Ilperas &Y Google Cloud =% metrics

RISC-V Compliance & Verification Techniques
Processor Cores and Custom Extensions

Simon Davidmann & Lee Moore - Imperas Software Ltd.
Richard Ho - Google, Inc.
Doug Letcher - Metrics Technology, Inc.
Kevin McDermott - Imperas Software Ltd.

DESIGN AND VERIFICATION"
acce/lera CONF¥CE AND EXHIEITN
SYSTEMS INITIATIVE

Introduction

e DV solution for RISC-V RTL cores

metrics
3 Goog|€ ClOUd RTL Simulation Metrics.log

Open Source RISC-V RTL
SystemVerilog & memory
UVM
R|SC-V compare
Instruction |mperaS ISS .

Stream (cpu+memory)

RISCV.c RISCV.elf
Generator

I[ﬁjm;@eras Imperas.log
* Collaboration between Google, Imperas and Metrics

* Industry adoption has started
* The basis for RISC-V core verification in:

lllllll
lllllllllll

CHIPS R eI
i:7 OPENHW @lowrisc 2000
AI.I.IANEE EELEL_E"‘,' PROVEN PROCESSOR IP DESIGN AND VERIFICATION™
accellera o DvVCON
© Accellera Systems Initiative 2

SYSTEMS INITIATIVE

Agenda

e RISC-V Intro and Status

* Industry requirements for ISA Compliance and Hardware Design
Verification

e RISC-V ISA Compliance

* Processor Hardware Design Verification

* RISC-V Instruction Stream Generation

* Hardware Design Verification Flow
 Demonstration walk-through

e Scaling verification using Cloud resources

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 3

IIIIIIIIIIIIIIIII

Agenda

e RISC-V Intro and Status

* Industry requirements for ISA Compliance and Hardware Design
Verification

e RISC-V ISA Compliance

* Processor Hardware Design Verification

* RISC-V Instruction Stream Generation
 Hardware Design Verification Flow
 Demonstration walk-through

e Scaling verification using Cloud resources

accellera - DV
© Accellera Systems Initiative 4 m

SYSTEMS INITIATIVE

What is RISC-V :
A

* An open-source hardware Instruction Set Architecture (ISA) RISC
e Started in 2010 at UC Berkeley
* Frozen base user spec released in 2014

* Fifth major RISC ISA design effort
out of Berkeley

e Ratification of RISC-V Base ISA and Privileged Specifications, June 2019

IIIIIIIIIIIIIIIIIIIIII "
accellera . DvVCON
© Accellera Systems Initiative 5

IIIIIIIIIIIIIIIII

RISC-V ushers
in new era of
silicon design

Designed for
Extensibility /
pecializatio

accellera -
© Accellera Systems Initiative

SYSTEMS INITIATIVE

Ecosystem Growth

Nd

RISC
Foundries |IP Block Portfolios
Compilers /
SW Dev Tools OS Support
EDA Tools / Design _
Simulators
Enablement
2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 7

SYSTEMS INITIATIVE

Technical priorities in 20 focus areas

N 4

Opcode Space Mgmt Standing Committee V Extension (Vector Ops) Task Group RISC-V°
Software Standing Committee Cryptographic Extension Task Group
Base ISA Ratification Task Group Debug Specification Task Group
Privileged ISA Spec Task Group Fast Interrupts Spec Task Group
UNIX-Class Platform Spec Task Group Memory Model Spec Task Group
Formal Specification Task Group Processor Trace Spec Task Group
Trusted Execution Env Spec Task Group Sv128 Specification Task Group
B Extension (Bit Manipulation) Task Group Compliance Task Group

J Extension (Dynam. Translated Lang) Task Group

+ Security Committee and P Extension (Packed-SIMD Inst) Task Group
proposed Safety Task Group

DESIGN AND VERIFICATION™

accellera DV LN

SYSTEMS INITIATIVE

RISC-V Bit Manipulation Instructions Working Group
https://github.com/riscv/riscv-bitmanip

* New, optional, not yet standardized, instruction extension : ‘
RISC-\V/°

* The bitmanip instructions extend the RISC-V instruction set to enable efficient
bit manipulation
* This includes operations like:
— counting bits, leading zeros, etc.
— bit extraction
— rotations, shifting and reversing

e Current status: specification under review —0.9.0

* Imperas has modeled / maintains and includes in its executable reference
model

* Available now: https://github.com/riscv/riscv-bitmanip
— Includes Imperas free riscvOVPsim simulator as reference

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 9

SYSTEMS INITIATIVE

https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip

RISC-V Vector Instructions Working Group
https://github.com/riscv/riscv-v-spec : /

* Optional, not yet standardized, instruction extension RISC

 Been developed by RISC-V founders for years
e Specifications available 0.7.1

e GitHub free download reference simulator
https://github.com/riscv/riscv-ovpsim

* Imperas has implemented latest draft Vector to riscvOVPsim free simulator
* Imperas is a reference implementation delivered to early users of Vector RTL

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 10

IIIIIIIIIIIIIIIII

https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-ovpsim

More Information:

e https://riscv.org

e www.imperas.com, www.QOVPworld.org

* https://github.com/riscv/riscv-compliance (RISC-V compliance suite & reference simulator)

* https://github.com/riscv/riscv-bitmanip (bitmanip spec & reference simulator)

e https://github.com/riscv/riscv-v-spec (vector spec)

e https://github.com/riscv/riscv-ovpsim (free riscvOVPsim reference simulator)

2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 11

SYSTEMS INITIATIVE

https://riscv.org/
http://www.imperas.com/
http://www.ovpworld.org/
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-ovpsim

RISC-V Cores - Commercial and Open Source

e Commercial IP Providers

— SiFive, Andes, Codasip, Syntacore,

* OpenHW Group
— PULP RI5CY, Ariane /ETH Zurich => Core-V

CHIPS Alliance
— SweRV /WD

* |lowRISC
— PULP Zero-riscy /ETH Zurich => |bex

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 12

SYSTEMS INITIATIVE

RISC-V: Flexibility within the ISA framework

Ecosystem support - Commercial and Open Source

e Commercial
— |AR, Lauterbach, Segger, ExpressLogic, Imperas, ...

e Key Open Source activities include
— GNU tools, gcc, gdb, ...
— LLVM, LLDSB, ...
— FreeRTOS, Zephyr, Linux, ...

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 13

SYSTEMS INITIATIVE

Verification Tools

e Simulation: Imperas (OVPsim), spike, gemu, ...

* Verification: Google (open source test generator), Valtrix (commercial
test generator), ...

2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 14

SYSTEMS INITIATIVE

Agenda

* Industry requirements for ISA Compliance and Hardware Design
Verification

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 15

SYSTEMS INITIATIVE

Compliance for RISC-V is Important

Q: What is meant by “compliance”?
A: The device works within the envelope of the agreed specifications

Q: Is there an easy process or path to follow to develop methodologies/tools for
compliance?

A: NO — all established ISAs are single company controlled and those companies work
extremely hard on proprietary solutions to ensure that all designs that go out their door
work correctly — so RISC-V has to pioneer compliance collectively

Q: What happens if the RISC-V industry builds devices that are not complying with
specifications?

A: Users cannot assume that tools like C compilers, operating systems, and application
software will be transferable across devices and work correctly

DESIGN AND VERIFICATION™

accellera DV LN

SYSTEMS INITIATIVE

Imperas key contributor to the RISC-V
Compliance Suite

 Compliance suite is ‘work in progress’

* Two components

— Test suites
e Each suite focuses on a feature set of the RISC-V envelope
* |Initial focus is instructions, user mode spec, e.g. rv32i, rv32im, rv32imc, rv64i, ...
* Awaiting RISC-V platform specifications to subset privilege spec, before starting privilege suites

— Framework
* Make, bash, and scripts
— Encapsulate compiler tools, linkers, simulators, and targets (Devices Under Test)
* Includes simulator: as example target, and to generate reference signatures

* Run: Select suite and target
— Runs each test, target produces signatures, compares to saved golden reference signature

e Available: www.github.com/riscv/riscv-compliance

2019

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 17

SYSTEMS INITIATIVE

http://www.github.com/riscv/riscv-compliance

Agenda

e RISC-V Intro and Status

* Industry requirements for ISA Compliance and Hardware Design
Verification

e RISC-V ISA Compliance

* Processor Hardware Design Verification

* RISC-V Instruction Stream Generation
 Hardware Design Verification Flow
 Demonstration walk-through

e Scaling verification using Cloud resources

accellera - DVLOIN
© Accellera Systems Initiative 18 m

SYSTEMS INITIATIVE

ISA Compliance (agenda)

* An Intro to testing RISC-V ISA standard Compliance
* Scope and approaches to ISA compliance

« Components needed
— Test Framework
— Tests
— Assembler/compiler
— Reference simulator to generate known good results
— Device Under Test with encapsulation to run it
e Overview of riscvOVPsim — compliance reference simulator

e RISC-V Foundation Compliance Suite walk—through and demo
— Github
— Flow, tests, select target, run, compare
— Adding a new target

Status and roadmap

2019
accellera . DvVCON
© Accellera Systems Initiative 19

SYSTEMS INITIATIVE

RISC-V Getting your chip Verified

e Compliance Tests
* DV Tests

* Formal tools

e Simulators

* Emulators

* FPGA’s

accellera - DvVCON
© Accellera Systems Initiative 20

IIIIIIIIIIIIIIIII

RISC-V Compliance

* What is Compliance
* What is NOT Compliance

— Where does Compliance end and DV begin

e Possible Methods

accellera - DvVCON
© Accellera Systems Initiative 21

SYSTEMS INITIATIVE

What is Compliance (in RISC-V)

e Participating in the Compliance WG, | have asked to get a definition -
this has proven difficult.

* There are deep discussions about how and what to test in the
compliance working group.

e Discussions frequently drift into — ‘oh-no that is DV, not compliance’, or
‘that is too deep/detailed for compliance testing’

* So what can we definitively say is compliance ?

DESIGN AND VERIFICATION™

accellera DV LN

IIIIIIIIIIIIIIIII

What is Compliance (in RISC-V)

* The device works within the envelope of the agreed specifications

 Compliance is adhering to the definition of the Instruction Set
Architecture specification and its intended semantic behavior.

* Proving the ISA behavior should be independent of any understanding
of the underlying micro-architectural implementation.

IIIIIIIIIIIIIIIIIIIIII "
3008//8[‘ d) o CErERENCE AND BXHISITION

IIIIIIIIIIIIIIIII

What is NOT Compliance (in RISC-V)

 We should not be concerned about compliance testing a given
implementation in order to prove that it may

SYSTEMS INITIATIVE

perform out of order execution

perform parallel execution (multiple dispatch)

execute multi/single cycle instruction(s)

have a shallow or deep pipeline

implement complex branch predictions

perform speculative execution based upon branch prediction
enable contentious mode

implement an instruction through trapped emulation
* Extension-M : providing Mult but no Div

disable contentious mode

NNNNNNNNNNNNNNNNNNNNNNN

Compliance Testing Definition

 Compliance is attempting to test all of the possible instruction
alternatives, without attempting to test all of the possible values either
provided to, or produced by an execution unit, or the data paths being
exercised.

* This causes many grey areas of overlaps between compliance and
conventional DV, or a simple question:

Where does Compliance end, and DV begin?

DESIGN AND VERIFICATION™

accellera DV LN

IIIIIIIIIIIIIIIII

Running the RISC-V compliance suite
Framework
v
eg, Ibex
riscv(e)%/,Psim

Execute

Compare

2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 26

SYSTEMS INITIATIVE

Compliance — Possible Methods

* For example, is it sufficient to exercise an add instruction by the
following code snippet

la x31, RESULT ADDR

11 x1, 2

11 x2, 3

add x3, x2, xl1 // x3 =5

sw x3, x31(0) // Save to SIGNATURE

RESULT ADDR:
.word 0xO0

accellera - DvVCON
© Accellera Systems Initiative 27

SYSTEMS INITIATIVE

Compliance — Possible Methods

* Or should specific bit patterns be exercised, for example a walking 1, or walking 0 in register values

la x29, RESULT ADDR
1i x30, O
for i1 in 0O to 31; do
11 x1, (0x1 << $il)
for 12 in 0 to 31; do
1i x2, (0x1 << $12)
add x3, x2, x1
add x31, x30, x29 // Calculate a new (sw) ptr
sw x3, x31(0)
addi x30, 4
done
done
RESULT ADDR:
.word 0x0

2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 28

SYSTEMS INITIATIVE

Compliance — Possible Methods

e Given that we are adding a walking '1' to a 0 value in the first inner loop
pass, then we know we are also creating a walking '1" in the result
register (for an add instruction).

e This is pretty simple given an 'add’ instruction, in the case of a more
complex instruction, then to ensure we have a walking '1' in the result,
we probably need some coverage metrics to ensure we meet our goals -
more on that later.

DESIGN AND VERIFICATION™

accellera DV LN

IIIIIIIIIIIIIIIII

Compliance — Possible Methods

* Question: is a walking '1' sufficient ? This will not test a result overflow,
underflow etc. so do we need to extend this simple test with some
corner case values ?

* for example define a list of special values
— list = {(-ve largest), (-ve mid), -1, 0, 1, (+ve mid),
(+ve largest) }

— list = {0x80000000, 0xCOO000000, OxFFFFFFFF, 0x00000000,
0x00000001, Ox3FFFFFFF, Ox/7/FFFFFFF}

e Now unroll the lists as the data values

DESIGN AND VERIFICATION™

accellera DV LN

SYSTEMS INITIATIVE

WARNING

e Serious Risk of Encroaching upon DV Territory

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 31

SYSTEMS INITIATIVE

Compliance — Possible Methods

e (Question: why not just go for the full range of values ?

la x29, RESULT ADDR
1i x30, O

for 11 in 0 to OxFFFFFFFF; do

11 x1, S$il

for 12 in 0 to OxXFFFFFFFF; do

1i x2, $i2
add x3, x2, x1
add x31, x30, x29
sw x3, x31(0)
addi x30, 4
done

done

RESULT ADDR:

.word 0x0

accellera -
© Accellera Systems Initiative

SYSTEMS INITIATIVE

32

2019

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

DANGER

 Deep inside DV Territory

EEEEEEEEEEEEEEEEEEEEEEE

(accellera

© Accellera Systems Initiative 33

Compliance — Possible Methods

 Question, do we also need to exercise each possible register
combination
— rDlist =x31, x30, x29, ...
— rS1list = x31, x30, x29, ...
— rS2list = x31, x30, x29, ...

* In which case, why not simply ...

accellera - DvVCON
© Accellera Systems Initiative 34

SYSTEMS INITIATIVE

//
la
1i
1i

Compliance — Possible Methods

Allocate 3 registers from pool for BASE, OFFSET,
x (ADDBASE) , RESULT ADDR

x (ADDOFF), 0

x (ADDPTR), 0

foreach rD in rDlist; do

foreach rS1 in rSllist; do

foreach rS2 in rS2list; do
for il in 0 to OXFFFFFFFF; do
1i x(rS1l), S$il
for 12 in 0 to OXFFFFFFFF; do
11 x(rS2), $i2
add x(rD), x(rS2), x(rSl)
add x (ADDPTR), x(ADDOFF), x(ADDBASE)
sw xX(rD), x(ADDPTR) (0)
addi x (ADDOFF), 4
done
done
done

done

done

SYSTEMS INITIATIVE

© Accellera Systems Initiative 35

PTR

2019

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

Game QOver

* You just generated too many permutations, and exceeded way out past
DV territory

e RD RS1 RS2 RS1lv RS2v
o Q¥¥G x 2¥*5 x 2*¥*5 x 2*¥*32 x 2*%*32

* |In this case it is a 32bit Architecture — change to 64bit, and the
permutations increase accordingly

* This is simply not feasible

e remember we will also need to adhere to the framework constraints
(what are these ?)

IIIIIIIIIIIIIIIIIIIIII "
3008//8[‘ d) o CErERENCE AND BXHIEITION

IIIIIIIIIIIIIIIII

Test framework Constraints

* As yet not clearly defined !

 How much available memory for Code/Data ?
e Effect:

— How to handle large displacements for Branch, Jump

— How to handle large immediate offsets in Load/Store
* Result:

— Tradeoff, Tradeoff, Tradeoff

IIIIIIIIIIIIIIIIIIIIII "
accellera . DvVCON
© Accellera Systems Initiative 37

SYSTEMS INITIATIVE

Compliance goals, For each Instruction

* Attempt to use every possible register as both an input and output
(where an output is produced)

* For all immediate values (offset, displacement, shift etc) Attempt to

show that all bits in the value have been exercised as all 1's, all 0's and
both a 1 and O, preferably in isolation

— eg for a 4 bit immediate value, the following possible values
- 0000, 0001, 0010, 0100, 1000,

- 1110, 1101, 1011, 0111, 1111
* je, avoiding simple 2-state toggle : 0000, 1111

IIIIIIIIIIIIIIIIIIIIII "
3008//8[‘ d) o CErERENCE AND BXHISITION

IIIIIIIIIIIIIIIII

Compliance goals, For each Instruction

* Attempt to provide input register values whereby corner cases are
exercised
— -MAX -MID, -MIN, -1, 0, 1, +MIN, +MID, +MAX (FP: +INF, -INF +0, -0)
— Walking '1', Walking '0' values
* Attempt to produce output register values whereby corner cases are
exercised
— -MAX -MID, -MIN, -1, 0, 1, +MIN, +MID, +MAX (FP: +INF, -INF +0, -0)
— Walking '1', Walking '0' values

IIIIIIIIIIIIIIIIIIIIII "
3008//8[‘ d) o CErERENCE AND BXHISITION

SYSTEMS INITIATIVE

Compliance OUT-OF-SCOPE, do not attempt

» Exercise Register/Value Cross coverage
— Register indices, eg rs1 rs2 rd - cross coverage => 2**5 x 2**5 x 2**5
— Register values, eg rs1=X rs2=Y - cross coverage => 2%*32 x 2*32

e Exercise all possible immediate values
— for a given 2**n immediate, do not exercise 2**n values
— (Unless) small set, eg shift/rotate amount 2**5

e Branch/Jump Targets
— TBD, related to the framework constraints (relative to PC is difficult to fully exploit)

* Load/Store offsets

— Where an address is R + |, the the R can be inversely adjusted in order to offset far load/store
— eg For a given address X, Rx=(X-4), Imm=4,

** note :

Register+lImmediate targets of Load/Store/Branch/Jump, the target address can be brought back into
range by rebasing the base pointer register so that an immediate is provided resulting in a valid target
address, given a potential out of range intermediate immediate/displacement.

2019

DESIGN AND VERIFICATION™

accellera DV LN

SYSTEMS INITIATIVE

Compliance Test in Memory Structure

* TEXT section
— Exception Handling Code (**contentious™**)
— Startup Code
— Test Code (Body of the test)
— Shutdown Code

* DATA section
— Debug/logging strings
— Signature memory (Pre-initialized, Post-extracted)

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 41

SYSTEMS INITIATIVE

Compliance Test Semantics

* Loader program to get memory in initial state

— RTL Simulator Swritemem()
— |ISS readelf()
— HW debug load

* Execute
— Method of finish/exit detection

e Extract Signature (results)
 Compare Signature to golden reference

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 42

IIIIIIIIIIIIIIIII

Compliance test Porting to target

 Compilation infrastructure
 Macro body definitions
* Linker script to describe the target memory structure

accellera - DvVCON
© Accellera Systems Initiative 43

IIIIIIIIIIIIIIIII

Compliance Code snippet RV32| - ADD

Addresses for test data and results
la x1, test_ Al _data
la x2,test_ Al res

Load testdata
lw x3, 0(x1)

Register initialization
li x4,0
li x5,1

Test : add <dst-reg>, <srcl-reg>, <src2-reg>
add x4, x3, x4
add x5, x3, x5

Store results to signature memory for extraction to signature file
sw X3, 0(x2)
sw x4, 4(x2)
sw x5, 8(x2)
2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 44

SYSTEMS INITIATIVE

Compliance Linker snippet (ibex)

OUTPUT_ARCH("riscv")
ENTRY(_start)

SECTIONS

{
. = 0x00000000;

text.trap : { *(.text.trap) }

.= 0x00000080;
text.init : { *(.text.init) }

. = ALIGN(0x1000);
text : { *(.text) }

. = ALIGN(0x1000);

.data : { *(.data) }
.data.string : { *(.data.string)}
bss : { *(.bss) }

_end =
}
2019
accellera - DvVCON
© Accellera Systems Initiative 45

SYSTEMS INITIATIVE

Running the RISC-V compliance suite

RV32I -
RV32M Suite

Compile

eg, Ibex

eqg,

riscvOVPsim

accellera -
© Accellera Systems Initiative

SYSTEMS INITIATIVE

Compare

2019

DESIGN AND VERIFICATION™

DV OIN

EEEEEEEEEEEEEEEEEEEEEEE

46

accellera

SYSTEMS INITIATIVE

Running the RISC-V compliance suite

260]

File Edit View Scrollback Bookmarks Settings Help

nce.ref/work/rv32i/I-ADD-01.elf"’
Info (OR_PH) Program Headers:

Info (OR_PH) Type Offset VirtAddr PhysAddr FileSiz MemSiz Flags Align
Info (OR_PD) LOAD 0x00001000 Ox80000000 Ox80000000 OxOO00003c4 0xO00003c4 R-E 1000
Info (OR_PD) LOAD 0x00002000 0x80001000 0x80001000 0x00001204 0x00001204 RW- 1000

Info (SIGNATURE_DUMP) Found Symbol 'begin_signature' in application at 0x80002030
Info (SIGNATURE_DUMP) Found Symbol ‘end_signature’' in application at 0x800020e0
Info (SIGNATURE_DUMP) Signature File enabled, file '/home/moore/WORK/riscv-dv.top/riscv-compliance.ref/work/
rv32i/I-ADD-01.signature.output’.

Info (SIGNATURE_DUMP) Extracting signature from 0x80002030 size 176 bytes

Info (SIGNATURE_DUMP) Symbol ‘'begin_signature' at 0x80002030

Info (SIGNATURE_DUMP) Symbol 'end_signature' at 0x800020e0

Info (SIGNATURE_DUMP) Intercept 'write_tohost'. Generate Signature file
ffffffff000000010000000000000000

0000000100000001800000007 fffffff

80000001800000000000000000000002

fffffffe00000000FfFffffffffffffff

TEffffff7fffffff7fIfffff7ffffffe

fffffffffffffffe7ffffffe80000000

7fffffff800000018000000080000000

0000abcd0000000100000000FfFFFfff

0000abd10000abd00000abcfOO00abce

00000000000000000000abd30000abd?2

36925814369258143692581400000000

Test PASSED

~

Info (OR_OF) Target 'riscvOVPsim/cpu' has object file read from '/home/moore/WORK/riscv-dv.top/riscv-complia ~

<>

I moore : bash = shell : moore

1. Start with ssh to remote shell in Metrics Cloud Platform
2. Load tests etc. from Git, e.g. compliance suite

3. Run as if in local shell

4. In this example RV32l compliance suite

© Accellera Systems Initiative 47

= e oo Ele]x)
File Edit View Scrollback Bookmarks Settings Help
Check I-CSRRSI-01 ... OK e
Check I-CSRRW-01 ... OK

Check I-CSRRWI-01 ... OK

Check I-DELAY_SLOTS-01 ... OK

Check I-EBREAK-01 ... OK

Check I-ECALL-01 ... OK

Check I-ENDIANESS-01 ... OK

Check I-FENCE.I-01 ... OK

Check I-I0 ... OK

Check I-JAL-01 ... OK

Check I-JALR-01 ... OK

Check I-1LB-01 ... OK

Check I-LBU-01 ... OK

Check I-LH-01 ... OK

Check I-LHU-01 ... OK

Check I-LUI-01 ... OK

Check I-LW-01 ... OK

Check I-MISALIGN_JMP-01 ... OK

Check I-MISALIGN_LDST-01 ... OK

Check I-NOP-01 ... OK

Check I-0R-01 ... OK

Check I-ORI-01 ... OK

Check I-RF_size-01 ... OK

Check I-RF_width-01 ... OK

Check I-RF_x0-01 ... OK

Check I-SB-01 ... OK

Check I-SH-01 ... OK

Check I-SLL-01 ... OK

Check I-SLLI-01 ... OK

Check I-SLT-01 ... OK

Check I-SLTI-01 ... OK

Check I-SLTIU-01 ... OK

Check I-SLTU-01 ... OK

Check I-SRA-01 ... OK

Check I-SRAI-01 ... OK

Check I-SRL-01 ... OK

Check I-SRLI-01 ... OK

Check I-SUB-01 ... OK

Check I-SW-01 ... OK

Check I-XO0R-01 ... OK

Check I-XORI-01 . 0K

0K: 55/55
moore@shell-1:~/WORK/riscv-dv.top/riscv-compliance.ref$ I s
moore : bash shell : moore

2019

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

o & 33 =]] i - ThuOct 24, 3:51PM Lee Moore

a moore s bash

File Edit View Scrollback Bookmarks Settings Help File Edit View Scrollback Bookmarks Settings Help

e T e = [moore@lnx33 ~1§ make hel"C .
[moore@Lnx33 ~1%
[moore@nx33 ~1% [
I
<4
v

(Bimeore bashi) B moore/p: bash |

Compliance Test Quality Measurement

* Observing and measuring the Coverage Points
— Instruction Type
— Target RD Register usage
— Source RS1, RS2 Register usage
— Immediate Value usage (buckets, data points)
— Register Value usage (buckets, data points)

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 49

SYSTEMS INITIATIVE

Compliance Test Quality Measurement

* Coverage Results for ADD

— Contact Lee Moore at moore@imperas.com

— For latest results and updates presented at DVCon Europe 2019 in Munich

accellera - DvVCON
© Accellera Systems Initiative 50

SYSTEMS INITIATIVE

mailto:moore@imperas.com?subject=Request%20for%20coverage%20results%20of%20RISC-V%20ADD%20from%20DVCon%20Europe%202019

Compliance Test Quality Measurement

* Proving the Coverage measurements, by propagation of an intended

result

Coverage observes the following
addi x2, x1=0x1, Ox1 // -> x2=0x2
This implies the following points are met for Instruction addi

Target
Target
sSource

Source

Register [xZ2]
Register Value
Register [x1]

Register Value

Immediate Value

SYSTEMS INITIATIVE

© Accellera Systems Initiative

[1]

51

Covered
Covered
Covered
Covered

Covered

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Compliance Test Quality Measurement

* If our code snippet looks like this, we are gradually improving our coverage -
right ?

la x31, ADDR SIGNATURE

addl
addl
addl
addl
addl
addl

SW X2,

IIIIIIIIIIIIIIIII

X2,
X2,
X2,
X2,
X2,

X2,

x1=0x1, 0xO0
x1=0x1, 0Ox1
x1=0x1, O0OxZ
x1=0x1, 0x4
x1=0x1, 0x8
x1=0x1, OxF

x31 (0)

© Accellera Systems Initiative

//
//
//
//
//
//
//

-> x2=0x1
-> x2=0x2
-> x2=0x3
-> x2=0x5
-> x2=0x9
-> x2=0x10
Store Signature

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

52

Compliance Test Quality Measurement

* Coverage is monitoring the Execution unit, but ignoring the Load/Store Unit,

so in fact

la x31, ADDR SIGNATURE

addl
addl
addl
addl
addl
addl

SW X2,

SYSTEMS INITIATIVE

X2,
X2,
X2,
X2,
X2,

X2,

x1=0x1, 0xO0
x1=0x1, 0Ox1
x1=0x1, O0OxZ
x1=0x1, 0x4
x1=0x1, 0x8
x1=0x1, OxF

x31 (0)

© Accellera Systems Initiative

//
//
//
//
//
//
//

x2=0x1
xX2=0x2
x2=0x3
x2=0x5
x2=0x9
x2=0x10

53

DISCARDED
DISCARDED
DISCARDED
DISCARDED
DISCARDED
Saved

by this Store

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Compliance Test Quality Measurement

* Coverage is monitoring the execution, but is unaware of the propagation
of the effect, and the observability of the program flow to the persistent
storage in the SIGNATURE section

* How can we prove that a reportedly covered item, is observed within
the SIGNATURE section ?

1011100011 . 3{) .
0001110111 ‘

SignatureDB

Coverage

Point
1011100011 Trash

accellera - DvVCON
© Accellera Systems Initiative 54

IIIIIIIIIIIIIIIII

Mutation Testing by Fault Injection

* Fault Injection to provide Mutation Testing

* For a given reported coverage point, mutate the instruction to have
provided the contribution and test the propagation of that mutation to
an observable entry in the SIGNATURE section

* Ref: https://www.geeksforgeeks.org/software-testing-mutation-testing/

DESIGN AND VERIFICATION™

accellera DV LN

IIIIIIIIIIIIIIIII

Mutation Testing by Fault Injection

* For the given code snippet previously, mutate the operation to a legal alternate
la x31, ADDR SIGNATURE

// MUTATE ON :

<original-instruction> addix2, x1=0x1,0x0

<mutated-instruction> add x0, x0, xO0

// MUTATE OFF

addi x2, x1=0x1, 0x1 // -> x2=0x2 - DISCARDED
addi x2, x1=0x1, 0x2 // -> x2=0x3 - DISCARDED
addi x2, x1=0x1, 0x4 // -> x2=0x5 - DISCARDED
addi x2, x1=0x1, 0x8 // -> x2=0x9 - DISCARDED
addi x2, x1=0x1, OxF // -> x2=0x10 - Saved

sw x2, x31(0) // - by this Store

DESIGN AND VERIFICATION™

accellera DV LN

SYSTEMS INITIATIVE

Mutation Testing by Fault Injection

 The mutated instruction could simply be
— replace by a NOP : add, x0, x0, xO

* Or, override parts of the decode, for example the decode for an addi is as
follows
— ADDI : 12'b(Imm), 5'b(rs1), 3'b(000), 5'b(rd), 7'b(0010011)
— The fixed parts of the decode are field [3](000) and field [5](0010011)
— All other bits affect the immediate values and register indices for source and destination
— In effect the decode appears thus
= ittt ettt e eee. 000 L..o.. 0001 0011

— all bits indicated as '.' could be mutated, in order to observe whether this incurs a
propagated effect to our SIGNATURE section.

IIIIIIIIIIIIIIIIIIIIII N
3008//8[‘ d) o CErERENCE AND BXHISITION

SYSTEMS INITIATIVE

Mutation Testing by Fault Injection

 We need to be careful to ensure that introducing the mutated instructions does not cause a
'fault model explosion’, in other words for the ADDI case above there are 22 bits which can
be considered for mutation, but it would not be prudent to generate 2**22 fault models

* A pragmatic approach is to create the following fault models

— NOP Replacement
— Bit inversion
* This would produce a total of 23 fault models for this one instruction - bearing in mind that
the same approach is taken for every possible ADDI instruction
* the encoding for
— addi x2, x1=0x1, Ox1

* would thus be
— | imml?2 | rsl |dec| rd | dec
e e e e e e e e e eeee 000 0010011
— 000000000001 00001 OOO 00010 0OO10011

accellera DV LN

SYSTEMS INITIATIVE

Mutation Testing by Fault Injection

* Potential Fault Models would be

° | imml?2 | rsl |dec| rd | dec

e 100000000001 00001 OO0 00010 OO1O0011L
e (010000000001 00001 0OOO 00010 OO1O001ZL
e (001000000001 00001 0OOO 00010 OO1O001ZL
e (000100000001 00001 0OOO 00010 OO1O0O01Z

e etcC

DESIGN AND VERIFICATION™
accellera - DvVCON
© Accellera Systems Initiative 59

IIIIIIIIIIIIIIIII

Mutation Testing by Fault Injection

* These fault models are inserted automatically by the Imperas Fault Simulator
at runtime — without changing the elf/binary

* Having run these fault models on an early version of the compliance suite,
vielded some very interesting results, whereby the test engineer was utterly
convinced that he had covered a particular scenario, but actually injecting the

fault and following the propagation of the program flow - proved the result
had been in someway masked.

 We found numerous reasons for this, including calculated values not stored in
the SIGNATURE region, values in the SIGNATURE overwritten, or default
initialization SIGNATURE values, having the same value as calculated values.

 initialized at -1 (OXFFFFFFFF) and the value -1 (OXFFFFFFFF) stored - hence no
observable difference.

IIIIIIIIIIIIIIIIIIIIII "
3008//8[‘ d) o CErERENCE AND BXHIEITION

IIIIIIIIIIIIIIIII

Mutation Testing by Fault Injection

* Running the Imperas Mutating Fault Simulator on the existing
Compliance suite to grade the coverage

* Automating the Fault injection to assert the coverage metrics

* Imperas Simulator
— injected x faults in y simulations and executed in n seconds (Schrodinger's Cat)

* <Show Running>

DESIGN AND VERIFICATION™

accellera DV LN

IIIIIIIIIIIIIIIII

= . ThuOct 24, 5:23PM Lee Moore

— moore : rlogin
File Edit View Scrollback Bookmarks Settings Help

File Edit View Scrollback Bookmarks Settings Help

top - 17:23:49 up 4 days, 11:32, 10 users, 1load average: 9.42, §.58, 9.73
Tasks: 293 total, 1 running, 227 sleeping, @ stopped, @ zombie

%Cpu(s): 0.2 us, 0.8 sy, 0.6 ni, 99.8 id, 0.0 wa, 0.8 hi, 0.8 si, 6.8 st
KiB Mem : 16293692 total, 3773168 free, 2346192 used, 10174332 buff/cache
KiB Swap: 16643668 total, 16639472 free, 3596 used. 13392468 avail Mem

OMMAN
17660 moore
789 moore

oo

dbus-launch
dbus-daemon

bash
bash
bash
bash
bash
bash
git-credential-

[=R-NoloNoloNo i No ol o]

8620 moore
7233 moore
32573 moore
18939 moore
17874 moore

commOENooo®wolh
SEER25NS S8R

coocoooooeoOo oo o[-
cooooooeoQ

coocoococoeco oo ol
VWUV WWBWnmnnmn
CO0O0OO0ONOOOO O
coooooOoROoROO0
8858338%88883

CO00O0OBOOD O

(M moore:itest |lmeoieiiogitiiiiiil @ moore :rogin |

Agenda

e RISC-V Intro and Status

* Industry requirements for ISA Compliance and Hardware Design
Verification

* RISC-V ISA Compliance

* Processor Hardware Design Verification

* RISC-V Instruction Stream Generation

* Hardware Design Verification Flow
 Demonstration walk-through

e Scaling verification using Cloud resources

accellera - DVLOIN
© Accellera Systems Initiative 63 m

SYSTEMS INITIATIVE

Processor Hardware Design Verification (agenda)

* Objective of HW DV for processors

— Prove beyond (reasonable) doubt design meets objectives

Available technologies and tools (Dynamic)
— Reference model
— Compliance suites, tools, tests
— Directed test suites
— Industry benchmarks and Operating Systems

— Random Instruction Generators

Formal models, properties libraries, model checkers, equivalence checkers
ISS, RTL simulators, FPGAs, Emulators, ...

DESIGN AND VERIFICATION™

accellera DV LN

SYSTEMS INITIATIVE

Processor Hardware Design Verification

Dynamic Testing approaches

* Prove beyond (reasonable) doubt design meets objectives, using

— Directed tests

e Architectural tests
— Instruction correctness
* Micro-architectural
— Pipeline correctness, hazards, speculative execution, branch prediction, multiple issue

* Compliance

* Stress

* Industry Benchmark, eg Coremark, Dhrystones, Linpack
— Pseudo Random — Instruction Stream Generators

* Architectural tests

e Micro-architectural

* Constraint solving & Coverage metrics

2019

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 65

SYSTEMS INITIATIVE

Processor Hardware Design Verification

Targets for execution
* Instruction Set Simulation (ISS)

e Cycle Accurate Simulation (CAS)

* Virtual Prototype/Platform, System Emulator
e RTL Simulation

* FPGA

 Emulator (FPGA Prototyping)

* Accelerator (Hardware RTL Simulator)
 Combination of Above, eg ISS + Accelerator

* Physical Device

DESIGN AND VERIFICATION™

accellera DV LN

IIIIIIIIIIIIIIIII

Agenda

e RISC-V Intro and Status

* Industry requirements for ISA Compliance and Hardware Design
Verification

* RISC-V ISA Compliance

* Processor Hardware Design Verification

* RISC-V Instruction Stream Generation

* Hardware Design Verification Flow
 Demonstration walk-through

e Scaling verification using Cloud resources

accellera - DVLOIN
© Accellera Systems Initiative 67 m

SYSTEMS INITIATIVE

RISC-V Instruction Stream Generation (agenda)

Y Google Cloud

* Motivation

* Existing open source solutions
* Missing pieces

* Google Open Source RISC-V ISG
* Key features

e Generator internal flow

DESIGN AND VERIFICATION™
accellera - DvVCON
© Accellera Systems Initiative 68

IIIIIIIIIIIIIIIII

RISC-V Instruction Stream Generation
Y Google Cloud

* Design Verification is the Foundation of Reuse

* Quality is key to reuse

e Stress testing needed to ensure IP will operate correctly
when integrated into new design

* DV accounts for >50% of project time for complex chips

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 69

IIIIIIIIIIIIIIIII

Open source RISC-V processor verification

solutions

I Verification is one of
the key challenges of
modern processor

¥ development.

£Y Google Cloud

accellera -
© Accellera Systems Initiative

SYSTEMS INITIATIVE

riscv-tests

Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It's a very good starting
point to find basic implementation issues.

riscv-torture

Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

CHIPS
ALLIANGE

2019

DESIGN AND VERIFICATION™

DV OIN

EEEEEEEEEEEEEEEEEEEEEEE

70

Many missing pieces

Complex branch structure

MMU stress testing

Exception scenarios

Compressed instruction support

Full privileged mode operation verification
Coverage model

Motivation

Build a high quality open DV infrastructure that can be adopted and enhanced by DV
engineers to improve the verification quality of RISC-V processors.

CHIPS
D Goog|€ Cloud AI.I.IANI:E

2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 71

SYSTEMS INITIATIVE

Google RISC-V Instruction Stream Generation

Y Google Cloud
* High quality SystemVerilog UVM DV

Open Source

infrastructure SystemVerilog
UVM
* Open source RISC-V
. Instruction
* Drives a RISC-V core through corner Stream

cases and pushes it to the limit Generator

https://github.com/google/riscv-dv

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 72

SYSTEMS INITIATIVE

Key Features

O1 02 03 04

Randomness Architecture Aware Performance Extendability
Randomize everything: The generated program The instruction generator Easy to add new instruction
instruction, ordering, should be able to hit the should be scalable to sequences, custom
program structure, corner cases of the generate a large program in instruction extension,
privileged mode setting, processor architectural a short period of time. custom CSR etc.
exceptions.. features.

LHIPS
D Goog|e Cloud ALLIANCE

2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 73

SYSTEMS INITIATIVE

Randomness

Instruction level randomization
Cover all possible operands and immediate values of each instruction
Example: Arithmetic overflow, divide by zero, long branch, exceptions etc. o ‘

Sequence level randomization &
Maximize the possibility of instruction orders and dependencies

N N

SHIFT — DIV — Branch Load Fence Store

Program level randomization
Random privileged mode setting, page table organization, program calls

LHIPS
D Goog|e Cloud ALLIANCE

2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 74

SYSTEMS INITIATIVE

Instruction randomization

9 Easy part Tricky part
Arithmetic: ADD, SUB, LUI, MUL, DIV ... | Branch / jump instruction
Shift: SLLI, SRL, SRLI, SRAI ... Need a valid branch/jump target
Logical: XOR, OR, AND, ANDI ... Avoid infinite loop
Compare: SLTI, SLT, SLTU ...
Others: FENCE, SFENCE, EBREAK ... | Load/store/jump instruction
Need an additional instruction to setup the base address
Randomize each instruction individually with The calculated address should be a valid location
bias towards corner cases.
(overflow, underflow, compressed CSR instruction
instruction) Avoid randomly changing the privileged state
Result checking could be a challenge as the privileged
CSR behavior could be implementation-specific.
£Y Google Cloud I[-:\II:III.IPI-FNEE
|

2019
accellera - DvVCON
© Accellera Systems Initiative 75

SYSTEMS INITIATIVE

Architecture Aware

01 Branch prediction

™

N

Address Prediction
TAG bits

Instruction BHT

£Y Google Cloud

SYSTEMS INITIATIVE

© Accellera Systems Initiative

Jump

Jump

Trap

02 MMU (TLB, Cache etc)

Code segment 0

Code segment n

Code segment k

Data page 0

Data page 1

Data page 2

Data page 3

Data page 4

Data page 5

Data page 6

Yvy

Trap handler

Load
Store

Data page 7
Data page 8
Data page 9

CHIPS
ALLIANCE

2019

DESIGN AND VERIFICATION™

DV OIN

EEEEEEEEEEEEEEEEEEEEEEE

Architecture Aware

03 Issue, execute, commit

RAW _
R3 <-R4 +R5
R1 <- R3 +R8

WAR

R2<-R4+R5 - |Issue

R4 <- R3-R8
\WAW

R2 <- R4 + R5
R2<-R3+R8 -

£Y Google Cloud

accellera -
© Accellera Systems Initiative

SYSTEMS INITIATIVE

0 Exceptions
Execution
unit \
Execution .
unit Commit
Execution ‘
unit

77

It's not just a random stream of
instructions, it should be
designed to effectively verify
the architectural features of
the processor.

CHIPS
ALLIANCE

DESIGN AND VERIFICATION™

EEEEEEEEEEEEEEEEEEEEEEE

Generate program header Generate data/stack section

Privileged mode setup Generate page tables

Generator
flow

Page table randomization Generate intr/trap handler

Initialization routine

Test completion section

Generate main/sub programs Call stack randomization

©
I<I<|<I<I<I
)
I>I>|>I>I>I

Branch target assignment) Apply directed instructions

CHIPS
D Google Cloud ALLIANCE

2019

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

accellera

A © Accellera Systems Initiative 78
SYSTEMS INITIATIVE

Complete feature list

| Supported ISA
RV32IMC, RVe4IMC

| Supported privileged mode
User mode, supervisor mode, machine mode

Supported spec version
User level spec 2.20, privileged mode spec 1.10

| Supported RTL simulator
VCS, Incisive, Metrics

£Y Google Cloud

accellera -
© Accellera Systems Initiative 79

SYSTEMS INITIATIVE

Basic arithmetic instruction test
Random instruction test
MMU stress test
HW/SW interrupt test

Page table exception test

Branch/jump instruction stress test

Interrupt/trap delegation test

Privileged CSR test

CHIPS
ALLIANCE

2019

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

Agenda

e RISC-V Intro and Status

* |Industry requirements for ISA Compliance and Hardware Design
Verification

e RISC-V ISA Compliance

* Processor Hardware Design Verification

* RISC-V Instruction Stream Generation
 Hardware Design Verification Flow
 Demonstration walk-through

e Scaling verification using Cloud resources

accellera - DVLOIN
© Accellera Systems Initiative 80 m

SYSTEMS INITIATIVE

Hardware Design Verification Flow
(agenda)

* Flow
* Components
— Google: open source riscv-dv instruction stream generator

— Imperas: model and simulation golden reference of RISC-V CPU
— Metrics : SystemVerilog design + UVM simulator for RTL

* Using

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 81

SYSTEMS INITIATIVE

Hardware Design Verification Flow

-= meftrics
3 Google Cloud RTL Simulation Metrics.log

Open Source
SystemVerilog
UVM
RISC-V

Instruction Imperas ISS
Stream (cpu+memory)

im[@eras Imperas.log

v

compare

|

RISCV.S RISCV.elf

Generator

* Google: open source riscv-dv instruction stream generator
* Metrics : SystemVerilog design + UVM simulator for RTL

* Imperas: model and simulation golden reference of RISC-V CPU 20}2‘

accellera . DvVCON
© Accellera Systems Initiative 82

SYSTEMS INITIATIVE

Google SystemVerilog UVM
Instruction Stream Generator

Keys features:

D Google Cloud — Randomness

Open Source * Randomize everything: instruction, ordering, program
SystemVerilog structure, privileged mode setting, exceptions..

Uvm — Architecture-aware

RISC-V
Instruction

* Generated program able to hit the corner cases of the

processor architectural features
Stream

Generator — Performance

* Instruction generator is scalable to generate a large program
in a short period of time
https://github.com/google/riscv-dv Extendi biIity

* Easy to add new instruction sequences, custom instruction

extension, custom CSR etc.
2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 83

SYSTEMS INITIATIVE

https://github.com/google/riscv-dv

Imperas RISC-V Instruction Set Simulator and full RISC-V
Specification Envelope Model

* Industrial quality model and simulator of RISC-V
I[ﬁﬁ][@eras processors for use in compliance, verification and
test development

 Complete, fully functional, configurable simulator

— All 32bit and 64bit features of ratified User and Privilege
RISC-V specs

* \Vector extension, version 0.7.1
e Bit Manipulation extension, version 0.9.0

— Model source included under Apache 2.0 open source

http://www.imperas.com/riscv license
hitps://github.com/riscv/riscv-ovpsim * Used as golden reference in RISC-V Compliance Suite

and Bit Manipulation group

* Extendibility: easy for user to extend with new
instructions and functionality

accellera . DvVCON
© Accellera Systems Initiative 84

SYSTEMS INITIATIVE

RISC-V
Reference

Model &
Simulator

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

Metrics (1): SystemVerilog Simulator

- metrics

SystemVerilog
UvMm
Testbench

RTL
RISC-V CPU

SystemVerilog
UvM
Coverage

https://metrics.ca/

IIIIIIIIIIIIIIIII

© Accellera Systems Initiative

e Complete SystemVerilog IEEE 1800-

2012 compliant simulator including
UVM

Includes all the standard features of a
modern SystemVerilog simulator
including debug, APIs, language and
testbench support

Simulates the testbench, the RTL

models |
85

EEEEEEEEEEEEEEEEEEEEEEE

https://metrics.ca/

Metrics (2): Full Cloud Platform

* True cloud platform for ASIC and complex FPGA design verification
On-demand simulation resources

* Modern continuous integration workflow

* Easy access to simulation results from any web browser

| | -
=== meftr I CS
3 Google Cloud RTL Simulatio Metrics.lo g
Open Source RISC-V RTL
SystemVerilog & memory
UVM

RISC-V compare
Instruction Imperas |SS
Stream (pu+memo

Generator |m[r@e|"as e Ig

=> So the full verification can be done in the Google Cloud using the
Metrics Cloud Platform, the Metrics simulator, the Imperas RISC-V 200

a@e 2ierence simulator and the Google Instruction Stream Generator g ey

EEEEEEEEEEEEEEEEEEEEEEE

© Accellera Systems Initiative 86
SYSTEMS INITIATIVE

Agenda

e RISC-V Intro and Status

* Industry requirements for ISA Compliance and Hardware Design
Verification

e RISC-V ISA Compliance

* Processor Hardware Design Verification

* RISC-V Instruction Stream Generation
 Hardware Design Verification Flow
 Demonstration walk-through

e Scaling verification using Cloud resources

accellera - DVLOIN
© Accellera Systems Initiative 87 m

SYSTEMS INITIATIVE

Demonstration

e Uses RISC-V Core: lowRISC/ibex RTL (RV32IMC)
— Originated from zero-RI5CY ETH Zurich PULP

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 88

SYSTEMS INITIATIVE

DV Flow is controlled by Makefile and bash scripts
and includes python scripts

1 MINGW3Z:~ _ O x /v » Compile up SystemVeriIog UVM test
simond@shell-1:~/git$ cat emaill.txt generator and run it
Fe g « can easily set how many tests to create
source setup.env | each run
e e . Creates .S files that are then converted

3en to.o

iss_sim

complie ptl ln dsin * < Run the Imperas ISS to generate reference
<e rtl sim
e post_compare results

« Compile the SystemVerilog RTL of ibex core
and testbench

simond@shell-1:~/git$

« Run RTL simulation & record RTL results

accellera DV LN

SYSTEMS INITIATIVE

Demo: Configuring flow

* Test generator settings

— Device Under Test / Processor (ISA, xlen, extensions, modes, mmu, ...)
* Show settings .sv file

— Complexity & quantity of tests
* Show Command line options, testlist.yaml

» Reference ISS riscvOVPsim config

— Show yaml file for Ibex and config.ic file

DESIGN AND VERIFICATION™

accellera . DvVCON
© Accellera Systems Initiative 90

SYSTEMS INITIATIVE

Demo show test gen, iss, rtl, compare run

* Show running under Metrics cloud connection
— make gen
— make gcc_compile
— make iss_sim

— make iss_cmp

2019

SIGN AND VERIFICATION™

accellera - DV
© Accellera Systems Initiative 91

SYSTEMS INITIATIVE

* Example of detailed fail:

accellera

SYSTEMS INITIATIVE

And results are simple pass, or detailed fail

* Shows mis-matching
instructions

e Configured here to show 5
* Full traces etc are kept for

review

e Can dump full VCD for
detailed waveform
analysis

B MINGW32:~ = [m]

simond@shell-1:~/git/ibex/dv/uvm$
simond@shell- git/ibex/dv/uvm$
simond@shell-1:~/git/ibex/dv/uvm$
)Ishell-1:~/git/ibex/dv/uvm$
simond@shell-1:~/git/ibex/dv/uvm$ make post_compare
./compare "/home/simond/git/ibex/dv/uvm/out”
compare simulation result under /home/simond/git/ibex/dv/uvm/out
Test: /home/simond/git/ibex/dv/uvm/out/instr_gen/asm_tests/riscv_instr_base_test.0.S
Processing ovpsim log : /home/simond/git/ibex/dv/uvm/out/instr_gen/riscv_ovpsim/riscv_instr_base_test.0.S5.0.log
Processed instruction count : 198
Processing ibex log : /home/simond/git/ibex/dv/uvm/out/rtl_sim/riscv_instr_base_test.@/trace_core_00_0.log
Processed instruction count : 6775
Mismatch[1]:
[43] ibex : lui x1, exfc2e4000 -> ra(@xfc2e4000) addr:0x80000088
[43] ovpsim : auipc sp,0xb -> sp(©x8008b13c) addr:0x000000008000013C

addi x1, x1, 631 -> ra(exfc2e4277) addr:0x8000008c
[44] ovpsim : addi Sp,sp,-800 -> sp(©x800Baelc) addr:0x0000000080000140
Mismatch[3]:
[45] ibex :
[45] ovpsim : mul
Mismatch[4]:
[46] ibex : lui x9, ©x81783000 -> s1(0x81783000) addr:0x800000a8
[46] ovpsim : auipc 52,0x0 -> s2(6x8000014c) addr:0x000000008000014C
Mismatch[5]:
[47] ibex : addi x9, x9, 1369 -> s1(©x81783559) addr:0x8000800ac
[47] ovpsim : addi 52,52,986 -> s2(6x80000526) addr:0x0000000080000150
Compare (ibex vs ovpsim) result[FAILED]: 43 matched, 64 mismatch
0 tests PASSED, 1 tests FAILED
simond@shell-1:~/git/ibex/dv/uvm$ _

addi x4, x8, © -> tp(0x00000000) addr:Ox30000096
a3,a2,s8 -> a3(0x00000000) addr:Ox000000P030000148

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

2J19

And... what about functional coverage you may

ask...
* Sneak preview...

* New Open Source SystemVerilog UVM Coverage component added to
flow

— Adds coverage groups / bins in UVM testbench
— Configure coverpoints based on DUT, eg RV32IMC, RV32IMAFDC, ...

* Post processes a test’s execution trace
* Collates coverage from many runs

e Uses SystemVerilog UVM simulator’s coverage analysis to report, review
— Works with Cadence, Mentor, Synopsys, Metrics

IIIIIIIIIIIIIIIIIIIIII "
3008//8[‘ d) o CErERENCE AND BXHIITION

SYSTEMS INITIATIVE

Mentor Questa Coverage views

L)
" Covergroups

. " Covemgougps ——— " . '
¥|Name |Class Type |Coverage Goal |% of Goal |Status Included Merge_instances |Get_inst_coverage ¥|Name [ClassType _|Coverage _[Goal _[% of Goal [Status Inchuded _[Merge instances _Get inst cove
=) iniscv_instr_pkgiriscv_instr_cover_group 2

=) fiscv_inst_pkghiscy_instr_cover_group 24 =) o TYPEadd_cg fiscv_instr_co... 100.00% 100 100.00% I v auto(1)
+) 4 TYPEadd_cg riscv_instr_co... 100.00% 100 100.00% NG v auto(1) 4 CVPadd_cg:cp_rsl fiscv_instr_co... 100.00% 100 100.00% I v

|+ TYPEsub_cg fiscv_instr_co... 10000% 100 100.00% [N v auto(1) + 4 CVPadd_cg:cp_rs2 fiscv_inst_co.. 10000% 100 100.00% [v
=+ TYPE addi_cg riscv_instr_co... 99.55% 100 99.55% [v auto(1) o CVPadd_ d risev_instr_co... 100.00% 100 100.00% I
- TYPElui_cg riscv_instr_co... 0 100 v auto(1) '+ 2§ CVP add_cg:cp_rs1_sign riscv_instr_co... 100.00% 100 100.00% [v
4 4 TYPE auipc_cg fiscv_instr_co... (100 v auto(1) | + 4 CVP add_cg:cp_rs2_sign fiscv_instr_co... 100.00% 100 100.00% NN v
+ 4 TYPEsra_cg riscv_instr_co... 100.00% 100 100.00% NG v auto(1) k =4 CVP add_cqg:cp_rd_sign fiscv_instr_co... 100.00% 100 100.00% G v
-4 TYPEsll_cg riscv_instr_co... 100.00% 100 100.00% NG v auto(1) 18] bin auto[POSITIVE] 7176 1 100.00% NG
+ o TYPEsr_cg riscv_instr_co... 100.00% 100 100.00% NG v auto(1) B] bin auto|NEGATIVE] 5158 1 100.00% [v
+ 4 TYPE srai_cg riscv_instr_co... 0.00% 100 DOLEEY e— OV auto(1) =4 CVP add_cg::cp_gpr_harzard riscv_instr_co... 100.00% 100 100.00% G v
-4 TYPEslii_cg fiscv_instr_co... 100.00% 100 100.00% NG v auto(1) B] bin auto[NO_HAZARD] 10832 1 100.00% I v
=+ TYPE srli_cg riscv_instr_co... 100.00% 100 100.00% G v auto(1) 8] bin auto[RAW_HAZARD] 728 1 100.00% I v*
+ o TWExor cg sienu_incte_nn 100 ANas 100 10N N EEE— actn1y B] bin auto[W/

3 : mm_;g . * Covergroups 3 ‘%":;‘s:u:m 7| Name |ClassType |Coverage |Goal |% ofGoal |Status Included Merge_instance
B and_cg A

5 ¥| Name \Class Type |Coverage Goal |9 of Goal]Slatus Included 8] bin <auto[P = & friscv_instr_pkgriscv_instr_cover_group 24

& TPExor_cg . . . Bl bin<autoN = & TYPEadd_cg riscv_instr_co... 100.00% 100 100.00% NG al
@ : mo::acqc =) Miscv_instr_pkgiriscv_instr_cover_group 24 8] bin <auto[Pt 4 8 CVPadd_cgicp_rsl fiscv_instr_co... 10000% 100 100.00% I v
:‘f o m:" ;5 9 =) TYPE add_cg riscv_instr_co... 100.00% 100 100.00% I 8] bin <autolN 24 CVP add_cg:cp_rs2 fiscy_instr_co... 100.00% 100 100.00% I v
<2 TYPEsi_cg 4 CVPadd_cg:cp_rsl riscv_instr_co... 100.00% 100 100.00% [B)bin<autofPt - o CVPadd_cg:cp_rd fscv_insy_co.. 10000% 100 100.00% NN v
- - — - 8] bin <auto[N 18] bin auto[ZERO)] 329 1 100.00% I v
3 : ﬂ":gzig +-4 CVP add_cg:cp_rs2 fiscv_instr_co... 100.00% 100 100.00% NG v 8] bin <autofPt i8] bin autoRA] s 1 10000% IS v
': o mm:‘g + 4 CVPadd_cg:cp_rd riscv_instr_co... 100.00% 100 100.00% NG - 'm%' :: :’;um[N 8] bin autojSP] e e ———
+-4 TYPEbne_cg + 4 CVP add_cg:cp_rs1_sign riscv_instr_co... 100.00% 100 100.00% I 4 o TYPEaddi_cg B] bin au'DlG:l :07 1 10?‘ Oczfc 4
o ey [W01) M CVP add_cgiicp_rs2_sign fiscv_instr_co.. 10000% 100 100.00%] SEmun el o
+ f TYPEDIn og -4 CVP add_cg:cp_rd_sign fiscv_instr_co... 100.00% 100 100.00% NG v +) o TPEsa cg B) bin auto[T1] 389 1 100.00% I v
24 TYPEbgeu_cg +- 4 CVPadd_cg:cp_gpr_harzard riscv_instr_co... 100.00% 100 100.00% NG 4} TYPESII_cg B] bin auto[T2] 423 1 100.00% I v
o : "":::—g 4 o CROSS add_cg:cp_sign_cross fiscv_instr_co... 100.00% 100 100.00% EEEG—_—— g ia gl g ::“ :::‘;{:‘3 :g; i igg gg: = 5
£ TYPEIw_cg +)- 4 TYPEsub_cg fiscv_instr_co... 100.00% 100 100.00% [EEEG_— 5 auto(!) bin autoA0] 483 1 100.00% I
o e e -4 TYPE addi_cg riscv_instr_co... 99.55% 100 99.55% (Il auto(! B bin auto[Al] 352 1 100.00% IS v
)4 TYPE lui_cg riscv_instr_co... 30.00 100 0% () auto(! g::: ::g%{ 3;75 i igg gg; _5
4 TYPE auipc_cg fiscv_instr_co... 30.00 100 0% () v" auto(!) bin auto[Ad] 352 1 100.00% I v
+}- 4 TYPEsra_ riscv_instr_co... 100.00% 100 100.00% GG v auto(! B) bin autoAS] 412 1 100.00% I v
+-4 TYPEsIl_cg riscv_instr_co... 100.00% 100 100.00% N auto(! ﬂ :::3‘;%:3} o 1 D E— 5
+- M TYPEsrl_cg riscv_instr_co... 100.00% 100 100.00% G auto(! 8] bin auto[S2] 420 1 10000% __ <7
+ 4 TYPEsrai_cg riscv_instr_co... 0.00% 100 DEGELY — R g auto(! 8] bin auto[s3] 382 1 100.00% N v
i = & % % — | B] bin auto[S4] 368 1 100.00% HEEEGNN v
2} o TYPESli_cg riscv_instr_co 100 oo‘_» 100 100 oo‘_f v auto(; it o Sl 4
+- 4 TYPEsii_cg riscv_instr_co... 100.00% 100 100.00% NG auto(! 8] bin auto[S6] 242 1 100.00% N v
+ 4 TYPE xor_cg riscv_instr_co... 100.00% 100 100.00% NN auto(! 8] bin auto[S7] 323 1 100.00% I v
+ 4 TYPEor_cg fiscv_instr_co... 100.00% 100 100.00% NG { auto(! g :" a“‘;{::} i‘-;z i igg gg:] ;

g 5 % o 3 in au % I

+ 4 TYPEand_cg riscv_instr_co... 100.00% 100 100.00% GG v auto(! B) bin auto[S10] 282 1 10000% I v
+- 4 TYPE xori_cg fiscv_instr_co... 100.00% 100 100.00% G v auto(! B bin auto[S11] 448 1 100.00% I v
+ 4 TYPEori_cg riscv_instr_co... 100.00% 100 100.00% N v auto(! B] bin auto[T3] 415 1 100.00% G v
- - - |B] bin auto[T4] 415 1 100.00% I v
1B bin auto[T5] 354 1 100.00% IS v
18] bin auto[T6] 312 1 100.00% I v
+ 4 CVP add_cg:cp_rsl_sign riscv_instr_co... 100.00% 100 100.00% NG v
+ 4 CVPadd_cg:cp_rs2_sign riscv_instr_co... 100.00% 100 100.00% NN ‘/

2019

DESIGN AND VERIFICATION™

accellera DV LN

© Accellera Systems Initiative 94
SYSTEMS INITIATIVE

Agenda

e RISC-V Intro and Status

* Industry requirements for ISA Compliance and Hardware Design
Verification

* RISC-V ISA Compliance

* Processor Hardware Design Verification

* RISC-V Instruction Stream Generation

* Hardware Design Verification Flow
 Demonstration walk-through

e Scaling verification using Cloud resources

accellera - DVLOIN
© Accellera Systems Initiative 95 m

SYSTEMS INITIATIVE

Metrics Cloud Platform makes it all
much simpler...

metrics

o5 62

Verification Web-based Verification Manager,
Teams Coverage Reporting and Debug Tools

I T

. -

Git Repo, Change Unlimited Simulations Elastic Database for
History and Continuous Running in Parallel Massive Regression
Integration Flow Data Handling

a Isolated Cluster powered by &Y Google Cloud

* Complete solution for DV 2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 96

SYSTEMS INITIATIVE

accellera

SYSTEMS INITIATIVE

& GitLab

-]

®

)

2

C @

ibex

Overview
Details
Activity

Cycle Analytics
Repository

Registr

Merge Reguests

Wik
Snippets
Settings

« Co

Projects «

Metrics: integrated GitLab

& htp b demo.metrics.ca/lowRISC/ibex

Oroups Activity Milestones

WRISC « ' Details

0 Star 0 Y Fork 0

Files (3MB) Commits (947) Branches (2)

master bex + ~

riscy. Forked from:

v

ibex v

Ioex is @ small 32 bit RISC-V CPU core (RV32IMC/EMC) with & two stage pipeline, previously known as zero

https://github com/lowRISC/ibex

SSH » gitggitlab.demo.metrics.ca:lon

Tags (4) Readme

A2, Removed work-around for demo re:test status
~“.¥ Almee Sutton (Metrics AE) authored 2 days ago

Name

W doc

® avjuvm

W metrics

L_Radl

Last commit

Merge bra

Marge branct

Removed work-

ACCCO 8 Covert

1

nNastor int

und for

oup/instr

Apache License 2 Contributi

Jgithub.com/lowRISC/

D Matrics-Intogratios

emo re:test status

Uction coverage

This project

History Q Findfie & ~

ffa74dde 0,

Last update
2 days ago
2 days ago
2 days age

3 doys ago

metrics

* Git is the way to get data into and out of the Metrics Cloud Platform 5415

© Accellera Systems Initiative

97

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

Metrics: built in Continuous Integration
to run jobs :

o @ D @ htips://gitlab.demo.metrics.ca/lowRISC/ibex/pipatine R A * 4 ¥ N0 =
«» GitLab Projects Oroups Activity Milestones S This project. Searc! Q n 8
I ibex ywRISC loex Pipelines
B Overview All 7 Pending 0 Running © Finished 4 Branchos Tags Clear runner caches CiLim
@ Repository Status Pipeline Commit Stages
] Registry
#174 by Ymetrics-integr. o d7¢82e7b
skipped tes £o function vor col P>
) tssues) mzl 3% Updates to functional coverage col
N Merge Requests 047448
metrics-integr. o ff474dde
skipped #173 by 4 $strd 9 SN N
» %% Removed work-around for demo re...
@ ci/co
Pipelines #172 by 4« Ymaster o ffd74dde >
skipped -
o [1azes: | 5% Removed work-around for domo re...
Jobrs
Schedules Wics | 071 by 4 ® pulpissino-vl... o d4d46971 » 00:00:08 e
0 lec (x (
Fl ® ade 0 g
Environments m XED a day ag
Clusters
- #170 by 4 % pulpissino-vl,. o 71cb9878 A 00:00:10
= failed (x c
Charts d) m €} update headers - 2 aday ag
O wi y o - a
- | #169 by &% % pulpissino-vl.@ o b99%eT74def 0:00:0¢ .
faul (= Sy
- m © Removed non-ASCIl characters £ 2 day age
& Snippet
-~ — #168 by 4 ® pulpino-v1.0.0 o 38934581 5 00:00:07
taled | (x -
< Cobapse sidebar — m fixed fetch fifo [broken after last co... 2 a day age

* Push of a button (‘Run Pipeline’) to run jobs (that we ran from shells earlier) 5519

DESIGN AND VERIFICATION™

accellera DV LN

© Accellera Systems Initiative 98
SYSTEMS INITIATIVE

Metrics: browse access to all results

::*metrics W bex Results GitLab Settings A Help / Feedback @ Metncs PE

2 Filters Added , fiscv_instr_base_test_2019-06-14_12-21-30_1793695 00:12:12 15.¢ B3.33 Log > 24

. v Seed: 26884 Jun 14719 12.06 functiona assertion Wave #

Regression Run 1D

scv instr base regr 20190614 1
Status > riscv_instr_base_test_2019-06-14_12-21-32 13296344 00:13:40 log @ 18
Passed _ Seed: 12987 Jun 14719 12:06 functional assertion Wave =
~
-
1 tems per page 50 ~

* Showing test runs and summary coverage 2019

DESIGN AND VERIFICATION™

accellera DV LN

© Accellera Systems Initiative 99
SYSTEMS INITIATIVE

Metrics: can drill down into details

::Imetrics Help / Feedback

96 matched, 115673 mismatch

ts FAESED

* For example see the saved logs — so can see all detail of run 2019

DESIGN AND VERIFICATION™

accellera DV LN

SYSTEMS INITIATIVE

Metrics: can show functional coverage

* Uses SystemVerilo

accellera

SYSTEMS INITIATIVE

riscv_instr_base_regr_2019-06-16_15-17-59 / Functional Coverage

Merged Sources

¥Cl instr_cov.0

¥CP instruction

BIN

BIN

BIN

BIN

BIN

BIN

BIN

BIN

BIN

© Accellera Systems Initiative

instr_lui

instr_auipc

instr_jal

instr_jalr

instr_beq

instr_bne

instr_blt

instr_bge

instr_bltu

ibex

Results

84.31%

84.31%

2913

531

463

1180

554

120

183

153

GitLab

Settings

100% 1

100% 1

101

101

101

101

101

101

101

101

/mux-flow/build/ibex/rtl/ibex_tracer.sv:110

g covergroups etc.

101

Admin

Help / Feedback

@ Metrics PE

2019

DESIGN AND VERIFICATION™

DV OIN

CONFERENCE AND EXHIBITION

Metrics: can even see detailed contribution
of each test including functional coverage :

accellera - DvVCON
© Accellera Systems Initiative 102

SYSTEMS INITIATIVE

Metrics: includes top level overview dashboard

=== metrics

:-: metrics B ibex Results Gitlab Settings Admin Help/Feedback @ Metrics PE

riscv_instr_base_regr
Get Started with :-% metrics ™

Passed/Total Test Runs
METRICS DOCS
1 — . .
P Metrics Overview @
/' Metrics Platform User Guide @

- L]
:[' - .

) 11 13:00 1) 17:00 19:00 21:00 23:0C 1 03 > 9:00 11 1 1
DSIM AND USIM DOCS

Functional Coverage DSIM Release Notes

DSIM Known Issues @

DSIM User Manual @

/.
o« e
DSIM Legal @
USim User Guide @
1 15:(1
Assertion Coverage If you need help or want to send us feedback, check

out the Help / Feedback feature...

o—e . . ° ° Open Help / Feedback

Hide this help section on next visit

* Allows management overview of status of verification 2019

DESIGN AND VERIFICATION™

accellera DV LN

© Accellera Systems Initiative 103
SYSTEMS INITIATIVE

Status

 The integrated DV infrastructure from Google, Metrics, Imperas is a
work in progress

* Clearly shows direction and focus

2019

DESIGN AND VERIFICATION™

accellera - DvVCON
© Accellera Systems Initiative 104

SYSTEMS INITIATIVE

Summary

e DV solution for RISC-V RTL cores

metrics
3 Goog|€ ClOUd RTL Simulation Metrics.log

Open Source RISC-V RTL
SystemVerilog & memory
UVM
R|SC-V compare
Instruction |mperaS ISS .

Stream (cpu+memory)

RISCV.c RISCV.elf
Generator

I[ﬁjm;@eras Imperas.log
* Collaboration between Google, Imperas and Metrics

* Industry adoption has started
* The basis for RISC-V core verification in:

‘I
llllllllll

CHIPS jgieﬁ==as.=' .'aa-! arRouR

i OPENHW @) lowRisc o
AI.I.IANEE EEL::...' PROVEN PROCESSOR IP DESIGN AND VERIFICATION'
© Accellera Systems Initiative 105

SYSTEMS INITIATIVE

Questions

accellera DV O
EUROPE]

SYSTEMS INITIATIVE

