
© Accellera Systems Initiative

• Increasing design-complexity and Time to Market (TTM)

constraints, forces a faster design and validation closure

• Novel ways of identifying and debugging behavioral

inconsistencies early in the design cycle mandated

• Addition of incremental features and timing fixes is usually

accompanied with the risk of tampering the existing legacy

design behavior and insertion of undesirable bugs

• Any number of Dynamic Validation (DV) regression tests can’t

guarantee complete coverage and mitigate risks.

• DV is convenient but not exhaustive

INTRODUCTION

APPLICATIONS

OBJECTIVES

 Provide a static validation methodology which is exhaustive and

easy to use

 Formal Verification (FV) techniques to provide a complete

coverage of the design with the available resources.

 Formal Equivalence Verification (FEV) to be applied on a wide

variety of problems ranging from simple pipeline optimizations

to state matching designs to complex logic redistributions.

 Sequential Equivalence mode of checking FEV to enable formal

on many more design problems

 Common application of FEV is between the RTL and its

synthesized netlist, but RTL2RTL equivalence has much wider

scope.

RESULTS

 Very successfully applied RTL2RTL in Intel Graphics design.

 RTL2RTL FV successfully replaced DV regressions for timing fixes,

chicken bits, clock gating validation, and legacy checks.

 Replaced weekly 5-day STE regression on netbatch with a

45minute RTL2RTL FV on single machine

Parameterization: Timing Fixes:

Intel Technologies, Bangalore, India

M, Achutha KiranKumar V, Aarti Gupta, Ss Bindumadhava

RTL2RTL Formal Equivalence:
Boosting the Design Confidence

ACKNOWLEDGEMENTS
Erik Seligman, FVCOE , Intel , Portland

Pradeep Raghavendra, Intel India, Bangalore

CONCLUSIONS

REFERENCES

 [1] C. Pixley, "A theory and implementation of sequential hardware equivalence", IEEE

Transactions on Computer-Aided Design, Dec. 1992, pp. 1469-1478.

[2] K.N. Lalgudi and M.C. Papaefthymiou, "Fixed-Phase Retiming for Low Power Design", Proceedings

of the International Symposium on Low Power Electronics Design, Aug 1996.

[3] Z. Khasidashvili, M. Skaba, D. Kaiss and Z. Hanna, "Theoretical Framework for Compositional

Sequential Hardware Equivalence in Presence of Design Constraints", ICCAD 2004, pp. 58-65.

[4] Orly Cohen, Moran Gordon, Michael Lifshits,

Alexander Nadel, and Vadim Ryvchin

”Designers Work Less with Quality Formal Equivalence

Checking” DVCON’2010

[4] Nikhil Sharma, Gagan Hasteer and Venkat Krishnaswamy, “Sequential equivalence checking for

RTL models” EETimes Now.

[5] Carlos Ivan Castro Marquez, Marius Strum , Wang Jiang Chau “Formal Equivalence Checking

between High-Level and RTL Hardware Designs”

[6] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, “Multilevel logic synthesis”, Proc. IEEE, Vol.

78, Feb.1990.

[7] C.A.J. van Eijk, “Sequential Equivalence Checking without State Space Traversal” DATE 1998

[8] M Achutha KiranKumar V, Aarti Gupta, and Rajnish Ghughal, “Symbolic Trajectory Evaluation:

The primary validation Vehicle for next generation Intel® Processor Graphics FPU”, Proceedings of

the 12th Conference on Formal Methods in Computer-Aided Design (FMCAD 2012).

•Divide and Conquer

•Careful Logic Carving

•Inputs Pruning

•Case Splitting

•Intermediate equivalence

•State Splitting

•Design Abstractions

Template RTL Configuration

Num_cores = 2-12

Num_slices = 1-2

Num_subslices = 1-4

Num_default_threads = 2

Power_enable = 0-1

Num_threads =

num_cores*Num_slices*num_subslices

+ num_default_threads* Power_enable

Phone Config

{ 4, 1, 2, 1,1 }

Laptop Config

{ 8, 2, 2, 2,1 }

Desktop Config

{ 6, 2, 4, 2,1 }

Server Config

{ 12, 2, 4, 2,1 }

Tablet Config

{ 4, 2, 2, 2,1 }

Hardcoded Design Configuration

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

D

R

clk

Pipeline Optimizations

D

R

clk

D

R

clk

D

R

clk

D

R

clk

Chicken Bit

D

R

clk

D

R

clk

D

R

clk

Chicken bit Validation

Design

With

Chicken bit == 0

Design

With

Chicken bit == 1

All Outputs Equivalent

All Inputs Tied and Driven same Value

Clock Gating Verification

Unit RTL Unit RTL

New

Instr

Impl

eme

ntati

on

N
e

w

in
s
tr

D
is

a
b

le

Legacy behavior checks
RTL_1

With

Non reset regs driven

with 0

RTL_1

With

Non Reset Regs driven

with 0

Equivalence

RTL_1

With

drive on non reset flops

RTL_1

Without

Any drive on non reset

flops

Equivalence

Different Xs

from flops

get diff

values

Could be redundant

X - Checking

COMPLEXITY REDUCTION TECHNIQUES

Block A

Block B

Block E

Block D

Block C

•RTL2RTL FV has many more application facets

•Equivalence FV maximizes ROI compared to the investment on DV

with minimal resources.

•Stronger equivalence checking tools can improve the gamut of

applications where formal can be applied.

•Reduces the barrier for entry into formal world.

•Future work to evangelize the benefits of RTL2RTL

AUTHOR CONTACTS
achutha.kirankumar.v.m@intel.com

aarti.gupta@intel.com

bindumadhava.ss@intel.com

mailto:achutha.kirankumar.v.m@intel.com
mailto:aarti.gupta@intel.com
mailto:aarti.gupta@intel.com

