
Rolling the Dice with Random Instructions
is the Safe Bet on RISC-V Verification

Simon Davidmann and Lee Moore

Imperas Software Ltd.
Imperas Buildings, North Weston

Thame, Oxfordshire OX9 2HA United Kingdom

Richard Ho and Tao Liu
Google LLC.

1600 Amphitheater Parkway
Mountain View, CA 94043 USA

Doug Letcher and Aimee Sutton

Metrics Technologies Inc.
100 Gloucester Street

Ottawa, Ontario K2P 0A4 Canada

Abstract- The traditional SoC verification approach has until now been based on the fundamental assumption of

known good processor IP from the mainstream semiconductor IP providers. With Open ISAs such as RISC-V, developers
can exploit a greater degree of implementation flexibility but must also assume a greater role in the verification task.

To complement established techniques, this paper illustrates the approach of using an open source random instruction
generator for RISC-V with a cloud-based environment for capacity flexibility to compare implementation RTL against a
reference simulation model.

This latest framework covers the needs of specialist core designers and all SoC adopters.

I. INTRODUCTION

The verification of an open Instruction Set Architecture (ISA) is a new industry challenge brought about by the
growing adoption of the RISC-V ISA [1]. In contrast to other ISAs with a single source for processor IP, the RISC-V
community has more than ten (fast approaching one hundred) processor IP providers, with both open source and
proprietary implementations and both commercial and free business models, plus there are SoC design teams that are
developing their own RISC-V processor implementations. As an open ISA, RISC-V allows developers freedom of
implementation choices, optional features, extension and the opportunity to add optimized extensions or custom
instructions.

A processor verification approach needs to cover the range of requirements from basic ISA compliance tests
through to functional coverage and microarchitectural details, and the orthogonal range from the ISA specification to
the addition of custom instructions and other features. While a single method may be unrealistic, many of the
traditional SoC verification methods and tools can be employed and used successfully. Verification methodology for
an open ISA, specifically RISC-V, is the focus of this paper.

Starting with an instruction stream generator, initially developed by Google, and now available on GitHub, the
starting point for this verification process is a random instruction sequence. This can be compiled and used to drive
the cloud-based environment from Metrics to simulate the RTL. In addition, the same instruction sequence can be
used on the reference Imperas RISC-V simulator, riscvOVPsim. The design flow includes a comparison of the two
log files to identify areas of discrepancy that should be investigated further.

While the concept of an open ISA is not new, this is the first time it has been considered and adopted by broad
market segments, as both large established suppliers and new startups are embracing the freedoms and flexibility
offered by an open ISA. While specialist design teams that are building a custom RISC-V core will be attracted to the
verification methodology discussed in this paper, the intention is to make the usability suitable for a wide range of
SoC developers. Given the range of ISA options, both technical aspects and business models, every SoC development

project will need to consider as mandatory verification of any core considered to be integrated into a complex SoC
design.

II. COMPLIANCE VERSUS DESIGN VERIFICATION

With RISC-V, as an open ISA specification, any implementation will need to be tested against the latest RISC-V
compliance suite.

The objective of the compliance process is to ensure that implementations are correctly following the
specifications, with the expectation that compliant devices will exhibit sufficient compatibility to leverage the
emerging ecosystem for tools and software. Put more simply, compliance is confirming that the designers have
understood the specifications. Since the ISA specification does not include details of microarchitecture, differences in
device performance and application focus are expected and of course permitted.

Since the compliance tests use expected functionality as the basis of the test suite, this incurs an overlap with some
aspects of Design Verification (DV). However, the compliance suite is not exhaustive for all functionality and is
focused purely with the structural specification aspects of the ISA, i.e. compliance is a subset of DV.

A. Compliance

The RISC-V Compliance Suite is developed within the RISC-V Foundation Working Group on Compliance
(“Compliance WG”), and the latest test suites are available from the RISC-V compliance GitHub repository [2].

While the Compliance Suite contains tests for all the specification options and configurations, it is possible to test
a target implementation with just the subset of tests that are targeted at that particular configuration. However, there
is discussion within the Compliance WG that all cases of all tests should be performed, as it is more reliable to conclude
a test failure was due to an intended unsupported feature than have the risk of omitting a required test. In addition, this
may be a useful way to inspect an initial processor IP delivery and confirm the features are present as expected.

While compliance does not exhaustively test all functional operations, it does confirm the correct operands and
registers over a sample set of functional exercises.

B. Verification

The verification flow discussed in this paper has as its goal finding the hard corner cases related to the processor
implementation that may not be easily uncovered with traditional verification methods. This is not intended to be a
replacement for well-established verification methods such as the Universal Verification Methodology (UVM) [3],
but should be seen as a useful and complementary extension.

Fig. 1 shows the basic verification flow. Starting with an instruction stream generator, initially developed by
Google, and now available as open source, the starting point for this verification process is a random instruction
sequence. This can be compiled and used to drive the cloud-based environment from Metrics to simulate the RTL. In
addition, the same instruction sequence can be used on the reference Imperas RISC-V simulator, riscvOVPsim, which
is available via the RISC-V compliance GitHub repository. The design flow includes a comparison of the two log files
to identify areas of discrepancy that should be investigated further by the RTL development team.

Fig. 1. Design verification flow comparing RTL with a reference model.

III. COMPONENTS OF THE VERIFICATION FLOW

A. Instruction Stream Generator

The Instruction Stream Generator (ISG) was originally developed by Google and is now available on GitHub [4].
The motivation behind this development effort was the need for verification of RISC-V processor IP (in RTL form
for implementation), not only for current projects but also for reuse on future projects. The previous tools available
for RISC-V processor verification had significant holes: the complete RISC-V specification was not supported,
exceptions were not supported, complex branch structures were not supported and no coverage metrics were available.

The goal for ISG was to develop a tool with the following features: randomness, architecture awareness, high
performance, extendibility and functional coverage.

Random instruction generation needs to occur on three levels. First, instruction level randomization, so that all
possible operands and immediate values of instructions are covered. Second, sequence level randomization, so all
possible instruction orders and dependencies can be tested. Third, platform level randomization, for example to test
privilege modes, page table organization and program calls.

Architecture awareness means being to understand the specific architecture subsets and to configure tests for those
subsets. More than that simple definition of architecture awareness, ISG needs to understand and be able to generate
tests for branch prediction, MMU implementations, the pipeline including exception handling, and other key
architectural features such as privilege mode.

The high-performance requirement simply means that ISG should be able to generate a large set of instructions in
a short amount of time.

Extendibility is required so that additional architectural features, for example the RISC-V vector instructions, can
be added to ISG. This is being addressed by making ISG an open source project so that anyone can adopt and
contribute to the tool.

Functional coverage is a critical component of any constrained-random DV environment. Functional coverage
enables the measurement of what has and has not been tested through random stimulus. Coverage data is a key metric
in the determination of verification completeness.

B. Cloud Based Verification

The flow outlined in this paper is based on the assumption, based on semiconductor industry best known methods,
that pre-tape out simulation is essential to ensure the quality and first pass success of a SoC. As the open ISA approach
of RISC-V is changing the way SoC architects source the processor IP, it is also impacting the workloads of SoC
verification teams. In the past, an SoC would be assembled from known good IP and the verification would be focused
around the key interface points from the processor IP to the rest of the SoC design. In this way verification plans and
test capacity are concerned with the SoC blocks and functions that are outside the processor IP. With RISC-V
processors being implemented from open source RTL, or built from scratch by the design team, or adding custom
extensions to a commercial IP core the verification of the RISC-V processor becomes a new and additional
requirement.

The need for additional simulation capacity for processor verification is not itself a reason to move to cloud-based
simulation. However, with the growing complexity of SoCs, there has been a need for more simulation capacity just
for the SoC verification. This capacity requirement is also not a constant requirement, but occurs for short periods of
days/weeks/months, in contrast to the annual license business model of the major RTL simulation vendors. The
additional processor verification requirements only increase this need for peak capacity. Moving to cloud-based
simulation addresses the need for a business model more closely aligned with the project schedule, while at the same
time reducing the need for costly compute farms of even thousands of x86 boxes to try to meet that peak capacity
requirement.

The Metrics Cloud Platform used in this flow provides a high performance SystemVerilog simulator in the cloud,
and includes a suite of web-based verification management and debug tools that facilitate the analysis of simulation
data. These include a coverage browser, waveform viewer, log viewer, and triage/failure analysis. The Metrics Cloud
Simulator supports the complete SystemVerilog standard (IEEE 1800-2017) [7] as well as UVM and other base class
libraries.

C. Reference Simulator

The reference RISC-V simulator highlighted in this paper is riscvOVPsim. The riscvOVPsim simulator
implements the full and complete functionality of the RISC-V Foundation’s public Unprivileged (formally known as

User) and Privilege ratified specifications. The simulator is command line configurable to enable/disable all current
optional and processor specific options in the RISC-V specification. The simulator is developed, licensed and
maintained by Imperas Software Ltd., and is fully compliant to the Open Virtual Platforms (OVP) [5] open standard
APIs. To support the work of the RISC-V community, riscvOVPsim is available on GitHub [2] for both academic and
commercial users.

As a member of the RISC-V Foundation community of software and hardware innovators collaboratively driving
RISC-V adoption, Imperas originally developed the riscvOVPsim simulator to assist RISC-V adopters to become
compliant to the RISC-V specifications. The latest RISC-V compliance test suite and framework (which includes
riscvOVPsim) can be downloaded from the RISC-V compliance GitHub repository.

riscvOVPsim includes an industrial quality model and simulator of RISC-V processors for use for compliance and
test development. It has been developed for personal, academic, or commercial use, and the model is provided as open
source under the Apache 2.0 license. The simulator is provided under the Open Virtual Platforms (OVP) Fixed
Platform Kits license that enables download and usage. riscvOVPsim and the OVP RISC-V processor models used
by riscvOVPsim are actively maintained and enhanced. Most recently, support for the vector and bit manipulation
instructions were added to the OVP RISC-V processor models.

Runtime configurable settings for all RISC-V specification options makes it very easy to compare run time results
with any RTL implementations.

D. Combined Flow

With these three components, here is the verification flow:
1. ssh to remote shell in Metrics Cloud Platform
2. Clone tests from a Git repository, e.g. compliance suite. In Fig. 2, running the RV32I compliance suite is

shown.
3. Run as if in local shell

Steps 4-8 are shown in Figs. 3 and 4.
4. Run ISG to generate tests
5. Compile to .elf file for execution on the RTL (on the Metrics Cloud Platform SystemVerilog simulator) and

on the reference model (riscvOVPsim).
6. Run riscvOVPsim to generate reference results
7. Run RTL simulation and generate RTL results
8. Compare run logs, report pass/fail and show mismatches

Detailed failure reporting shows the mismatching instructions, as in Fig. 4. Full traces and additional information

are kept for review. Also, a VCD file can be dumped for full waveform analysis. Functional coverage can be analyzed
using the Metrics Cloud Platform, as shown in Fig. 5.

Fig. 2a. Shell in cloud for running verification flow.

Fig. 2b. Example results for running RV32I test suite.

Fig. 3. The verification flow is executed via scripts in the shell.

Fig. 4. Pass/fail results are output from the comparison of results.

Fig. 5. Functional coverage reporting from the Metrics Cloud Platform.

IV. RESULTS

A. Results

The first core implementation that was tested using the flow outlined in this paper is the popular Ibex core that
was originally developed by ETH Zurich under the name “Zero-riscy” [6], and more recently adopted by LowRISC
as Ibex [7]. Ibex implements the RISC-V RV32IMC instructions, which is the 32-bit RISC-V with integer (I),
multiplier/divider (M) and compressed (C) instructions. Fig. 6 shows a block diagram of the Ibex.

Fig. 7 shows the categories of bugs found using the verification flow discussed in this paper, while Fig. 8 shows
examples of the specific bugs.

B. Future Work

The flow outlined in this paper can be extended to cover the future extensions and additions of the RISC-V ISA.
In 2020, the RISC-V Foundation is expected to complete the ratification process of both the Bit Manipulation and
Vector extensions. Work to support these extensions in the flow outlined in this paper is already underway.

Fig. 6. Block diagram of the Ibex core.

Fig. 7. Categories of bugs found in the Ibex core using the verification flow described in this paper.

Fig. 7. Examples of the specific bugs found.

V. CONCLUSIONS
The flow outlined in this paper is intended to find the hard corner cases that may not be easily discovered with

traditional verification methods. This is not intended to be a replacement for well-established verification methods but
should be seen as a useful extension as SoC developers address the verification requirements associated with the open
ISA of RISC-V processor cores.

The initial work was based around a popular open source RISC-V core, and the analysis results and coverage
summary are a key highlight for this paper. In addition to the Random Instruction approach to verification several of
the authors are also involved with the RISC-V Foundation working group on Compliance, which is a key starting
point for the overall verification approach and work flow.

Finally, the results of this work highlight the improvements to coverage, flexibility and usability following the
close collaboration between Imperas, Google and Metrics on this project. For additional comments on this topic please
contact the authors.

ACKNOWLEDGMENTS
The authors would like to thank all the voluntary members of the RISC-V Foundation Compliance Working Group

for their efforts.
The authors would like to thank all the voluntary members of the Chips Alliance Verification Working Group for

their efforts.
The authors would like to thank all the voluntary members of the OpenHW Group Verification Working Group

for their efforts.
The authors wish to acknowledge the help and support from the Ibex development team at LowRISC.

REFERENCES
[1] https://riscv.org/specifications/
[2] https://github.com/riscv/riscv-compliance
[3] https://accellera.org/downloads/standards/uvm
[4] https://github.com/google/riscv-dv
[5] Open Virtual Platforms (OVP) API specifications are publicly available at http://www.ovpworld.org
[6] Schiavone, Pasquale Davide et al. “Slow and steady wins the race? A comparison of ultra-low-power RISC-V cores for Internet-of-Things

applications.” 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS 2017)
[7] https://github.com/lowRISC/ibex

