contrary, some of the timing fixes and other algorithm 

requirements would mandate the addition of additional 

pipeline stages while retaining the functionality. 

 

 
Figure 4. Pipeline Optimizations 

In either of these cases, pipeline optimization or timing fix, 

there would be additional states in one of the design which 

couldn’t be mapped to its counterpart. Depending on the 

case of optimization (pipeline/time), one of the above 

depicted design portion can be SPEC and the other IMP. 

But the end to end functionality would remain unperturbed 

and hence formal verification would be the ideal solution to 

guarantee the correctness. SEC would be more applicable 

in this scenario. The tool would necessitate defining the 

latency definitions for both the specification and 

implementation models.  

 

E. Chicken Bit Validation 

 

Chicken bits are bits exposed to the driver to disable a 

feature in silicon. It's intended to revert changes made in 

which confidence is not high (confidence is directly 

proportional to validation efforts). It is next to impossible 

to hit every possible state in pre-silicon. Most of the design 

fixes these days do implement chicken bits and many times, 

these chicken bits unintentionally affect the real 

functionality. Typically most of the critical features account 

for chicken bits early in the design cycle. But there would 

be a small fraction of the number of chicken bits that are 

added towards the end of the design cycle, to give the 

flexibility to disable those diffident features. Negative 

validation of these kind of chicken bits is also a bit 

challenging as the complete disabling of such features is as 

intrusive as the feature itself. 

 

 
Figure 5. Chicken bit added in the design 

Most of the designs do implement the chicken bit in the 

mode depicted as above in Figure 5. One way to guarantee 

the correctness of the design changes is to run formal 

equivalence verification of the earlier design against the 

current design in question with chicken bit disabled. 

Though this sort of verification doesn’t need a sequential 

logic checker, a good debugging capability of the tool used 

would ease the life of the designer to fix any issues 

reported. 

 

F. Clock gating Verification 

 

One of the most commonly used low-power techniques in 

any design is clock gating and proper clock gating is 

necessary for data integrity. If clock is not shut down 

properly for a piece of logic, improper state signals and 

signal glitches can propagate and lead to data corruption. 

 The default verification strategy for a clock-gated design is 

to run the set of golden regression test suite from the pre-

clock-gated design on the post-clock-gated design, with the 

assumption that the golden test suite exercises all corner-

cases when clocks would be gated. However this is not 

always true, especially in less aggressive clock-gating 

schemes. Coverage of those corner cases is always 

challenging as the existing suite might not expose all such 

scenarios. The best strategy is to use Sequential 

equivalence checking tools for RTL vs. RTL comparison. 

CEC might not be an obvious preference for this kind of 

design check.  
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Figure 6. Clock gating Verification 

As depicted in the Figure 6. FEV is run on a design with 

Clock gating enabled on IMP and disabled in SPEC, to 

make sure that the design behaves exactly similar in all 

scenarios. Some of the cases would need addition of 

realistic assumptions and constraints on the inputs. These 

assumptions would assist in verifying the real intent and 

hence assist in convergence. These constraints are added as 

pruning’s to the design like a model checking problem to 

assist in fair checking. . 

 

G. Power Aware Equivalence Verification: 

 

Low power design continues to garner increased attention 

in nearly every other application segment. Many design 

techniques have been developed to reduce power and by 

the judicious application of these techniques, systems are 

tuned for the best power/performance trade-offs. Design 

sign-off with great quality is essential to avoid re-spins 

while meeting market pressure. Low power specification 

defined in UPF (Unified Power Format) introduces certain 

power-logic such as, insertion of isolation cells or retention 

mapping during synthesis. 

 

 With functional intent being separated from power-intent, 

the need for power-aware logical equivalence check (EC) 

methodology is indispensable. Formal equivalence of 

designs with and without UPF could result in checking if 

the power intent (UPF) is syntactically correct and checks 

for incorrect/missing/inconsistent isolation rules. 

 

 
Figure 7. Power Intent Equivalence Verification 

There are various tools available in both CEC and SEC 

which could handle such equivalence including the power 

intent. A judicious selection of the tool which can help 

faster debug and convergence is advised. Any low power 

tool in industry can do these kind of checks. 

 

H. Basic X-Checking: Uninitialized Flops 

 

Almost all designs would have state elements in which 

some of them would be initialized to a defined value post 

reset and some which are not. Out of reset, these 

uninitialized state elements can come out in any state on the 

silicon and to represent the same, in simulation, most of the 

non-2 valued simulators would bring out those elements as 

“X”s. Formal Verification would also bring out those 

uninitialized state elements in undefined state which can 

take any value of 0/1. All RTL2RTL formal verification 

tools provide a utility to define the behavior of all flops 

inside the design that are not connected to reset. Our 

methodology of checking on those types of Xs by first 

initializing those elements to be 0s and make sure the 

equivalence test passes, followed by removal of such 

constraint which would bring out the Xs emanating from 

those flops and the comparison at the output would result in 

counter example for the same design used as SPEC and 

IMP. 

 

 
Figure 8. X checking from uninitalized flops 

An X emanating from SPEC would not be equal to the X 

from IMP and hence the counter example would point to 

the differing state assignment. While deriving the Xs 

because of the flops, the design could be elaborated where 

the undriven nets and specific X assignments can be 

considered as symbolic. 

An alternate mode of checking such flops driving unwanted 

values which matter in the design would be assigning all 

non-resettable state elements to 0 in one design (SPEC) and 

1 in the other (IMP). This method of checking is not 

completely comprehensive, as some of the critical 

combinations of 0s and 1s of different set of state elements 

would matter more. But this mode of checking can 
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converge faster and can catch all the low hanging fruits 

faster and useful in the bug hunting mode. 

I. Basic X Checks: Xs from undriven nets or internal 

assigned Xs or StopAts: 

 

Xs in design can be due to various reasons other than just 

from the state elements. Similar to the above X checking 

methodology, the Xs emanating from the direct 

assignments and the un-driven nets could be derived from 

the design while comparing between the design elaborated 

assuming X value to be 0/1 and the design elaborated 

without any such assumption. 

 

 
Figure9.X-checking on internal assigned or undriven nets 

As a prelude to the X checking due to undriven or internal 

assignments, the tools can be tuned to assume the non-

resettable flop elements come out with an equivalent 

definitive value in both the designs. This methodology 

would still avoid the checking of X’s due to out of bound 

array interactions. A tool capable of X-controlling 

capability can handle this kind of checks. As mentioned in 

the subsection above, this methodology is very helpful in 

the bug hunting mode. The constraints are absolutely 

needed to thwart out Xs being reported from non-functional 

cases. There had been a lot of cases where we experienced 

bogus Xs because the inputs are not constrained for the 

valid set of inputs and hence Xs for those vectors are truly 

ignorable. 

  

J. New Feature Addition with Backward Compatibility 

 

There are certain designs which are very critical to the 

product, as the operations of those units are exposed to the 

external customer directly and the design has to stick to 

some standards of functionality. As an example, the 

execution unit of the design needs to stick to some standard 

(IEEE, DX*, OCL, OGL, etc…). The operations handled 

by the Execution unit will be the instruction set for the 

design.  

 
Figure10.Confirming Legacy behaviors with feature 
addition 

Most of such designs would have reverse compatibility 

w.r.t the previous generations of the design, which would 

mean that the instructions which were implemented in the 

earlier generation would retain the same functionality and 

the new feature or the instruction implemented shouldn’t 

have tampered with all other features or instructions 

implemented. This is not applicable to optimizations or 

changes in the specified behavior of the previous 

instructions/features.  

Most of our new feature additions or opcode additions are 

taken through the reverse compatibility analysis where the 

inputs are constrained for disabling the new feature/opcode 

being added and is checked against the legacy design. This 

has helped us in maintaining the legacy behavior in spite of 

new optimization/feature/opcode additions. 

K. Replacing a Big Data regression with FEV 

 

Most of the data path operations are taken through STE[8] 

regression for the implemented proofs at Intel®. Proving 

each and every operation for every model would take 

anywhere between 3-5 days based on the net batch resource 

availability and machine configuration. 

 

 
Figure11. Operations divided into buckets for equivalence 

(Change the diagram as comparison wrt STE regression) 
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With the advent of powerful equivalence tools, one of the 

optimization made in the recent times is to run the 

regression against the previous STE proven 

implementation. In order to assist in faster convergence, the 

operations are subdivided into different buckets and the 

whole regression completes in less than 1 hour on one 

machine. Comparatively, the complete STE regression used 

to take 10 machines and decent memory on these resources.    

The above figure 11 depicts the percentage of the time 

taken by different sets of operations in the whole regression 

time.  

 

L. Regular FPV: 

 

One of the most popular techniques in formal property 

verification is to write out an abstract model of the design 

similar to RTL and write properties to define the 

equivalence of the two design outputs. The same 

methodology can be easily verified through equivalence 

where the specification is the abstract model and 

implementation is the real piece of code in the RTL. The 

regular model checking engines aren’t as optimized as the 

equivalence tool engines and the convergence of such 

checks had always been challenging. Most of such abstract 

models written might not match the states with the real 

implemented design and hence the CEC wouldn’t be an 

ideal choice for such comparison.  

 

III. Complexity Reduction Techniques 

 

Like any formal verification, RTL2RTL FEV also has 

capacity limitations. A range of techniques are applied to 

overcome the capacity issues. This section discusses in 

detail about such techniques used to solve the complexity 

of the FV task.  

 

A. Divide and Conquer Approach: 

 

To overcome the capacity issue, typically FV is handled 

using a divide and conquer approach, similar to the 

compositional verification []. A typical compositional 

approach would be to decompose the whole problem into 

number of sub proof tasks and prove each of them 

independently and rework at the top level with these sub 

blocks black boxed.   

 
Figure 12. Block level diagram of a Design 

A representative design for discussion is depicted in 

Figure9. There are 5 blocks {A-E} with associated logic 

which represent the complete functionality of the design.  

 

When these independent blocks are of decent size, a 

complete conglomeration of these blocks would be of a size 

which crosses a typical limit of the tool handling. With an 

RTL2RTL FEV, the total design size is twice the size of 

one design and hence the complexity gets even more 

cumbersome. Hence, we resort to first proving the largest 

independent blocks or a set of blocks first, for example A 

and B blocks separately and then black box them in the 

design when we do the top level equivalence. 

 

B. Selective Enabling and Careful Carving the logic: 

 

Some of the changes in the design would be very limited to 

a set of blocks and hence wouldn’t necessarily mandate a 

complete block level equivalence. We would selective 

enable certain blocks only while black boxing the 

remaining unwanted logic. As the inputs to those block 

boxes would be considered as outputs and the outputs of 

those blocks would be considered as inputs, we would need 

to have those kinds of tools or methodologies to 

automatically map those black boxes and the respective 

signals. Careful attention has to be taken while choosing 

the logic that has to be black boxed making sure that we 

don’t accidentally turn off certain blocks where the changes 

might be influential. 

Not all the times, the design changes are limited to one or 

two blocks individually, but do span across those blocks 

and hence individual equivalence is not always the 

preferred solution. Then care needs to be taken to contain 

the units under  

 

C. Appropriate Input Constraints or Pruning: 

 

The design would have certain definitive functionality in 

case of a set of valid input constraints. It would be 

definitely helpful if appropriate prunings are applied on the 

design so that the input space is constrained and valid. 

Though the argument that the design should behave similar 

in case of invalid inputs, it doesn’t really add much value to 

the validation in question at the cost of increased 

complexity. 

 

 

D. Case splitting: 

 

Even after pruning the design, the complexity wouldn’t 

have been completely controlled and needs additional 

methods to converge the design. One of the best known 

methods is to split the probable inputs into different 

subsets. An example for the same sort of case splitting is 

discussed in section II.K. 

 

E. Helper Assertions: 

 

One other technique of controlling the complexity is to pick 

an intermediate point in both the designs and prove the 

equality of such point. Once such a point is identified and 

proven, we can use that as a helper assertion and prove the 

Block A

Block B

Block E

Block D

Block C



downstream logic. Effectively the cone of influence (COI) 

is subdivided into a simpler cone and a bigger portion of 

the cone can converge at a faster pace. More such helper 

assertions or equivalence points can help in much faster 

convergence. 

 

 
Figure 13. Helper Assertions for Faster Convergence 

Figure 10 explains the case where there are certain points 

P1, P2 and P3, where P3 is hard to converge, the 

equivalence point in both the designs would reduce the 

cone for the convergence which is depicted by the helper 

cone and that could help in proving P3 faster. 

F. State Splitting: 

 

In cases where it becomes a little bit involved in finding an 

exact equivalent point, a routine could be written to 

selectively equate certain intermediate points (state 

matching) and first prove those. If those intermediate points 

fail in the equivalence, remove the mappings of those 

points and use those particular points which are proven in 

both the designs as the helpers and try to converge to the 

final outputs. This kind of state splitting is very helpful in 

the cases of timing fixes where certain logic is redistributed 

across pipeline stages and the design size is huge and 

convergence is an issue.  

 
Figure 14. Automatic state mapping for faster convergence 

Figure 14. depicts one such case of automatic state splitting 

where the first two flop stages could be proved first and the 

logic shown in the red structure would be allowed to be 

proven by the checker. This was the convergence becomes 

much faster and cleaner. There are indeed some cases 

where we deployed scripts to first map all the flops across 

the design between spec and imp and selectively removed 

those failing state elements from the mapping and run it 

iteratively. Our modus operandi for this kind of logic is 

first enable the script and check for the equivalence by 

brute force method. We also resorted to prove the cover 

points for those points which should definitely be different 

and convince ourselves that we indeed have exercised the 

logic. Design knowledge is mandatory to do a diligent 

equivalence check in some of these involved cases. 

 

G. Abstracting the design as applicable: 

 

One of the most common form of convergence in the 

Bounded Model Checking (BMC) form of FPV is to 

abstract some of the complex structures like FIFOs, 

Counters, RAMs and memory elements. Some tools do 

provide methodologies to easily abstract some of these hard 

to crack nuts and help in faster convergence when such 

logic couldn’t be completely avoided or black boxed for 

proving the equivalence.  

 

 

IV. Potential Areas of further Application 

 
A. HLS Model Equivalence: 

 

HLS is now an established methodology to synthesize the 

RTL from a high level language specification like 

C/SystemC. Some of the designs don’t start with the 

regular high level model to start with, but take some base 

from the existing design and recode the same in high level 

language and take it through HLS and continue coding in 

the high level, down further. Hence another form of usage 

would be to equate the generated RTL against the base with 

which the high level coding is started. Though this works 

seamlessly for smaller blocks, working on bigger blocks is 

still a challenge not yet solved by the current tool set. 

 

V. Results and Conclusion 

 

The RTL2RTL formal equivalence verification has been 

very successful with its implementation in various flavors 

at Intel. The beauty of this technique is that it wouldn’t 

need a bigger validation environment setup or complex 

assertions to be coded like the regular FPV. The debug also 

would be much simpler as the spec is one of the standard 

codes which were verified earlier through different means. 

 

New additions to the code should not change the existing 

status of the health of the model and that could be easily 

guaranteed by deploying the formal equivalence for every 

model release of the design. A great amount of net batch, 

memory and human resources can be saved by diligent use 

of the methodology proposed.  

There were many cases where the regression time was 

drastically cut down using the equivalence verification. 

Figure11 depicts a sample of multiple units taken through 

FEV against the sanity DV regression, where in the FEV 

could guarantee 100% confidence in the verification, while 

the DV failed to give any representative number for the 

same. There were many instances where the DV passed but 

the FV would catch such kind of corner cases which wasn’t 

being exposed in the sanity check in regression. Some of 
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these would have been found in the weekly regression over 

many more thousands of seeds, but all such effort was 

clearly saved by deploying FEV for all the cases discussed 

in the paper. 

 

 
Figure 15. Sanity DV regression vs. FEV 

Figure 15 shows the time spent on a sanity DV regression 

which was effectively saved by deploying an formal 

equivalence flow for the design changes while guaranteeing 

100% coverage of all scenarios. Figure 16 talks about one 

specific case of STE formal sanity regression replaced with 

the RTL2RTL formal equivalence based on an earlier 

proven model. 

 
Figure 16. Execution time comparision of a complete 
formal proof vs RTL2RTL equivalence 

Over all the other forms of formal verification, the 

equivalence verification is one of the easiest forms and 

lowers the barrier for any designer or validator who haven’t 

been FV experts or exposed to formal methods, to use 

formal for their sign-off. We have deployed several scripts 

and methodologies which help the designers use the 

RTL2RTL Formal Equivalence as their first line of defense 

to release the code to the model.  

 

The tools have matured over the time and still striving to 

enhance their convergence features and we strongly believe 

that many such enhancements would make the embrace 

much easier and converge designs much faster. 
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