
RISC-V Integrity:
A Guide for Developers and Integrators

Nicolae Tusinschi, OneSpin Solutions

© Accellera Systems Initiative 1

Agenda
• RISC-V Background
• RISC-V Verification
• Operational Assertions
• GapFreeVerification
• Core Verification Results
• SoC Verification Results
• Conclusion

© Accellera Systems Initiative 2

RISC-V BACKGROUND

© Accellera Systems Initiative 3

User-level ISA - Base
• Highly configurable open-source ISA
• 32 bit instructions and 31 fixed-point register with bit width 32, 64, 128

(X0 is constant 0)
• “Base” instruction set “I” (and alternatively reduced version “E”)

– Usual integer arithmetic/logic, memory, branch/jump, CSR instructions
– “E” reduces register number to 16 (for smaller embedded systems), only

defined for 32 bit

© Accellera Systems Initiative 4

User-level ISA - Extensions
• “M” extension for integer multiplication/division
• “A” extension for atomic read-modify-write memory accesses (AMO)
• “F” extension for single precision floating point (FP)

• Adds 32 additional FP registers and 3 CSRs
• “D” extension for double precision floating point

• Needs “F”, wider FP registers
• “Q” extension for quad precision floating point

• Needs “F” and “D”, wider FP registers
• “C” extension for compressed instructions

• 16-bit versions of common “I”, “F”, “D” instructions

© Accellera Systems Initiative 5

Privileged ISA - Levels
• 3 potential privilege levels:

– M(achine)=2’b11, S(upervisor)=2’b01, U(ser)=2’b00
– M must be implemented and must be privilege level after reset
– Simple 2 level system can omit S (just implement M and U)
– S needed for virtual memory
– Letters “S” and “U” used to capture supported privileges in feature string

© Accellera Systems Initiative 6

Privileged ISA - CSRs
• Privilege and rights of CSRs encoded in upper 4 address bits

– [11:10]==2’b11 encodes read-only (others read-write)
– [9:8] encode lowest level where register is accessible
– Access to non-existing CSR or write to read-only CSR or access to register from

higher privilege level causes illegal instruction exception
– Some CSRs have explicit partial access to lower levels

• mstatus (0x300), sstatus (0x100), ustatus (0x000)
• 3 “different” registers implemented in single register

© Accellera Systems Initiative 7

Privileged ISA – misa Register
• Encodes RISC-V string of supported features

– One bit per letter “A” to “Z” (bits 0 to 25)
– Two MSBs encode register width (01 – 32, 10 – 64, 11 – 128)

• Address 0x301 ([11:8]=0011)
– Only accessible in machine mode
– NOT read-only in spec!
– Implementations can support switching off some extensions at runtime

© Accellera Systems Initiative 8

Privileged ISA - Exceptions
• 3 memory exceptions per memory access (fetch, load, store/AMO) –

– Misaligned address, access fault, page fault
• Illegal instruction

– Non-existing or reserved opcodes and encodings
– CSR access rights violations
– Other instructions in unprivileged mode (call/return)

• Breakpoint (fetch, load, store of debugged address)
• Environment call

– 3 separate exceptions based on originating mode (M,S,U)
• Total of 9+1+1+3=14 different exceptions

© Accellera Systems Initiative 9

Dimensions of RISC-V Complexity
• Many optional features (covered in previous slides)
• User extensions allowed, including custom instructions
• Designed for many different implementations

– Pipeline stages, out-of-order execution, etc.
– Many different microarchitectures
– Must verify the complete design, not just ISA compliance

• Some applications may have strict security and trust requirements
– Autonomous vehicles, military/aerospace, nuclear power plants, etc.

• Integrity requires functional correctness, safety, security, and trust

© Accellera Systems Initiative 10

RISC-V VERIFICATION

© Accellera Systems Initiative 11

Functional Verification of RISC-V Cores
• RISC-V processor cores are hard to verify

– Complex microarchitectures to achieve PPA targets
– Branch prediction, forwarding, out-of-order execution …

• Formal verification
– Exhaustive verification finds corner-case bugs
– The only technology that can prove bug absence

• Challenges
– Complexity issues lead to bounded proofs
– Hard to write good quality, reusable assertions

=

© Accellera Systems Initiative 12

RISC-V ISA Specification

Architecture
registers

(register file(s),
PC, CSRs, …)

Instruction

Exception
Defines

architecture
registers

May define
initial values

op_a = R[RS1]
addr = op_a + imm
result = M[addr]
R[RD] = result

LW

RS1imm 0000011010
7 615 1420 19 031

RD
12 11

Architecture
registers

(register file(s),
PC, CSRs, …)

Defines update of
architecture registers
and memory requests

© Accellera Systems Initiative 13

Formalized User-Level ISA
• Captures effect of instructions on architecture state and output to data

memory
• Formalized in SystemVerilog Assertions(SVA)
• Different extensions such as C, A can be enabled

32'bXXXXXXXXXXXXXXXXX010XXXXX0000011:
decode.instr = LW;
decode.RS1.valid = 1’b1;
decode.RD.valid = 1’b1;
decode.imm = $signed(iw[31:20]);
decode.mem = 1’b1;

…

ISA formalization
excerpt for LW

© Accellera Systems Initiative 14

Pipelined Microarchitecture
• Various implementation choices

– Specific pipeline length
– Forwarding paths to decode state (or additionally also to later stages)
– Separate ICache/ DCache units with specific protocols
– Branch prediction for instruction fetch unit
– Stalling of later pipeline stages or replay mechanism
– Out-of-order termination for long-latency instructions (like DIV, DCache miss)

© Accellera Systems Initiative 15

Pipelined Microprocessor Verification
• Link pipeline to sequential execution of instruction
• Capture full effect of one instruction/exception in pipeline one property
• Regardless of preceding or succeeding instructions
• Next sequential instruction “starts” when leaving decode
• Need to capture “sequential” register file where effect of instruction is

visible in 1 step

Architecture
registers

(register file(s),
PC, CSRs, …)

Instruction

Exception

Architecture
registers

(register file(s),
PC, CSRs, …)

© Accellera Systems Initiative 16

Interval Property Checking (IPC)
• Reusable SVA achieving unbounded proofs

– Anatomy of an IPC assertion
• Does not start from reset but from a generic valid state
• Limited number of cycles (interval) to reach generic valid state
• Decouples ISA from microarchitecture

ADDDEC

EXE

MEM

WB

ADD

ADD

ADD

SUB

SUB

SUB

SUB

BEQ

BEQ

BEQ

BEQ

DIV

DIV

DIV

DIV

Assume ready_to_issue Prove ready_to_issue

Interval

© Accellera Systems Initiative 17

Verification of RISC-V Implementation
• Instructions executed as specified in ISA

– Several opcodes can be handled in same property
– Exceptions, bubbles, and replay handled in separate properties

© Accellera Systems Initiative 18

t##0 Ready2Execute and
t##0 set_freeze(dec,decode(ibuf_io_inst_0_bits_raw,RF)) and
t##0 ibuf_io_inst_0_valid && dec.instr == LW &&

!fetch_xcpt() && !ctrl_stalld and
pipe_dmem_in(result)
implies
t##1 Ready2Execute and
pipe_result(dec,RF,result) and
pipe_dmem_out(dec);

Use ISA
formalization

DCache protocol delivering read
data as result

Check expected register file
and DCache request from

ISA

Use ISA
formalization
Overlapping
instructions

Verification of RISC-V Implementation
• Instructions executed as specified in ISA

– Example: Operational SVA for LW instruction fully verifying
forwarding to decode/execute and full register update

© Accellera Systems Initiative 19

t##0 Ready2Execute and
t##0 set_freeze(dec,decode(ibuf_io_inst_0_bits_raw,RF)) and
t##0 ibuf_io_inst_0_valid && dec.instr == LW &&

!fetch_xcpt() && !ctrl_stalld and
pipe_dmem_in(result)
implies
t##1 Ready2Execute and
pipe_result(dec,RF,result) and
pipe_dmem_out(dec);

Use ISA
formalization

DCache protocol delivering read
data as result

Check expected register file
and DCache request from

ISA

Use ISA
formalization
Overlapping
instructions

OPERATIONAL ASSERTIONS

© Accellera Systems Initiative 20

What is an Operation?
• An operation is a multi-cycle activity of the DUV

– Read or write operation in controller
– Request is served within n cycles – responsiveness
– Instruction in processor

• An operation is described by:
– Start and end state (conceptual, high level of abstraction)
– Trigger condition(s)
– Expected output behavior

© Accellera Systems Initiative 21

Operational Assertion
• Formally captures single DUV operation

– Suppose part describes cause – when does assertion apply
– Prove part specifies effect - intended behavior in that case

Operation

suppose

prove

t##0 t##1

start
state

outputs

inputs

end
state

EffectEffect

CauseCause

© Accellera Systems Initiative 22

Operational SVA
• SystemVerilog Assertions (SVA)

• Expressive, rich assertion language

• Rapid adoption in industry

• IEEE Standard

OperationalSVA – SVA Modeling Layer
• Brings timing diagrams to SVA

• Provides predefined SVA macros
• Is standard SVA

OperationalSVA – SVA Modeling Layer
• Brings timing diagrams to SVA

• Provides predefined SVA macros
• Is standard SVA

Timing Diagrams
• Universally used to

describe intended
behavior of designs

• Familiar to engineers

• Describe cause – effect relationship

• Excellent basis for assertion development

© Accellera Systems Initiative 23

Operational Assertions: A Simple Example
Align Operational Assertions with Transactional UVM Sequences

© Accellera Systems Initiative 24

state

transfer

complete

Wait

1

Cause

Effect

sequence t_complete; nxt(t,4); endsequence

property transfer;
t ##0 state == wait and
t ##0 transfer == 2’d1

implies
t_complete ##0 state == finish and
t_complete ##0 complete;

endproperty

transfer_a: assert property(transfer);

Finish

transfer == 1

Transfer != 1

Wait
S1

S2
S3 Finish

S5
S4

complete == 1

t t_complete

GAPFREEVERIFICATION

© Accellera Systems Initiative 25

GapFreeVerification
• GapFreeVerification™

– Develop executable spec in the form of assertions
– Prove that executable spec has no gaps or

inconsistencies
– Prove that executable spec and RTL are functionally

equivalent
– Abstraction: specification, RTL

• Benefits
– Detects errors and inconsistencies in the specification
– Prove 100% equivalence of spec and implementation
– Demonstrate absence of bugs/Trojans/ambiguities

GapFreeVerification™

RTL Specification

Trusted RTL Trusted
Executable

Specification

© Accellera Systems Initiative 26

GapFreeVerification
• Achieving 100% functional coverage with SystemVerilog assertions (SVA)

• GapFreeVerification™ rigorous completeness definition
– A set of assertions P (formal testbench) is complete if every two designs C1, C2

satisfying the assertions in P are sequentially equivalent (for every, arbitrarily
long input trace, C1 and C2 produce the same output trace)

• Many hardware trust issues are very hard-to-find bugs
– GapFreeVerification makes no distinction between “malicious” and “naturally

occurring” bugs

Rigorous Mathematical Foundation

Efficient Methodology Industrial-Scale Technology

© Accellera Systems Initiative 27

GapFreeVerification Process
Specification

Verification Plan

Operational SVA

Property Checker Completeness
Checker

DUT

100% Functional Coverage
No hidden functions

PASS PASSFAIL/DEBUG

FAIL

DEBUG

DEBUG

DEBUG

© Accellera Systems Initiative 28

CORE VERIFICATION EXAMPLE

© Accellera Systems Initiative 29

Rocket Core Microarchitecture
• 64-bit RISC-V core with 39-bit virtual memory address space

– Includes extensions for integer multiplication/division, atomic read-modify-write,
single/double-precision floating-point, and compressed instructions

• 3 privilege levels
• 5-stage in-order pipeline with out-of-order termination for long-latency

instructions
• Branch prediction
• No stalling after decode

– Replay mechanism re-executes instructions on missed handshakes

© Accellera Systems Initiative 30

Rocket “Tile”

CoreFPU DCache

Frontend

XRFR Atomic

ICache

BranchPred

Scoreboards

CSRMD

31

Rocket Core Verification
• 5-stage pipeline, single-issue, in-order pipeline: IF, DEC, EXE, MEM, WB
• Out-of-order completion of long latency instructions (e.g., DIV)
• Branch prediction, instruction replay
• Verified and taped out multiple times

© Accellera Systems Initiative 32

Exhaustive Formal RISC-V Verification
• Leverage SVA formalization of ISA specifications

– Prove compliance with RISC-V ISA
– Achieve unbounded proofs
– Prove bug absence
– Detect security vulnerabilities
– Prove absence of malicious logic, including hidden instructions

• Runtime
– Each property returns a result in less than 10 minutes with helpers
– Each property returns a result in maximum 5 hours without helpers

• Proof results
– Each property is reachable and has an unbounded proof result

SVAs

RISC-V
Core

=

© Accellera Systems Initiative 33

Selection of Issues Found in Rocket Core
• Jump instructions store different return program counter (PC)

– The instruction fetch unit is responsible to prevent this issue
• DIV (divide) result not written to register file

– Issue confirmed by Rocket Core developers and fixed in RTL
• Illegal opcodes are replayed (generating memory accesses)

– Illegal opcodes not generating an exception
– Issue still under investigation

• Core contains undocumented non-standard instruction
– Opcode 32'h30500073 (CEASE instruction) not in specification
– Issue confirmed by Rocket Core developers and fixed in RTL (and spec)

• Return from debug mode is executable outside of debug mode
– Issue confirmed by Rocket Core developers and fixed in RTL

© Accellera Systems Initiative 34

Potential
Trust Issue

SOC VERIFICATION RESULTS

© Accellera Systems Initiative 35

Parallel Ultra Low Power (PULP) Platform
• Open-source project started by ETH Zürich and University of Bologna
• PULPino Platform

– Part of the PULP project
– Single-core SoC platform

• Built for two open-source cores
– RI5CY

• 32-bit,4-stage pipeline
– Zero-riscy

• 32-bit, 2-stage pipeline

• Rich set of peripherals

© Accellera Systems Initiative 36

Example of Issue Found in RI5CY Core

C.LW

LW

LW

LAF

IAF

IAF

IF

ID

EX

WB

Privilege moves to M mode
and IAF is served

PRV U mode M mode

Instruction fetch causing an IAF

LAF is handled where MPP of
MSTATUS CSR written with M

mode

LW

LW instruction causing LAF
in U mode

• IAF – Instruction access fault

• LAF – Load access fault

MPP of MSTATUS CSR written wrongly - (Github issue #132)
© Accellera Systems Initiative 37

Selection of Issues Found in PULPino
• Floating-point addition delivers an incorrect result (-0 + -0)

– Issue confirmed by PULPino developers and fixed in RTL

• PENABLE signal on APB interface violates address phase protocol
– Issue still under investigation

• Unique case statement violation results in unexpected instruction
decode scenario
– Issue still under investigation

• Note: verification covered entire SoC design
– AXI4, APB, and I²C protocol compliance
– Wide range of automated checks

© Accellera Systems Initiative 38

Potential
Security Issue

CONCLUSION

© Accellera Systems Initiative 39

Summary
• RISC-V cores and SoC can be verified exhaustively by formal means

– GapFreeVerification approach applies to design with clean specification and
“operational” structure
• Limited number of operations
• Each computing next architecture state and outputs based on current state and inputs
• Well suited to detect all undocumented instructions, side effects of instructions, and

instruction sequences

– Verification beyond ISA compliance: microarchitecture/implementation,
custom extensions, and absence of hardware Trojans

• Approach has been applied to multiple RISC-V designs
– Numerous bugs confirmed and fixed by original designers

© Accellera Systems Initiative 40

Thank You!

Any Questions?

© Accellera Systems Initiative 41

