

 1

Reusing UVM Testbenches in a Cycle Simulator
A Hybrid Test bench Co-Simulation Solution Explained

Kristina Hager
International Business Machines

Server & Technology Group
Austin, Texas, USA
hagerk@us.ibm.com

Andrew Lynch, Umer Yousafzai, Carter Alvord
Cadence Design Systems

Systems and Verification Group
San Jose, CA, USA

drew@cadence.com; umer@cadence.com;
alvord@cadence.com

Abstract— IBM requires a solution to enable the re-use of
SystemVerilog testbenches which accompany imported Verilog
design IP in their larger custom verification environment. These
SystemVerilog testbenches need to be integrated with IBM’s
custom C++ testbenches and run in IBM’s cycle simulator on the
entire DUT. This paper will present a high level view of our co-
simulation solution which simulates the SystemVerilog
testbenches by a commercially available event simulator and
simulates the C++ testbenches and DUT in IBM’s cycle
simulator. This paper will address challenges resolved in creating
this solution including synchronizing the event driven test bench
with the cycle simulator, synchronizing test bench phases,
connecting SystemVerilog test bench signals to the design,
communicating error messages between the simulators, handling
tool errors gracefully, and coordinating end of test status and
simulator exit. Additionally, this paper will summarize the
architecture of the solution enabled by the versatility of the
UVM, DPI, VPI and IBM methodologies, present future
challenges, show performance measurements of the initial
solution, and suggest how these techniques could be used in
different SystemVerilog test bench reuse scenarios.

Keywords—functional verification; co-simulation; cycle
simulation; event simulation; Universal Verification Methodology

I. INTRODUCTION

A. Introduction and motivation

Microprocessor designs today consist of SOCs which
integrate design IP from diverse sources like memory
subsystems, PCI Express, and on-chip peripheral interfaces.
For design verification, IBM designers use a cycle based
simulation methodology enabled by custom simulation tools
tuned to their design styles. The new challenge that the IBM
verification teams face is the integration of the event driven
SystemVerilog test bench code which accompanies IBM
created IP blocks or off-the-shelf Verilog design into a full chip
environment with their custom C++ test benches attached to
their cycle simulation environment.

IBM solved this integration problem by co-simulating a
UVM test bench running in an event driven SystemVerilog
simulator with their cycle simulator. This approach has

significant advantages: IBM engineers can avoid re-
implementing existing SystemVerilog test benches. IBM can
also leverage commercial SystemVerilog simulators instead of
developing their own SystemVerilog constraints solvers and
simulation engine. We call this co-simulation solution the
Hybrid Testbench or HTB.

The solution described here connects a SystemVerilog
engine to a cycle simulator. This solution can be generalized to
other engines simulating a DUT with a C or C++ interface. We
will enumerate and address the challenges we encountered in
creating this solution. We took advantage of the versatility
enabled by the DPI, VPI, UVM and IBM technologies to
provide this solution in a handful of self contained packages.
We will elaborate on these techniques and show how this
simplifies the user view of the solution. We will also provide
the results of performance experiments on the solution as
provided to an IBM internal design team.

In this paper, we will often refer to the IBM cycle simulator
as the “Mesa simulator” which is the internal name for their
cycle simulation tool and the cycle simulation environment in
general. IBM has developed a C++ based verification
environment and library called “Fusion” which is similar in
man respects to UVM. Our co-simulation solution was created
with Cadence’s event simulator known as “ncsim” or “IUS”, so

Figure 1: Simplified Drawing of Desired Solution

 2

we will use those terms interchangeably here to indicate the
“event simulator” as well. Again, we will use the term Hybrid
Testbench or the acronym HTB to refer to the co-simulation
solution.

This paper should be of interest to designers and
verification engineers seeking to reuse SystemVerilog test
bench components with different design abstractions (untimed
C/C++ models) or connecting SystemVerilog testbenches to
algorithmic/modeling engines such as Matlab.

B. Related Work

IBM has significant experience in developing co-simulation
solutions. Experiences in these other approaches have helped
inform the solution discussed here. We will briefly compare
and contrast these co-simulations with the one discussed here.

One existing co-simulation solution, FusionNC, has the
entire DUT and some SystemVerilog test benches simulated in
an event driven simulator with the C++ test bench components
handled by IBM's cycle simulation based test bench
environment. The FusionNC solution could be considered the
"opposite" of the solution presented here (where the DUT is
entirely in IBM's cycle simulation environment). FusionNC is
used when testbench components already exist in C++ or
where it's easier to create them there. In this case, the DUT is
simulated in ncsim either because the netlist is encrypted and
can't be recompiled for the cycle simulator or when the design
lends itself better to event simulation.

Another existing co-simulation solution, Cycle Cosim,
utilizes two simulators each containing both test bench and
design components: The event driven simulation has test bench
and design components where it is assumed that the
SystemVerilog test bench primarily accesses the Verilog
design. The cycle driven simulation also has both C++ test
bench components and its own, separate design components
where it is assumed the C++ test bench primarily accesses the
design in the cycle simulator. The two design pieces under
simulation connect to each other at the IO level via a "bridge".
The verification engineer must carry out steps to determine
which signals need to be connected between the two designs
and create this bridge. If there is any need for the
SystemVerilog test bench to access the design running in the
cycle simulator, then those signals must be manually brought
out to the IO level "bridge" between the two models. In the
solution presented in this paper, there is no need to manually
create a "bridge" as there is only one unified DUT. While the
SystemVerilog testbench will normally only access signals in
its corresponding Verilog design IP, it can also formulaically
access any signal in the design either inside or outside of the
corresponding design IP.

Cadence has developed many co-simulation solutions to
simulate designs in different engines such as analog solvers or
a hardware emulator while other portions of the design or
testbench simulates in an event driven digital software
simulator. These experiences enabled the team to collaborate
with IBM to propose a practical solution that builds on
standard interfaces to enable an exemplary co-simulation
approach.

Fig. 2 Simplified Drawing of Solution Architecture.

II. SOLUTION ARCHITECTURE

A. Approach

Before we began to create the HTB solution, the IBM and
Cadence technical teams conducted brainstorming sessions
regarding the breadth of usage scenarios of our current
simulation tools, which of these usage scenarios the HTB
simulation might need to support, and the best software
architecture for the planned co-simulation solution. We
considered multithreading approaches, multiple process
approaches and various means of communicating information
between the simulators such as pipe or shared memory
approaches. As an example of a key usage scenario that drove
an architectural decision, both IBM's and Cadence's simulation
environments support features such as checkpoint and restart.
However, both support this methodology in notably different
ways. The end result of this discussion is that architecting the
HTB simulation as a multi-process rather than a multi-threaded
solution would retain the greatest flexibility. Similarly, the
multi-process approach reduces complexity and improves
ability to debug the simulations since each simulator will have
its own process and memory space.

HTB actually uses three processes. The HTB simulation
starts with a single process which sets up the HTB Core
Library infrastructure and then initiates the two simulator
processes. After the simulation processes are dispatched, the
parent process simply waits for the two simulator processes to
return. During the waiting period, the parent process can also
monitor the children simulator processes. When both child
processes return, the parent process executes some clean up
code to ensure that shared resources are released.

The HTB software architecture can be decomposed into a
three layer solution which we describe in this section. This
separation of the solution into five pieces reduces complexity
from a component dependence point of view and enables re-
use from a simulator point of view. Fortunately, these
components are well hidden from the end user.

 3

B. HTB-Core Library

The HTB Core Library provides a shared object which
implements a C API with APIs covering the requirements to:
pass and retrieve messages, pass and retrieve signal read or
write requests, signal how much time should be advanced, or
stop at sync points where either simulator can communicate
status or optionally communicate that it has encountered a
scenario where it needs to abort so the other simulator can
handle this gracefully. This C API provides a unified interface
to several internal classes which implement the needed
functionality. The advantage of providing a C API interface via
a shared Dynamically Loaded Module (DLM) is that any C or
C++ based program can load this DLM and access the APIs.
Any such program will also need to link against the header
file(s) accompanying the DLM

1) Posix Shared Memory and Semaphores
The HTBlib implements the required functionality via

Posix shared memory and semaphores. The advantage of Posix
shared memory is that it is extremely high performance, e.g. it
is as fast as memory local to the process since it is referenced
in the same manner

2) Sync Points
We will explicitly introduce one technique used in our

solution as it is referenced many subsequent explanations.
First, each simulator in the HTB execution stops at a set of
predefined, named points called “sync points”. At every “sync
point” each simulator waits for the other simulator to reach that
point before proceeding. At every sync point, each simulator
can also communicate if it is ready for the next phase of
simulation (as in UVM phase) or not and whether or not it
would like to abort.

These sync points include one right after elaboration and
before sim time begins and another at the end of simulation
before cleanup. The simulators also stop at a few sync points
during each "simulation interval" to retrieve or send
information about the number of cycles to proceed during this
interval, to exchange signal read/write updates and exchange
messages, and to communicate status regarding phase. At any
sync point, a simulator can communicate the need to abort the
sim.

C. Fusion-HTB Interface

The Fusion-HTB interface is the layer which seamlessly
integrates into the Fusion phasing and signal handling
methodology in a manner very similar to how IBM's C++
based verification IP integrates into the Fusion methodology.
This layer invokes the API's provided by the HTB Core
Library to communicate status, retrieve signal read/write
requests or UVM messages that ultimately originate from the
Ncsim-HTB Interface, and so on.

D. Ncsim-HTB Interface

1) Phase-Stage Synchronization
The UVM methodology handles phasing in an object

oriented way through a uvm_phase class. This class defines
phase behavior, state, context and exposes interfaces/apis for
users to use and extend phasing behavior. In addition, the
uvm_component class defines virtual tasks and functions

corresponding to each phase where a VIP can do work in a
synchronized manner to other VIPs in a testbench as shown in
Figure 3.

Fig. 3. UVM Phases

We take advantage of the uvm_objection feature along with
uvm_phase apis to synchronize SystemVerilog testbench
activity with stages in fusion. We add a class derived from
uvm_test in the HTB package (called sync_phases) that gates
the mapped phases from progressing using post_phase virtual
tasks until fusion is also done with that stage. An instance of
this class is required in the top-level Verilog wrapper or on the
command line to provide the required synchronization with
fusion stages .

Fig. 4. Mechanism to synchronize Phases and Stages

Using a post_phase method such as post_configure_phase
allows us to utilize the property that *ALL* UVM testbench
components are done with their configuration phase and are
now in “transition” to the next phase. As shown in Figure 4,
UVM testbench will be suspended until the
glob_fusion_stage_sync signal has the value encoded by
INIT_LOOP_DONE indicating that Fusion is ready to move to
the next stage. The phase.drop_objection api allows UVM to
proceed to the next time-consuming phase.

2) Message Passing
As part of inter-simulator testbench communication where

the IBM simulator serves as the master, it is necessary to send
UVM messages from the ncsim simulator to the IBM simulator
for further processing. In order to do so, the HTB utilizes a
custom report server derived from the UVM built-in
uvm_report_server. The custom server is assisted by DPI-C
code which is used to queue messages that need to be
processed by the HTBlib layer.

Messages in UVM have an associated severity level and
action. There are four severity levels including: information,
warning, error, and fatal. Message actions can include sending
to the display/log, counting message types, terminating the

Figure 5 UVM Phases

 4

simulation, or no specified action. Each severity level has an
associated set of one or more default actions.

There is not a one-to-one match of message severity levels
and actions between UVM and the IBM simulator. In UVM,
error messages do not by default terminate the simulation. The
user can override this behavior and require that a simulation
terminate after a specified number of errors. In UVM, fatal
messages always cause an immediate termination. The IBM
simulator on the other hand does not distinguish between error
and fatal conditions, defining only an error state. An error in
the IBM simulator always leads to termination of the
simulation.

A custom UVM report server is required to intercept UVM
messages and their programmed actions and remap them to the
corresponding IBM simulator severity levels. The following
table provides the mapping between the two:

UVM Severity Level IBM Simulator Severity
Level

UVM_INFO No mapping; not forwarded

UVM_WARNING Warning

UVM_ERROR
(non-terminating)

Warning

UVM_ERROR
(terminating)

Error

UVM_FATAL Error

The modifications made in the custom report server derived
from the base uvm_report_server are minimal and well
documented. If desired, users are able to create their own
custom report servers as well, but they must inherit from the
HTB custom report server and follow clearly defined
instructions in order to preserve the above necessary
functionality.

3) Signal Registration
In the HTB usage scenario, the Verilog design unit under

test is connected to a larger design at the Verilog design’s
interfaces (inputs, outputs, and inouts). The design is simulated
in the Mesa or IBM simulator. Therefore, communication
between a testbench interface signal and a DUT port must be
handled via the HTB interface. In an HTB simulation, the top
level Verilog design module’s portlist is retained, but the
implementation of the design is removed. This port list
represents the signals to be connected to the Mesa DUT. With
a few exceptions, the module definition contains only a single
initial block, which contains a call to the system task
$htb_register_portlist. This system task does nothing when
called during the flow of simulation, but its related compiletf,
executed before simulation begins, performs consistency
checks and configures the interface between ncsim and Mesa.

The compiletf routine for $htb_register_portlist iterates
over the port list of the containing module and builds a list of
signals to be connected to Mesa. The direction of signal flow
(Mesa to IUS, IUS to Mesa, or both) is taken from the port
direction on the Verilog module. The compiletf routine checks
that ports are of appropriate type. HTB currently only supports
simple scalar and vector nets and registers. The routine also
checks that the timescale requested by Mesa can be supported
by the time precision of the Verilog portion of the design. All
errors occurring during this phase are collected and reported
before the simulation is terminated.

We also found that there were occurrences of “Out of
Module References” or OOMRs which referred directly into
the DUT from the SystemVerilog. For these we created
$htb_register_read and $htb_register_write system tasks.
These work much like $htb_register_portlist in that their
compiletf routines add to the list of signals which are registered
with the interface. The arguments consist of a string that
represents the DUT path to the object of interest, and the object
on the IUS side. We also found that macros are frequently
used in referencing OOMR signals in the DUT, so we added
$htb_define_macro(“MacroName”,”MacroValue”); If the
name string in $htb_register_read or $htb_register_write start
with a ` character, we expand the following string with the
defined macro. This eases the conversion of the original
source code.

The VPI cannot directly drive nets. It can deposit values
onto nets, but they will be overwritten as soon as any of the
net’s HDL drivers change value. Since inout ports are most
often nets, we needed a means by which the VPI could drive
the inout port. We did this by having the user add a register
and a continuous assignment statement to the dummy DUT.
The register is the same size and has the name of the inout port
with “_data” appended. When the interface needs to read the
port, it reads from the net. When it needs to drive the port, it
writes to the register, and the continuous assign propagates the
value to the net. $htb_register_read can find these signals
automatically due to the defined name mapping.

 5

If requested, we will extend this to work with output wire
ports as well.

We found that using the SystemVerilog port list as our
interface definition can be limiting. Sometimes there are
signals in that port list that require special handling, or signals
which we do not want to attach to Mesa. We may in the future
provide a mechanism (much like $htb_register_read and
$htb_register_write) through which the user can individually
register his signals, instead of using $htb_register_portlist.
These tasks could take additional arguments to further refine
how individual signals are handled.

It is important that we know all the signals of interest
($htb_register_portlist, $htb_register_read,
$htb_register_write) and their sizes before we initialize
communication with Mesa. We make use of the order of
simulation related callbacks to configure the interface between
IUS and Mesa

1. compiletf routines: Collect port and argument lists to
build the list of signals to communicate with Mesa.
Each instance of a system task will cause a call to the
compiletf routine for that system task, allowing us to
process all of the related argument and port lists. All
compiletf routines will be complete before the VPI
End of Compile callback occurs.

2. VPI End of Compile: Register the collected port and
argument lists with Mesa.

3. VPI Start of Simulation: At this time we perform
final configuration and set up the time related
callback to pass control to Mesa

4. VPI After Delay: We use this callback to pass control
to Mesa after a certain period of time.

When Mesa passes control to IUS, Mesa has the
opportunity to specify a number of cycles for IUS to run. This
number of cycles is converted into a delay using the cycle
length and local time scale, and a VPI cbAfterDelay callback is
scheduled. IUS simulates until this callback matures. The
callback occurs, and control is passed back to Mesa.

Each time that control passes from Mesa to IUS, Mesa
reads the output and inout signals from the DUT and passes the
updates to the HTB component through a provided api. IUS
reads this information from HTB, and drives it into the Verilog
testbench. Similarly, each time that control passes from IUS to
Mesa, IUS reads the input and inout signals from the testbench
and passes the updates to the HTB component. Mesa then

reads the data from the HTB component and drives it into the
DUT.

We chose to use a simple one character per bit
representation for both scalars and vectors. This was easier to
code and debug, but does leave room for future optimization.
At this point, all signals are read and written each cycle. This
will be optimized such that only the signals that change will be
copied.

III. ISSUES CONSIDERED

We discussed and resolved many issues regarding
coordination and communication between the simulators. We
present here these issues and our solution. These questions and
answers can also serve as a FAQ.

1) How will time and cycles be advanced?
The IBM simulator is a cycle based simulator, and ncsim is

an event based simulator which operates based on physical
elapsed time. Therefore, the verification engineer must
determine which clock in the cycle simulation is the one with
the smallest clock cycle and also know the length of that cycle.
The verification engineer specifies that time length to the
ncsim simulator as the time elapsed during "one clock cycle
length". The IBM simulator is the "master" in the HTB
simulation and determines how many clock cycles to advance
at each interval. That number of cycles is communicated to the
ncsim simulator which translates the number of cycles into a
length of time. The ncsim simulator runs for that length of time
and then pauses to "sync" up with the IBM simulator.

2) How will the SystemVerilog simulator simulate an

existing VIP/UVC with minimal changes and drive/sample the

DUT in the cycle simulator?
The motivating usage scenario for HTB is the integration

of an off the shelf Verilog design unit into a larger
environment. This unit will be connected into a larger design at
the Verilog design's interfaces (inputs and outputs and inouts).
In the usual ncsim simulation the Verilog design and
SystemVerilog testbench are compiled together such that the
DUT ports are directly connected to the UVC’s interfaces.
However, in the HTB solution the DUT exists only in the IBM
simulator so this connection no longer exists.

The verification engineer must make a minor modification
to the top Verilog design component definition to exclude the
definition of the design and include an invocation of a system
task $htb_register_portlist which tells the ncsim-HTB
component to read the portlist of the design. HTB samples
values on input ports from the TB and drives the DUT input
ports at the sync-points described in II A. It does the opposite
for DUT output ports on the dummy DUT.

This question is answered more completely and with
examples in section II.D.3 “Signal Registration”.

3) How will the simulators stay in sync with respect to

important execution points such as initialization, execution,

and reporting of results?
The simulators have these important execution points pre-

defined which are explained in the "sync points" section above.
These sync points force each simulator to stop and wait at

 6

those pre-defined points so that information can be exchanged
between the simulators.

The simulators also utilize the few sync points enabled
within each simulation interval. IBM VIP in C++ has its own
concept of phasing which are called “Stages”. Once we
mapped and understood the intended function of each phase
and stage, we included code to keep the simulators in sync with
respect to these phases and stages. For example, we didn’t
want to start transaction collection and checking in the UVC
checker until we knew that the design had come out of reset
and that the config registers were programmed. During each
interval, the ncsim simulator communicates via sync point to
the IBM simulator whether it is "finished" or "busy" in that
particular phase. If the IBM simulator receives a "busy"
message from ncsim regarding a particular phase, then both
simulators will stay in that phase/stage until all pieces of the
test bench, including ncsim, report "finished". If the IBM
simulator receives a "finished" from the ncsim simulator
regarding a phase, and if all other test bench components are
finished with that phase, then the IBM simulator will move to
the next phase and signal to ncsim to do the same.

4) How will Incisive communicate UVM_ERROR type

messages to the Mesa simulator?
The ncsim simulator can place UVM_ERROR type

messages on a message queue maintained by the HTB core
library at any time. At a pre-defined sync point, the IBM
simulator will fetch messages from the queue. When the IBM
simulator fetches messages from the queue, it will also
examine the type of each message. At this time, the IBM
simulator is configured to consider UVM_FATAL and
`UVM_ERROR to be a sim terminating error. However, that
configuration can be easily modified on either side.

5) How will each simulator communicate tool errors or

the need to abort the sim?
Each "sync point" allows each simulator to send the name

of the sync point it is waiting at, whether it is finished or busy
in that phase, and a flag signaling if it needs to abort or not. If
the simulator needs to abort immediately (immediately after
the sync point) then it will set the abort flag. The other
simulator checks for that flag and will also exit as gracefully as
possible.

IV. HYBRID TESTBENCH CHALLENGES AND NEXT STEPS

A. Restrictions Placed on Solution

This approach is designed to minimize code changes in
SystemVerilog testbench if the testbench complies with UVM
guidelines. For instance, the SystemVerilog Interface is used
to abstract connection between design and testbench. The
SystemVerilog interface is also used to encapsulate properties
and assertions. If the SV testbench is not UVM compliant and
uses OOMRs for signal access/assertions, the testbench porting
to HTB will require significant rewrite.

Secondly, this approach relies on a synchronous design
which allows a clean mapping of a cycle in Mesa into a time
quantum in event driven simulation.

B. UVM All the way but reality strikes

We encountered a style of OOMRs in SV VIP on a real
project that we had to deal with. There was not any other
better approach to make it easier to port to hybrid testbench.
This is the case where a SV checker is monitoring something
deep in the DUT hierarchy.

Figure 5. Simple example of a need for hierarchical access

For example, Figure 5 shows a simple code fragment that
illustrates the problem. dut_i.data in the simulator needs to be
wired to tb_if.data for the SV checker to work. However, if
the dut instance is embedded in the larger system, the port map
doesn’t work and an OOMR access is required. To solve this
problem we created a handful of system tasks to declaratively
register an implicit read from or a write to a hierarchical path in
the design from a corresponding signal in the interface.

Here is an example of registering an OOMR input signal:

C. Pico seconds or a cycle?

In order for UVM testbenches to work properly in HTB,
the verification engineer must properly pass to ncsim via a
provided command line option how long a one clock cycle is in
Mesa. It is dangerous to use # delays in SV TB to drivers or
procedural code. For example, if the driver code in
SystemVerilog has a # delay to model asynchronous behavior
that is not mapped to a fast clock in the cycle simulator, the
simulation will in all likelihood simulate incorrectly. There is
nothing in HTB that detects this problem explicitly aside from
checkers in the TB misfiring.

D. Future Challenges

The next phase of this project will require more complex
data structure communication between event driven simulator
and C++ testbench. For example, end-to-end checkers such as
scoreboards are implemented in SV or in C++ and can reuse
significant VIP logic by passing transactions across the
language boundary using a TLM analysis port or export and
auto transaction mapping from SV to C++ or vice-versa.

Corner case test scenarios also need better coordination of
stimulus between different VIPs. For example, creating back-
pressure on a FIFO by slowing the read frequency compared to
the write frequency or creating system level congestion to a

 7

shared resource such as DMA or memory controllers. Finer
grain execution control and data sharing will be required to
achieve this level of testing.

V. COST OF HTB SOLUTION

Once a verification team has understood the co-simulation
approach described here at least at a high level, their next
inquiry is always "How much extra time does this co-
simulation take compared to the usual single simulation?".
Clearly, the HTB co-simulation will necessarily cost more
execution time and memory than the usual one simulator
process. However, we need to be able to quantify that cost for
the verification engineer end user.

We propose the following experiments to address this
question. Since the initial usage scenario is a large IBM
verification environment with a smaller SystemVerilog test
bench, we will start our experiments with this in mind as
described below:

• Mesa standalone: Capture baseline performance of a
single Mesa (IBM) simulation without any HTB or
SystemVerilog components. This is our starting point
for analysis.

• Minimal HTB: Capture the performance of the same
Mesa (IBM) simulation with the HTB functionality
and ncsim process added but without any
SystemVerilog testbench enabled. This experiment
will show the cost of adding the HTB infrastructure
and sync points every cycle alone. The ncsim process
will still also be running, but it will not require any
time for SystemVerilog test bench activities. In this
mode, signal data will not be communicated between
the simulation environments.

• Regular HTB: Capture the performance of the above
experiment with the SystemVerilog test bench
enabled. The ncsim process will need to elaborate and
simulate the testbench. Comparing the performance of
this experiment to the previous will show how much
of the additional cost of an HTB sim is related to the
SystemVerilog simulation and communication of
things like signal reads and writes and message
passing.

The goal of the above experiments is to quantify the
minimum expected tax of an HTB simulation to execution time
and memory and also to show an example benchmark using an
existing use case. This data should also inform us (as the HTB
developers) as to which parts of the HTB interface may need
optimizations or, perhaps, where further improvements are not
possible.

At this time, we have some preliminary results from an
execution of the above experiment on a single HTB simulation
environment. These experiments were run on a single Linux
machine, so we do not need to account for system specification
variations. However, these experiments were run on systems
exposed to the fluctuations of a batch environment, so system
load could have varied during the experiments. Given that only
two sets of experiments were run on one simulation
environment and the test machine was not otherwise idle, these

results are not scientific. However, they are still a useful data
point for both users and developers of HTB.

We found that the simulation time increased only slightly
when moving from the “Mesa standalone” environment to the
“Minimal HTB” environment. The increase in simulation time
could be considered “in the noise” when running simulations
on a batch system. However, we conclude that there indeed
must be a small increase in CPU time when adding HTB and
the ncsim process to the simulation environment. This is
expected since the Mesa process will stop a few times each
cycle to communicate with HTB. Also, the memory footprint
of the “Minimal HTB” simulation grew by a small amount for
the Mesa process. This is due to the shared memory segments
for HTB being allocated and accounted to the Mesa process.

Next, we would like to compare the “Mesa standalone”
simulation to the “Regular HTB” simulation. In this
experiment, we used a cached elaboration on the ncsim side for
best performance. In the “Regular HTB” simulation, the mesa
process memory utilization grew by the same amount as for the
“Minimal HTB” simulation. The wall clock time of the
“Regular HTB” simulation increased to about 1.7x to 2.1x the
wall clock time of the “Mesa standalone” process. We consider
this to be a useful data point, but we also expect this factor to
be largely dependent on the complexity and size of the
SystemVerilog test bench, Fusion test bench, and the number
of signals that are synchronized across the HTB interface. In
other words, your mileage may vary..

VI. Summary

We have successfully built a co-simulation solution
leveraging the standardization of the UVM methodology and
base-class library, the flexibility of the VPI interface and the
DPI interfaces in the Incisive simulator. In order to develop
and debug this solution, IBM and Cadence decided to use a
simple UVM example called “ubus” that contained all the
necessary ingredients of a real life UVM environment. The
example proved instrumental to prototype different ideas
quickly and freely exchange code without worrying about IP
security.

The HTB co-simulation solution is presently being used on
an IBM SoC design where 100% of the active testbench is in
IBM’s simulator and a complex checker from an IP-level
SystemVerilog testbench is being re-used and simulated by
ncsim to aid in debug and system-level checking.

ACKNOWLEDGMENT

We would like to acknowledge the following coworkers for
their assistance in the development of the HTB solution: Ron
Cash, Wolfgang Roesner, Walt Kowalski from IBM and Amit
Kohli from Cadence.

References

[1] "The UVM User's Guide", UVMv1.1, uvmworld.org,
2013

[2] "The UVM Reference Manual", UVMv1.1,
uvmworld.org, 2013

[3] "Application Programming Interfaces", IEEE Standard for
SystemVerilog 1800, Feb, 2013

