
RISC-V Compliance & Verification Techniques
Processor Cores and Custom Extensions
Simon Davidmann & Lee Moore - Imperas Software Ltd.

Richard Ho - Google, Inc.

Doug Letcher - Metrics Technology, Inc.

Kevin McDermott - Imperas Software Ltd.

© Accellera Systems Initiative 1

RISC-V Compliance & Verification Techniques
Processor Cores and Custom Extensions
Simon Davidmann & Lee Moore - Imperas Software Ltd.

Richard Ho - Google, Inc.

Doug Letcher - Metrics Technology, Inc.

Kevin McDermott - Imperas Software Ltd.

© Accellera Systems Initiative 1

Introduction

© Accellera Systems Initiative 2

• DV solution for RISC-V RTL cores

• Collaboration between Google, Imperas and Metrics
• Industry adoption has started
• The basis for RISC-V core verification in:

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 3

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 4

What is RISC-V
• An open-source hardware Instruction Set Architecture (ISA)
• Started in 2010 at UC Berkeley
• Frozen base user spec released in 2014
• Fifth major RISC ISA design effort

out of Berkeley
• Ratification of RISC-V Base ISA and Privileged Specifications, June 2019

© Accellera Systems Initiative 5

© Accellera Systems Initiative 6

RISC-V ushers
in new era of
silicon design

Clean
Slate

Design
Modular

StableSimple

Designed for
Extensibility /
Specialization

Ecosystem Growth

© Accellera Systems Initiative 7

Foundries

Compilers /
SW Dev Tools

EDA Tools / Design
Enablement

IP Block Portfolios

OS Support

Simulators

Technical priorities in 20 focus areas

© Accellera Systems Initiative 8

Opcode Space Mgmt Standing Committee

Software Standing Committee

Base ISA Ratification Task Group

Privileged ISA Spec Task Group

UNIX-Class Platform Spec Task Group

Formal Specification Task Group

Compliance Task GroupB Extension (Bit Manipulation) Task Group

J Extension (Dynam. Translated Lang) Task Group

P Extension (Packed-SIMD Inst) Task Group

V Extension (Vector Ops) Task Group

Cryptographic Extension Task Group

Debug Specification Task Group

Fast Interrupts Spec Task Group

Memory Model Spec Task Group

Processor Trace Spec Task Group

Sv128 Specification Task GroupTrusted Execution Env Spec Task Group

+ Security Committee and

proposed Safety Task Group

RISC-V Bit Manipulation Instructions Working Group
https://github.com/riscv/riscv-bitmanip

• New, optional, not yet standardized, instruction extension
• The bitmanip instructions extend the RISC-V instruction set to enable efficient

bit manipulation
• This includes operations like:

– counting bits, leading zeros, etc.
– bit extraction
– rotations, shifting and reversing

• Current status: specification under review – 0.9.0

• Imperas has modeled / maintains and includes in its executable reference
model

• Available now: https://github.com/riscv/riscv-bitmanip
– Includes Imperas free riscvOVPsim simulator as reference

© Accellera Systems Initiative 9

https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-bitmanip

RISC-V Vector Instructions Working Group
https://github.com/riscv/riscv-v-spec

• Optional, not yet standardized, instruction extension
• Been developed by RISC-V founders for years
• Specifications available 0.7.1

• GitHub free download reference simulator
https://github.com/riscv/riscv-ovpsim

• Imperas has implemented latest draft Vector to riscvOVPsim free simulator
• Imperas is a reference implementation delivered to early users of Vector RTL

© Accellera Systems Initiative 10

https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-ovpsim

More Information:
• https://riscv.org

• www.imperas.com, www.OVPworld.org

• https://github.com/riscv/riscv-compliance (RISC-V compliance suite & reference simulator)
• https://github.com/riscv/riscv-bitmanip (bitmanip spec & reference simulator)
• https://github.com/riscv/riscv-v-spec (vector spec)
• https://github.com/riscv/riscv-ovpsim (free riscvOVPsim reference simulator)

© Accellera Systems Initiative 11

https://riscv.org/
http://www.imperas.com/
http://www.ovpworld.org/
https://github.com/riscv/riscv-compliance
https://github.com/riscv/riscv-bitmanip
https://github.com/riscv/riscv-v-spec
https://github.com/riscv/riscv-ovpsim

RISC-V Cores - Commercial and Open Source
• Commercial IP Providers

– SiFive, Andes, Codasip, Syntacore, ….

• OpenHW Group
– PULP RI5CY, Ariane /ETH Zurich => Core-V

• CHIPS Alliance
– SweRV / WD

• lowRISC
– PULP Zero-riscy /ETH Zurich => Ibex

© Accellera Systems Initiative 12

RISC-V: Flexibility within the ISA framework
Ecosystem support - Commercial and Open Source

• Commercial
– IAR, Lauterbach, Segger, ExpressLogic, Imperas, …

• Key Open Source activities include
– GNU tools, gcc, gdb, ...
– LLVM, LLDB, …
– FreeRTOS, Zephyr, Linux, …

© Accellera Systems Initiative 13

Verification Tools

• Simulation: Imperas (OVPsim), spike, qemu, …
• Verification: Google (open source test generator), Valtrix (commercial

test generator), …

© Accellera Systems Initiative 14

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 15

Compliance for RISC-V is Important

© Accellera Systems Initiative 16

Q: What is meant by “compliance”?

A: The device works within the envelope of the agreed specifications

Q: Is there an easy process or path to follow to develop methodologies/tools for
compliance?

A: NO – all established ISAs are single company controlled and those companies work
extremely hard on proprietary solutions to ensure that all designs that go out their door
work correctly – so RISC-V has to pioneer compliance collectively

Q: What happens if the RISC-V industry builds devices that are not complying with
specifications?

A: Users cannot assume that tools like C compilers, operating systems, and application
software will be transferable across devices and work correctly

Imperas key contributor to the RISC-V

Compliance Suite

• Compliance suite is ‘work in progress’

• Two components

– Test suites

• Each suite focuses on a feature set of the RISC-V envelope

• Initial focus is instructions, user mode spec, e.g. rv32i, rv32im, rv32imc, rv64i, …

• Awaiting RISC-V platform specifications to subset privilege spec, before starting privilege suites

– Framework

• Make, bash, and scripts

– Encapsulate compiler tools, linkers, simulators, and targets (Devices Under Test)

• Includes simulator: as example target, and to generate reference signatures

• Run: Select suite and target

– Runs each test, target produces signatures, compares to saved golden reference signature

• Available: www.github.com/riscv/riscv-compliance

© Accellera Systems Initiative 17

http://www.github.com/riscv/riscv-compliance

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 18

ISA Compliance (agenda)
• An Intro to testing RISC-V ISA standard Compliance
• Scope and approaches to ISA compliance
• Components needed

– Test Framework
– Tests
– Assembler/compiler
– Reference simulator to generate known good results
– Device Under Test with encapsulation to run it

• Overview of riscvOVPsim – compliance reference simulator
• RISC-V Foundation Compliance Suite walk–through and demo

– Github
– Flow, tests, select target, run, compare
– Adding a new target

• Status and roadmap

© Accellera Systems Initiative 19

RISC-V Getting your chip Verified

© Accellera Systems Initiative 20

• Compliance Tests
• DV Tests
• Formal tools
• Simulators
• Emulators
• FPGA’s

RISC-V Compliance

© Accellera Systems Initiative 21

• What is Compliance
• What is NOT Compliance

– Where does Compliance end and DV begin
• Possible Methods

What is Compliance (in RISC-V)

© Accellera Systems Initiative 22

• Participating in the Compliance WG, I have asked to get a definition -

this has proven difficult.

• There are deep discussions about how and what to test in the

compliance working group.

• Discussions frequently drift into – ‘oh-no that is DV, not compliance’, or

‘that is too deep/detailed for compliance testing’

• So what can we definitively say is compliance ?

What is Compliance (in RISC-V)

© Accellera Systems Initiative 23

• The device works within the envelope of the agreed specifications
• Compliance is adhering to the definition of the Instruction Set

Architecture specification and its intended semantic behavior.
• Proving the ISA behavior should be independent of any understanding

of the underlying micro-architectural implementation.

What is NOT Compliance (in RISC-V)
• We should not be concerned about compliance testing a given

implementation in order to prove that it may
– perform out of order execution
– perform parallel execution (multiple dispatch)
– execute multi/single cycle instruction(s)

– have a shallow or deep pipeline
– implement complex branch predictions
– perform speculative execution based upon branch prediction
– *enable contentious mode*
– implement an instruction through trapped emulation

• Extension-M : providing Mult but no Div

– *disable contentious mode*

© Accellera Systems Initiative 24

Compliance Testing Definition
• Compliance is attempting to test all of the possible instruction

alternatives, without attempting to test all of the possible values either
provided to, or produced by an execution unit, or the data paths being
exercised.

• This causes many grey areas of overlaps between compliance and
conventional DV, or a simple question:

Where does Compliance end, and DV begin?

© Accellera Systems Initiative 25

Running the RISC-V compliance suite
Framework

Suite Compile

Execute

Compare

Report

RV32I
RV32M

…

© Accellera Systems Initiative 26

Designeg, Ibex

Golden
eg,

riscvOVPsim

Compliance – Possible Methods
• For example, is it sufficient to exercise an add instruction by the

following code snippet

la x31, RESULT_ADDR
li x1, 2
li x2, 3
add x3, x2, x1 // x3 = 5
sw x3, x31(0) // Save to SIGNATURE

RESULT_ADDR:
.word 0x0

© Accellera Systems Initiative 27

Compliance – Possible Methods
• Or should specific bit patterns be exercised, for example a walking 1, or walking 0 in register values

la x29, RESULT_ADDR
li x30, 0
for i1 in 0 to 31; do

li x1, (0x1 << $i1)
for i2 in 0 to 31; do
li x2, (0x1 << $i2)
add x3, x2, x1
add x31, x30, x29 // Calculate a new (sw) ptr
sw x3, x31(0)
addi x30, 4

done
done
RESULT_ADDR:
.word 0x0

© Accellera Systems Initiative 28

Compliance – Possible Methods
• Given that we are adding a walking '1' to a 0 value in the first inner loop

pass, then we know we are also creating a walking '1' in the result
register (for an add instruction).

• This is pretty simple given an 'add' instruction, in the case of a more
complex instruction, then to ensure we have a walking '1' in the result,
we probably need some coverage metrics to ensure we meet our goals -
more on that later.

© Accellera Systems Initiative 29

Compliance – Possible Methods
• Question: is a walking '1' sufficient ? This will not test a result overflow,

underflow etc. so do we need to extend this simple test with some
corner case values ?

• for example define a list of special values
– list = {(-ve largest), (-ve mid), -1, 0, 1, (+ve mid),
(+ve largest)}

– list = {0x80000000, 0xC0000000, 0xFFFFFFFF, 0x00000000,
0x00000001, 0x3FFFFFFF, 0x7FFFFFFF}

• Now unroll the lists as the data values

© Accellera Systems Initiative 30

WARNING
• Serious Risk of Encroaching upon DV Territory

© Accellera Systems Initiative 31

Compliance – Possible Methods
• Question: why not just go for the full range of values ?

la x29, RESULT_ADDR
li x30, 0
for i1 in 0 to 0xFFFFFFFF; do

li x1, $i1
for i2 in 0 to 0xFFFFFFFF; do
li x2, $i2
add x3, x2, x1
add x31, x30, x29
sw x3, x31(0)
addi x30, 4

done
done
RESULT_ADDR:
.word 0x0

© Accellera Systems Initiative 32

DANGER
• Deep inside DV Territory

© Accellera Systems Initiative 33

Compliance – Possible Methods
• Question, do we also need to exercise each possible register

combination
– rDlist = x31, x30, x29, ...
– rS1list = x31, x30, x29, ...
– rS2list = x31, x30, x29, …

• In which case, why not simply …

© Accellera Systems Initiative 34

Compliance – Possible Methods
// Allocate 3 registers from pool for BASE, OFFSET, PTR
la x(ADDBASE), RESULT_ADDR
li x(ADDOFF), 0
li x(ADDPTR), 0
foreach rD in rDlist; do
foreach rS1 in rS1list; do
foreach rS2 in rS2list; do
for i1 in 0 to 0xFFFFFFFF; do
li x(rS1), $i1
for i2 in 0 to 0xFFFFFFFF; do
li x(rS2), $i2
add x(rD), x(rS2), x(rS1)
add x(ADDPTR), x(ADDOFF), x(ADDBASE)
sw x(rD), x(ADDPTR)(0)
addi x(ADDOFF), 4

done
done

done
done

done

© Accellera Systems Initiative 35

Game Over
• You just generated too many permutations, and exceeded way out past

DV territory
• RD RS1 RS2 RS1v RS2v
• 2**5 x 2**5 x 2**5 x 2**32 x 2**32
• In this case it is a 32bit Architecture – change to 64bit, and the

permutations increase accordingly
• This is simply not feasible
• remember we will also need to adhere to the framework constraints

(what are these ?)

© Accellera Systems Initiative 36

Test framework Constraints
• As yet not clearly defined !
• How much available memory for Code/Data ?
• Effect:

– How to handle large displacements for Branch, Jump
– How to handle large immediate offsets in Load/Store

• Result:
– Tradeoff, Tradeoff, Tradeoff

© Accellera Systems Initiative 37

Compliance goals, For each Instruction
• Attempt to use every possible register as both an input and output

(where an output is produced)
• For all immediate values (offset, displacement, shift etc) Attempt to

show that all bits in the value have been exercised as all 1's, all 0's and
both a 1 and 0, preferably in isolation
– eg for a 4 bit immediate value, the following possible values
– 0000, 0001, 0010, 0100, 1000,
– 1110, 1101, 1011, 0111, 1111

• ie, avoiding simple 2-state toggle : 0000, 1111

© Accellera Systems Initiative 38

Compliance goals, For each Instruction
• Attempt to provide input register values whereby corner cases are

exercised
– -MAX -MID, -MIN, -1, 0, 1, +MIN, +MID, +MAX (FP: +INF, -INF +0, -0)
– Walking '1', Walking '0' values

• Attempt to produce output register values whereby corner cases are
exercised
– -MAX -MID, -MIN, -1, 0, 1, +MIN, +MID, +MAX (FP: +INF, -INF +0, -0)
– Walking '1', Walking '0' values

© Accellera Systems Initiative 39

Compliance OUT-OF-SCOPE, do not attempt
• Exercise Register/Value Cross coverage

– Register indices, eg rs1 rs2 rd - cross coverage => 2**5 x 2**5 x 2**5
– Register values, eg rs1=X rs2=Y - cross coverage => 2*32 x 2*32

• Exercise all possible immediate values
– for a given 2**n immediate, do not exercise 2**n values
– (Unless) small set, eg shift/rotate amount 2**5

• Branch/Jump Targets
– TBD, related to the framework constraints (relative to PC is difficult to fully exploit)

• Load/Store offsets
– Where an address is R + I, the the R can be inversely adjusted in order to offset far load/store
– eg For a given address X, Rx=(X-4), Imm=4,

** note :
Register+Immediate targets of Load/Store/Branch/Jump, the target address can be brought back into
range by rebasing the base pointer register so that an immediate is provided resulting in a valid target
address, given a potential out of range intermediate immediate/displacement.

© Accellera Systems Initiative 40

Compliance Test in Memory Structure

• TEXT section

– Exception Handling Code (**contentious**)

– Startup Code

– Test Code (Body of the test)

– Shutdown Code

• DATA section

– Debug/logging strings

– Signature memory (Pre-initialized, Post-extracted)

© Accellera Systems Initiative 41

Compliance Test Semantics
• Loader program to get memory in initial state

– RTL Simulator $writemem()
– ISS readelf()
– HW debug load

• Execute
– Method of finish/exit detection

• Extract Signature (results)
• Compare Signature to golden reference

© Accellera Systems Initiative 42

Compliance test Porting to target
• Compilation infrastructure
• Macro body definitions
• Linker script to describe the target memory structure

© Accellera Systems Initiative 43

Compliance Code snippet RV32I - ADD
Addresses for test data and results

la x1, test_A1_data
la x2, test_A1_res

Load testdata
lw x3, 0(x1)

Register initialization
li x4, 0
li x5, 1

Test : add <dst-reg>, <src1-reg>, <src2-reg>
add x4, x3, x4
add x5, x3, x5

Store results to signature memory for extraction to signature file
sw x3, 0(x2)
sw x4, 4(x2)
sw x5, 8(x2)

© Accellera Systems Initiative 44

Compliance Linker snippet (ibex)
OUTPUT_ARCH("riscv")
ENTRY(_start)

SECTIONS
{

. = 0x00000000;

.text.trap : { *(.text.trap) }

. = 0x00000080;

.text.init : { *(.text.init) }

. = ALIGN(0x1000);

.text : { *(.text) }

. = ALIGN(0x1000);

.data : { *(.data) }

.data.string : { *(.data.string)}

.bss : { *(.bss) }
_end = .;

}

© Accellera Systems Initiative 45

Running the RISC-V compliance suite
Suite Compile

Execute

Compare

Report

RV32I
RV32M

…

© Accellera Systems Initiative 46

Designeg, Ibex

Golden
eg,

riscvOVPsim

Running the RISC-V compliance suite

1. Start with ssh to remote shell in Metrics Cloud Platform
2. Load tests etc. from Git, e.g. compliance suite
3. Run as if in local shell
4. In this example RV32I compliance suite

© Accellera Systems Initiative 47

© Accellera Systems Initiative 48

Compliance Test Quality Measurement
• Observing and measuring the Coverage Points

– Instruction Type
– Target RD Register usage
– Source RS1, RS2 Register usage
– Immediate Value usage (buckets, data points)
– Register Value usage (buckets, data points)

© Accellera Systems Initiative 49

Compliance Test Quality Measurement
• Coverage Results for ADD

– Contact Lee Moore at moore@imperas.com
– For latest results and updates presented at DVCon Europe 2019 in Munich

© Accellera Systems Initiative 50

mailto:moore@imperas.com?subject=Request%20for%20coverage%20results%20of%20RISC-V%20ADD%20from%20DVCon%20Europe%202019

Compliance Test Quality Measurement
• Proving the Coverage measurements, by propagation of an intended

result
Coverage observes the following
addi x2, x1=0x1, 0x1 // -> x2=0x2
This implies the following points are met for Instruction addi
Target Register [x2] => Covered
Target Register Value [1]=1 => Covered
Source Register [x1] => Covered
Source Register Value [0]=1 => Covered
Immediate Value [0]=1 => Covered

© Accellera Systems Initiative 51

Compliance Test Quality Measurement
• If our code snippet looks like this, we are gradually improving our coverage -

right ?
la x31, ADDR_SIGNATURE
addi x2, x1=0x1, 0x0 // -> x2=0x1
addi x2, x1=0x1, 0x1 // -> x2=0x2
addi x2, x1=0x1, 0x2 // -> x2=0x3
addi x2, x1=0x1, 0x4 // -> x2=0x5
addi x2, x1=0x1, 0x8 // -> x2=0x9
addi x2, x1=0x1, 0xF // -> x2=0x10
sw x2, x31(0) // Store Signature

© Accellera Systems Initiative 52

Compliance Test Quality Measurement
• Coverage is monitoring the Execution unit, but ignoring the Load/Store Unit,

so in fact
la x31, ADDR_SIGNATURE
addi x2, x1=0x1, 0x0 // -> x2=0x1 - DISCARDED
addi x2, x1=0x1, 0x1 // -> x2=0x2 - DISCARDED
addi x2, x1=0x1, 0x2 // -> x2=0x3 - DISCARDED
addi x2, x1=0x1, 0x4 // -> x2=0x5 - DISCARDED
addi x2, x1=0x1, 0x8 // -> x2=0x9 - DISCARDED
addi x2, x1=0x1, 0xF // -> x2=0x10 - Saved
sw x2, x31(0) // - by this Store

© Accellera Systems Initiative 53

Compliance Test Quality Measurement
• Coverage is monitoring the execution, but is unaware of the propagation

of the effect, and the observability of the program flow to the persistent
storage in the SIGNATURE section

• How can we prove that a reportedly covered item, is observed within
the SIGNATURE section ?

1011100011
0001110111

Coverage
Point

1011100011 Trash

SignatureDB

© Accellera Systems Initiative 54

Mutation Testing by Fault Injection

• Fault Injection to provide Mutation Testing

• For a given reported coverage point, mutate the instruction to have

provided the contribution and test the propagation of that mutation to

an observable entry in the SIGNATURE section

• Ref: https://www.geeksforgeeks.org/software-testing-mutation-testing/

© Accellera Systems Initiative 55

Mutation Testing by Fault Injection
• For the given code snippet previously, mutate the operation to a legal alternate
la x31, ADDR_SIGNATURE
// MUTATE ON :
<original-instruction> addi x2, x1=0x1, 0x0
<mutated-instruction> add x0, x0, x0
// MUTATE OFF
addi x2, x1=0x1, 0x1 // -> x2=0x2 - DISCARDED
addi x2, x1=0x1, 0x2 // -> x2=0x3 - DISCARDED
addi x2, x1=0x1, 0x4 // -> x2=0x5 - DISCARDED
addi x2, x1=0x1, 0x8 // -> x2=0x9 - DISCARDED
addi x2, x1=0x1, 0xF // -> x2=0x10 - Saved
sw x2, x31(0) // - by this Store

© Accellera Systems Initiative 56

Mutation Testing by Fault Injection

• The mutated instruction could simply be

– replace by a NOP : add, x0, x0, x0

• Or, override parts of the decode, for example the decode for an addi is as

follows

– ADDI : 12'b(Imm), 5'b(rs1), 3'b(000), 5'b(rd), 7'b(0010011)

– The fixed parts of the decode are field [3](000) and field [5](0010011)

– All other bits affect the immediate values and register indices for source and destination

– In effect the decode appears thus

–000001 0011
– all bits indicated as '.' could be mutated, in order to observe whether this incurs a

propagated effect to our SIGNATURE section.

© Accellera Systems Initiative 57

Mutation Testing by Fault Injection
• We need to be careful to ensure that introducing the mutated instructions does not cause a

'fault model explosion', in other words for the ADDI case above there are 22 bits which can
be considered for mutation, but it would not be prudent to generate 2**22 fault models

• A pragmatic approach is to create the following fault models
– NOP Replacement
– Bit inversion

• This would produce a total of 23 fault models for this one instruction - bearing in mind that
the same approach is taken for every possible ADDI instruction

• the encoding for
– addi x2, x1=0x1, 0x1

• would thus be
– | imm12 | rs1 |dec| rd | dec
– 000 0010011
– 000000000001 00001 000 00010 0010011

© Accellera Systems Initiative 58

Mutation Testing by Fault Injection
• Potential Fault Models would be
• | imm12 | rs1 |dec| rd | dec
• 100000000001 00001 000 00010 0010011
• 010000000001 00001 000 00010 0010011
• 001000000001 00001 000 00010 0010011
• 000100000001 00001 000 00010 0010011
• etc ...

© Accellera Systems Initiative 59

Mutation Testing by Fault Injection
• These fault models are inserted automatically by the Imperas Fault Simulator

at runtime – without changing the elf/binary
• Having run these fault models on an early version of the compliance suite,

yielded some very interesting results, whereby the test engineer was utterly
convinced that he had covered a particular scenario, but actually injecting the
fault and following the propagation of the program flow - proved the result
had been in someway masked.

• We found numerous reasons for this, including calculated values not stored in
the SIGNATURE region, values in the SIGNATURE overwritten, or default
initialization SIGNATURE values, having the same value as calculated values.

• initialized at -1 (0xFFFFFFFF) and the value -1 (0xFFFFFFFF) stored - hence no
observable difference.

© Accellera Systems Initiative 60

Mutation Testing by Fault Injection
• Running the Imperas Mutating Fault Simulator on the existing

Compliance suite to grade the coverage
• Automating the Fault injection to assert the coverage metrics
• Imperas Simulator

– injected x faults in y simulations and executed in n seconds (Schrodinger's Cat)
• <Show Running>

© Accellera Systems Initiative 61

© Accellera Systems Initiative 62

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 63

Processor Hardware Design Verification (agenda)

• Objective of HW DV for processors
– Prove beyond (reasonable) doubt design meets objectives

• Available technologies and tools (Dynamic)
– Reference model
– Compliance suites, tools, tests
– Directed test suites
– Industry benchmarks and Operating Systems
– Random Instruction Generators

• Formal models, properties libraries, model checkers, equivalence checkers
• ISS, RTL simulators, FPGAs, Emulators, …

© Accellera Systems Initiative 64

Processor Hardware Design Verification
Dynamic Testing approaches

• Prove beyond (reasonable) doubt design meets objectives, using
– Directed tests

• Architectural tests
– Instruction correctness

• Micro-architectural
– Pipeline correctness, hazards, speculative execution, branch prediction, multiple issue

• Compliance
• Stress
• Industry Benchmark, eg Coremark, Dhrystones, Linpack

– Pseudo Random – Instruction Stream Generators
• Architectural tests
• Micro-architectural
• Constraint solving & Coverage metrics

© Accellera Systems Initiative 65

Processor Hardware Design Verification
Targets for execution

• Instruction Set Simulation (ISS)
• Cycle Accurate Simulation (CAS)
• Virtual Prototype/Platform, System Emulator
• RTL Simulation
• FPGA
• Emulator (FPGA Prototyping)
• Accelerator (Hardware RTL Simulator)
• Combination of Above, eg ISS + Accelerator
• Physical Device

© Accellera Systems Initiative 66

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 67

RISC-V Instruction Stream Generation (agenda)

• Motivation
• Existing open source solutions
• Missing pieces
• Google Open Source RISC-V ISG
• Key features
• Generator internal flow

© Accellera Systems Initiative 68

RISC-V Instruction Stream Generation

• Design Verification is the Foundation of Reuse
• Quality is key to reuse
• Stress testing needed to ensure IP will operate correctly

when integrated into new design
• DV accounts for >50% of project time for complex chips

© Accellera Systems Initiative 69

© Accellera Systems Initiative 70

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Many missing pieces

© Accellera Systems Initiative 71

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Google RISC-V Instruction Stream Generation

Open Source
SystemVerilog

UVM
RISC-V

Instruction
Stream

Generator

https://github.com/google/riscv-dv

• High quality SystemVerilog UVM DV
infrastructure

• Open source
• Drives a RISC-V core through corner

cases and pushes it to the limit

© Accellera Systems Initiative 72

© Accellera Systems Initiative 73

Key Features

01
Randomness

Randomize everything:
instruction, ordering,
program structure,
privileged mode setting,
exceptions..

02
Architecture Aware

The generated program
should be able to hit the
corner cases of the
processor architectural
features.

04
Extendability

Easy to add new instruction
sequences, custom
instruction extension,
custom CSR etc.

03
Performance

The instruction generator
should be scalable to
generate a large program in
a short period of time.

Key Features

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

© Accellera Systems Initiative 74

Randomness

Instruction level randomization
Cover all possible operands and immediate values of each instruction
Example: Arithmetic overflow, divide by zero, long branch, exceptions etc.

Sequence level randomization
Maximize the possibility of instruction orders and dependencies

Program level randomization
Random privileged mode setting, page table organization, program calls

DIV Branch Load Fence StoreSHIFT

Randomness

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Instruction randomization

© Accellera Systems Initiative 75

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Architecture Aware

© Accellera Systems Initiative 76

Architecture Aware

01 Branch prediction 02 MMU (TLB, Cache etc)

Code segment 0

Code segment n

Code segment k

Data page 0
Data page 1
Data page 2
Data page 3
Data page 4
Data page 5
Data page 6
Data page 7
Data page 8
Data page 9Load

Store

Jump

Jump

BHT

Address
TAG

Prediction
bits

M

U

U

Trap handlerS

Trap

Instruction

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

© Accellera Systems Initiative 77

Architecture Aware

03 Issue, execute, commit

It’s not just a random stream of
instructions, it should be
designed to effectively verify
the architectural features of
the processor.

R3 <- R4 + R5
R1 <- R3 + R8

RAW

R2 <- R4 + R5
R4 <- R3 - R8

WAR

R2 <- R4 + R5
R2 <- R3 + R8

WAW

Issue

Execution
unit

Execution
unit

Execution
unit

Commit

Exceptions!

Architecture Aware

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

© Accellera Systems Initiative 78

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Generator
flow

Generate program header

Privileged mode setup

Page table randomization

Initialization routine

Generate main/sub programs

Branch target assignment

Generate data/stack section

Generate page tables

Generate intr/trap handler

Test completion section

Call stack randomization

Apply directed instructions

© Accellera Systems Initiative 79

Complete feature list

Test suite

Basic arithmetic instruction test

Random instruction test

MMU stress test

Page table exception test

HW/SW interrupt test

Branch/jump instruction stress test

Interrupt/trap delegation test

Privileged CSR test

Supported ISA
RV32IMC, RV64IMC

Supported privileged mode
User mode, supervisor mode, machine mode

Supported spec version
User level spec 2.20, privileged mode spec 1.10

Supported RTL simulator
VCS, Incisive, Metrics

Complete feature list

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Open source RISC-V processor verification
solutions

riscv-tests
Assembly unit test

A simple test framework focused on sanity testing the basic
functionality of each RISC-V instruction. It’s a very good starting
point to find basic implementation issues.

riscv-torture
Scala-based RISC-V assembly generator

Provides a good mix of hand-written sequences. Supports most RISC-V
ISA extensions which makes it very attractive. Simple program structure
and fixed privileged mode setting.

Verification is one of
the key challenges of
modern processor
development.

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 80

Hardware Design Verification Flow
(agenda)

• Flow
• Components

– Google: open source riscv-dv instruction stream generator
– Imperas: model and simulation golden reference of RISC-V CPU
– Metrics : SystemVerilog design + UVM simulator for RTL

• Using

© Accellera Systems Initiative 81

Hardware Design Verification Flow

• Google: open source riscv-dv instruction stream generator
• Metrics : SystemVerilog design + UVM simulator for RTL
• Imperas: model and simulation golden reference of RISC-V CPU

Open Source
SystemVerilog

UVM
RISC-V

Instruction
Stream

Generator RISCV.S

GCC/
LLVM

RISCV.elf

RTL Simulation

Imperas.log

Metrics.log

compare
Imperas ISS
(cpu+memory)

(CPU RTL+memory)

© Accellera Systems Initiative 82

Google SystemVerilog UVM
Instruction Stream Generator

Keys features:
– Randomness

• Randomize everything: instruction, ordering, program
structure, privileged mode setting, exceptions..

– Architecture-aware
• Generated program able to hit the corner cases of the

processor architectural features

– Performance
• Instruction generator is scalable to generate a large program

in a short period of time

– Extendibility
• Easy to add new instruction sequences, custom instruction

extension, custom CSR etc.

Open Source
SystemVerilog

UVM
RISC-V

Instruction
Stream

Generator

https://github.com/google/riscv-dv

© Accellera Systems Initiative 83

https://github.com/google/riscv-dv

Imperas RISC-V Instruction Set Simulator and full RISC-V

Specification Envelope Model

• Industrial quality model and simulator of RISC-V

processors for use in compliance, verification and

test development

• Complete, fully functional, configurable simulator

– All 32bit and 64bit features of ratified User and Privilege

RISC-V specs

• Vector extension, version 0.7.1

• Bit Manipulation extension, version 0.9.0

– Model source included under Apache 2.0 open source

license

• Used as golden reference in RISC-V Compliance Suite

and Bit Manipulation group

• Extendibility: easy for user to extend with new

instructions and functionality

RISC-V

Reference

Model &

Simulator

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

© Accellera Systems Initiative 84

http://www.imperas.com/riscv
https://github.com/riscv/riscv-ovpsim

Metrics (1): SystemVerilog Simulator

• Complete SystemVerilog IEEE 1800-
2012 compliant simulator including
UVM

• Includes all the standard features of a
modern SystemVerilog simulator
including debug, APIs, language and
testbench support

• Simulates the testbench, the RTL
design, and the populates the coverage
models

RTL
RISC-V CPU

SystemVerilog
UVM

Testbench

SystemVerilog
UVM

Coverage

https://metrics.ca/

© Accellera Systems Initiative 85

https://metrics.ca/

Metrics (2): Full Cloud Platform

• True cloud platform for ASIC and complex FPGA design verification

• On-demand simulation resources
• Modern continuous integration workflow

• Easy access to simulation results from any web browser

=> So the full verification can be done in the Google Cloud using the
Metrics Cloud Platform, the Metrics simulator, the Imperas RISC-V
reference simulator and the Google Instruction Stream Generator

© Accellera Systems Initiative 86

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 87

Demonstration
• Uses RISC-V Core: lowRISC/ibex RTL (RV32IMC)

– Originated from zero-RI5CY ETH Zurich PULP

© Accellera Systems Initiative 88

DV Flow is controlled by Makefile and bash scripts
and includes python scripts

• Compile up SystemVerilog UVM test
generator and run it

• can easily set how many tests to create
each run

• Creates .S files that are then converted
to .o

• Run the Imperas ISS to generate reference
results

• Compile the SystemVerilog RTL of ibex core
and testbench

• Run RTL simulation & record RTL results

• Post-processor run logs and compare

© Accellera Systems Initiative 89

Demo: Configuring flow
• Test generator settings

– Device Under Test / Processor (ISA, xlen, extensions, modes, mmu, …)
• Show settings .sv file

– Complexity & quantity of tests
• Show Command line options, testlist.yaml

• Reference ISS riscvOVPsim config
– Show yaml file for Ibex and config.ic file

© Accellera Systems Initiative 90

Demo show test gen, iss, rtl, compare run
• Show running under Metrics cloud connection

– make gen
– make gcc_compile
– make iss_sim
– make iss_cmp

© Accellera Systems Initiative 91

And results are simple pass, or detailed fail

• Example of detailed fail:
• Shows mis-matching

instructions
• Configured here to show 5

• Full traces etc are kept for
review

• Can dump full VCD for
detailed waveform
analysis

© Accellera Systems Initiative 92

And… what about functional coverage you may
ask…

• Sneak preview…
• New Open Source SystemVerilog UVM Coverage component added to

flow
– Adds coverage groups / bins in UVM testbench
– Configure coverpoints based on DUT, eg RV32IMC, RV32IMAFDC, …

• Post processes a test’s execution trace
• Collates coverage from many runs
• Uses SystemVerilog UVM simulator’s coverage analysis to report, review

– Works with Cadence, Mentor, Synopsys, Metrics

© Accellera Systems Initiative 93

Mentor Questa Coverage views

© Accellera Systems Initiative 94

Agenda
• RISC-V Intro and Status
• Industry requirements for ISA Compliance and Hardware Design

Verification
• RISC-V ISA Compliance
• Processor Hardware Design Verification
• RISC-V Instruction Stream Generation
• Hardware Design Verification Flow
• Demonstration walk-through
• Scaling verification using Cloud resources

© Accellera Systems Initiative 95

Metrics Cloud Platform makes it all
much simpler…

• Complete solution for DV
© Accellera Systems Initiative 96

Metrics: integrated GitLab

• Git is the way to get data into and out of the Metrics Cloud Platform

© Accellera Systems Initiative 97

Metrics: built in Continuous Integration
to run jobs

• Push of a button (‘Run Pipeline’) to run jobs (that we ran from shells earlier)

© Accellera Systems Initiative 98

Metrics: browse access to all results

• Showing test runs and summary coverage

© Accellera Systems Initiative 99

Metrics: can drill down into details

• For example see the saved logs – so can see all detail of run
© Accellera Systems Initiative 100

Metrics: can show functional coverage

• Uses SystemVerilog covergroups etc.
© Accellera Systems Initiative 101

Metrics: can even see detailed contribution
of each test including functional coverage

© Accellera Systems Initiative 102

Metrics: includes top level overview dashboard

• Allows management overview of status of verification
© Accellera Systems Initiative 103

Status
• The integrated DV infrastructure from Google, Metrics, Imperas is a

work in progress
• Clearly shows direction and focus

© Accellera Systems Initiative 104

Summary

© Accellera Systems Initiative 105

• DV solution for RISC-V RTL cores

• Collaboration between Google, Imperas and Metrics
• Industry adoption has started
• The basis for RISC-V core verification in:

Questions

