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Abstract— IBM requires a solution to enable the re-use of 
SystemVerilog testbenches which accompany imported Verilog 
design IP in their larger custom verification environment. These 
SystemVerilog testbenches need to be integrated with IBM’s 
custom C++ testbenches and run in IBM’s cycle simulator on the 
entire DUT. This paper will present a high level view of our co-
simulation solution which simulates the SystemVerilog 
testbenches by a commercially available event simulator and 
simulates the C++ testbenches and DUT in IBM’s cycle 
simulator. This paper will address challenges resolved in creating 
this solution including synchronizing the event driven test bench 
with the cycle simulator, synchronizing test bench phases, 
connecting SystemVerilog test bench signals to the design, 
communicating error messages between the simulators, handling 
tool errors gracefully, and coordinating end of test status and 
simulator exit. Additionally, this paper will summarize the 
architecture of the solution enabled by the versatility of the 
UVM, DPI, VPI and IBM methodologies, present future 
challenges, show performance measurements of the initial 
solution, and suggest how these techniques could be used in 
different SystemVerilog test bench reuse scenarios.  

Keywords—functional verification; co-simulation; cycle 
simulation; event simulation; Universal Verification Methodology 

I. INTRODUCTION 

A. Introduction and motivation   

Microprocessor designs today consist of SOCs which 
integrate design IP from diverse sources like memory 
subsystems, PCI Express, and on-chip peripheral interfaces. 
For design verification, IBM designers use a cycle based 
simulation methodology enabled by custom simulation tools 
tuned to their design styles. The new challenge that the IBM 
verification teams face is the integration of the event driven 
SystemVerilog test bench code which accompanies IBM 
created IP blocks or off-the-shelf Verilog design into a full chip 
environment with their custom C++ test benches attached to 
their cycle simulation environment.  

IBM solved this integration problem by co-simulating a 
UVM test bench running in an event driven SystemVerilog 
simulator with their cycle simulator.  This approach has 

significant advantages: IBM engineers can avoid re-
implementing existing SystemVerilog test benches. IBM can 
also leverage commercial SystemVerilog simulators instead of 
developing their own SystemVerilog constraints solvers and 
simulation engine. We call this co-simulation solution the 
Hybrid Testbench or HTB. 

The solution described here connects a SystemVerilog 
engine to a cycle simulator. This solution can be generalized to 
other engines simulating a DUT with a C or C++ interface. We 
will enumerate and address the challenges we encountered in 
creating this solution. We took advantage of the versatility 
enabled by the DPI, VPI, UVM and IBM technologies to 
provide this solution in a handful of self contained packages. 
We will elaborate on these techniques and show how this 
simplifies the user view of the solution. We will also provide 
the results of performance experiments on the solution as 
provided to an IBM internal design team. 

In this paper, we will often refer to the IBM cycle simulator 
as the “Mesa simulator” which is the internal name for their 
cycle simulation tool and the cycle simulation environment in 
general. IBM has developed a C++ based verification 
environment and library called “Fusion” which is similar in 
man respects to UVM. Our co-simulation solution was created 
with Cadence’s event simulator known as “ncsim” or “IUS”, so 

 
Figure 1: Simplified Drawing of Desired Solution 
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we will use those terms interchangeably here to indicate the 
“event simulator” as well. Again, we will use the term Hybrid 
Testbench or the acronym HTB to refer to the co-simulation 
solution. 

This paper should be of interest to designers and 
verification engineers seeking to reuse SystemVerilog test 
bench components with different design abstractions (untimed 
C/C++ models) or connecting SystemVerilog testbenches to 
algorithmic/modeling engines such as Matlab. 

B. Related Work 

IBM has significant experience in developing co-simulation 
solutions. Experiences in these other approaches have helped 
inform the solution discussed here. We will briefly compare 
and contrast these co-simulations with the one discussed here.  

One existing co-simulation solution, FusionNC, has the 
entire DUT and some SystemVerilog test benches simulated in 
an event driven simulator with the C++ test bench components 
handled by IBM's cycle simulation based test bench 
environment. The FusionNC solution could be considered the 
"opposite" of the solution presented here (where the DUT is 
entirely in IBM's cycle simulation environment). FusionNC is 
used when testbench components already exist in C++ or 
where it's easier to create them there. In this case, the DUT is 
simulated in ncsim either because the netlist is encrypted and 
can't be recompiled for the cycle simulator or when the design 
lends itself better to event simulation. 

Another existing co-simulation solution, Cycle Cosim, 
utilizes two simulators each containing both test bench and 
design components: The event driven simulation has test bench 
and design components where it is assumed that the 
SystemVerilog test bench primarily accesses the Verilog 
design. The cycle driven simulation also has both C++ test 
bench components and its own, separate design components 
where it is assumed the C++ test bench primarily accesses the 
design in the cycle simulator. The two design pieces under 
simulation connect to each other at the IO level via a "bridge". 
The verification engineer must carry out steps to determine 
which signals need to be connected between the two designs 
and create this bridge. If there is any need for the 
SystemVerilog test bench to access the design running in the 
cycle simulator, then those signals must be manually brought 
out to the IO level "bridge" between the two models. In the 
solution presented in this paper, there is no need to manually 
create a "bridge" as there is only one unified DUT. While the 
SystemVerilog testbench will normally only access signals in 
its corresponding Verilog design IP, it can also formulaically 
access any signal in the design either inside or outside of the 
corresponding design IP. 

Cadence has developed many co-simulation solutions to 
simulate designs in different engines such as analog solvers or 
a hardware emulator while other portions of the design or 
testbench simulates in an event driven digital software 
simulator.  These experiences enabled the team to collaborate 
with IBM to propose a practical solution that builds on 
standard interfaces to enable an exemplary co-simulation 
approach.   

Fig. 2 Simplified Drawing of Solution Architecture. 

 

II. SOLUTION ARCHITECTURE 

A. Approach 

Before we began to create the HTB solution, the IBM and 
Cadence technical teams conducted brainstorming sessions 
regarding the breadth of usage scenarios of our current 
simulation tools, which of these usage scenarios the HTB 
simulation might need to support, and the best software 
architecture for the planned co-simulation solution. We 
considered multithreading approaches, multiple process 
approaches and various means of communicating information 
between the simulators such as pipe or shared memory 
approaches. As an example of a key usage scenario that drove 
an architectural decision, both IBM's and Cadence's simulation 
environments support features such as checkpoint and restart. 
However, both support this methodology in notably different 
ways. The end result of this discussion is that architecting the 
HTB simulation as a multi-process rather than a multi-threaded 
solution would retain the greatest flexibility. Similarly, the 
multi-process approach reduces complexity and improves 
ability to debug the simulations since each simulator will have 
its own process and memory space. 

HTB actually uses three processes. The HTB simulation 
starts with a single process which sets up the HTB Core 
Library infrastructure and then initiates the two simulator 
processes. After the simulation processes are dispatched, the 
parent process simply waits for the two simulator processes to 
return. During the waiting period, the parent process can also 
monitor the children simulator processes. When both child 
processes return, the parent process executes some clean up 
code to ensure that  shared resources are released. 

The HTB software architecture can be decomposed into a 
three layer solution which we describe in this section. This 
separation of the solution into five pieces reduces complexity 
from a component dependence point of view and enables re-
use from a simulator point of view. Fortunately, these 
components are well hidden from the end user. 
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B. HTB-Core Library 

The HTB Core Library provides a shared object which 
implements a C API with APIs covering the requirements to: 
pass and retrieve messages, pass and retrieve signal read or 
write requests, signal how much time should be advanced, or 
stop at sync points where either simulator can communicate 
status or optionally communicate that it has encountered a 
scenario where it needs to abort so the other simulator can 
handle this gracefully. This C API provides a unified interface 
to several internal classes which implement the needed 
functionality. The advantage of providing a C API interface via 
a shared Dynamically Loaded Module (DLM) is that any C or 
C++ based program can load this DLM and access the APIs. 
Any such program will also need to link against the header 
file(s) accompanying the DLM 

1) Posix Shared Memory and Semaphores 
The HTBlib implements the required functionality via 

Posix shared memory and semaphores. The advantage of Posix 
shared memory is that it is extremely high performance, e.g. it 
is as fast as memory local to the process since it is referenced 
in the same manner 

2) Sync Points 
We will explicitly introduce one technique used in our 

solution as it is referenced many subsequent explanations. 
First, each simulator in the HTB execution stops at a set of 
predefined, named points called “sync points”. At every “sync 
point” each simulator waits for the other simulator to reach that 
point before proceeding. At every sync point, each simulator 
can also communicate if it is ready for the next phase of 
simulation (as in UVM phase) or not and whether or not it 
would like to abort. 

These sync points include one right after elaboration and 
before sim time begins and another at the end of simulation 
before cleanup. The simulators also stop at a few sync points 
during each "simulation interval" to retrieve or send 
information about the number of cycles to proceed during this 
interval, to exchange signal read/write updates and exchange 
messages, and to communicate status regarding phase. At any 
sync point, a simulator can communicate the need to abort the 
sim. 

C. Fusion-HTB Interface 

The Fusion-HTB interface is the layer which seamlessly 
integrates into the Fusion phasing and signal handling 
methodology in a manner very similar to how IBM's C++ 
based verification IP integrates into the Fusion methodology. 
This layer invokes the API's provided by the HTB Core 
Library to communicate status, retrieve signal read/write 
requests or UVM messages that ultimately originate from the 
Ncsim-HTB Interface, and so on. 

D. Ncsim-HTB Interface 

1) Phase-Stage Synchronization  
The UVM methodology handles phasing in an object 

oriented way through a uvm_phase class.  This class defines 
phase behavior, state, context and exposes interfaces/apis for 
users to use and extend phasing behavior.  In addition, the 
uvm_component class defines virtual tasks and functions 

corresponding to each phase where a VIP can do work in a 
synchronized manner to other VIPs in a testbench as shown in 
Figure 3.   

 

Fig. 3.  UVM Phases 

We take advantage of the uvm_objection feature along with 
uvm_phase apis to synchronize SystemVerilog testbench 
activity with stages in fusion.  We add a class derived from 
uvm_test in the HTB package (called sync_phases) that gates 
the mapped phases from progressing using post_phase virtual 
tasks until fusion is also done with that stage.  An instance of 
this class is required in the top-level Verilog wrapper or on the 
command line to provide the required synchronization with 
fusion stages . 

Fig. 4. Mechanism to synchronize Phases and Stages 

Using a post_phase method such as post_configure_phase 
allows us to utilize the property that *ALL* UVM testbench 
components are done with their configuration phase and are 
now in “transition” to the next phase.   As shown in Figure 4, 
UVM testbench will be suspended until the 
glob_fusion_stage_sync signal has the value encoded by   
INIT_LOOP_DONE indicating that Fusion is ready to move to 
the next stage.  The phase.drop_objection api allows UVM to 
proceed to the next time-consuming phase. 

2) Message Passing 
As part of inter-simulator testbench communication where 

the IBM simulator serves as the master, it is necessary to send 
UVM messages from the ncsim simulator to the IBM simulator 
for further processing.  In order to do so, the HTB utilizes a 
custom report server derived from the UVM built-in 
uvm_report_server.  The custom server is assisted by DPI-C 
code which is used to queue messages that need to be 
processed by the HTBlib layer. 

Messages in UVM have an associated severity level and 
action.  There are four severity levels including: information, 
warning, error, and fatal.  Message actions can include sending 
to the display/log, counting message types, terminating the 

 
Figure 5 UVM Phases 
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simulation, or no specified action.  Each severity level has an 
associated set of one or more default actions. 

There is not a one-to-one match of message severity levels 
and actions between UVM and the IBM simulator.  In UVM, 
error messages do not by default terminate the simulation.  The 
user can override this behavior and require that a simulation 
terminate after a specified number of errors.  In UVM, fatal 
messages always cause an immediate termination.  The IBM 
simulator on the other hand does not distinguish between error 
and fatal conditions, defining only an error state.  An error in 
the IBM simulator always leads to termination of the 
simulation. 

A custom UVM report server is required to intercept UVM 
messages and their programmed actions and remap them to the 
corresponding IBM simulator severity levels.  The following 
table provides the mapping between the two: 
 

UVM Severity Level IBM Simulator Severity 
Level 

UVM_INFO No mapping; not forwarded  

UVM_WARNING Warning 

UVM_ERROR  
(non-terminating) 

Warning 

UVM_ERROR 
(terminating) 

Error 

UVM_FATAL Error 

 

The modifications made in the custom report server derived 
from the base uvm_report_server are minimal and well 
documented.  If desired, users are able to create their own 
custom report servers as well, but they must inherit from the 
HTB custom report server and follow clearly defined 
instructions in order to preserve the above necessary 
functionality. 

3) Signal Registration 
In the HTB usage scenario, the Verilog design unit under 

test is connected to a larger design at the Verilog design’s 
interfaces (inputs, outputs, and inouts). The design is simulated 
in the Mesa or IBM simulator. Therefore, communication 
between a testbench interface signal and a DUT port must be 
handled via the HTB interface.  In an HTB simulation, the top 
level Verilog design module’s portlist is retained, but the 
implementation of the design is removed. This port list 
represents the signals to be connected to the Mesa DUT. With 
a few exceptions, the module definition contains only a single 
initial block, which contains a call to the system task 
$htb_register_portlist. This system task does nothing when 
called during the flow of simulation, but its related compiletf, 
executed before simulation begins, performs consistency 
checks and configures the interface between ncsim and Mesa.  

 

The compiletf routine for $htb_register_portlist iterates 
over the port list of the containing module and builds a list of 
signals to be connected to Mesa.  The direction of signal flow 
(Mesa to IUS, IUS to Mesa, or both) is taken from the port 
direction on the Verilog module.  The compiletf routine checks 
that ports are of appropriate type. HTB currently only supports 
simple scalar and vector nets and registers.  The routine also 
checks that the timescale requested by Mesa can be supported 
by the time precision of the Verilog portion of the design.  All 
errors occurring during this phase are collected and reported 
before the simulation is terminated. 

We also found that there were occurrences of “Out of 
Module References” or OOMRs which referred directly into 
the DUT from the SystemVerilog.  For these we created 
$htb_register_read and $htb_register_write system tasks.  
These work much like $htb_register_portlist in that their 
compiletf routines add to the list of signals which are registered 
with the interface.  The arguments consist of a string that 
represents the DUT path to the object of interest, and the object 
on the IUS side.  We also found that macros are frequently 
used in referencing OOMR signals in the DUT, so we added 
$htb_define_macro(“MacroName”,”MacroValue”);  If the 
name string in $htb_register_read or $htb_register_write start 
with a ` character, we expand the following string with the 
defined macro.  This eases the conversion of the original 
source code. 

The VPI cannot directly drive nets.  It can deposit values 
onto nets, but they will be overwritten as soon as any of the 
net’s HDL drivers change value.  Since inout ports are most 
often nets, we needed a means by which the VPI could drive 
the inout port.  We did this by having the user add a register 
and a continuous assignment statement to the dummy DUT.  
The register is the same size and has the name of the inout port 
with “_data” appended.  When the interface needs to read the 
port, it reads from the net.  When it needs to drive the port, it 
writes to the register, and the continuous assign propagates the 
value to the net. $htb_register_read can find these signals 
automatically due to the defined name mapping. 
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If requested, we will extend this to work with output wire 
ports as well. 

We found that using the SystemVerilog port list as our 
interface definition can be limiting.  Sometimes there are 
signals in that port list that require special handling, or signals 
which we do not want to attach to Mesa.  We may in the future 
provide a mechanism (much like $htb_register_read and 
$htb_register_write) through which the user can individually 
register his signals, instead of using $htb_register_portlist.  
These tasks could take additional arguments to further refine 
how individual signals are handled.  

It is important that we know all the signals of interest 
($htb_register_portlist, $htb_register_read, 
$htb_register_write) and their sizes before we initialize 
communication with Mesa.  We make use of the order of 
simulation related callbacks to configure the interface between 
IUS and Mesa 

  

1. compiletf routines: Collect port and argument lists to 
build the list of signals to communicate with Mesa.  
Each instance of a system task will cause a call to the 
compiletf  routine for that system task, allowing us to 
process all of the related argument and port lists.  All 
compiletf routines will be complete before the VPI 
End of Compile callback occurs. 

2. VPI End of Compile: Register the collected port and 
argument lists with Mesa. 

3. VPI Start of Simulation: At this time we perform 
final configuration and set up the time related 
callback to pass control to Mesa 

4. VPI After Delay: We use this callback to pass control 
to Mesa after a certain period of time. 

  

When Mesa passes control to IUS, Mesa has the 
opportunity to specify a number of cycles for IUS to run.  This 
number of cycles is converted into a delay using the cycle 
length and local time scale, and a VPI cbAfterDelay callback is 
scheduled.  IUS simulates until this callback matures.  The 
callback occurs, and control is passed back to Mesa. 

Each time that control passes from Mesa to IUS, Mesa 
reads the output and inout signals from the DUT and passes the 
updates to the HTB component through a provided api.  IUS 
reads this information from HTB, and drives it into the Verilog 
testbench.  Similarly, each time that control passes from IUS to 
Mesa,  IUS reads the input and inout signals from the testbench 
and passes the updates to the HTB component.  Mesa then 

reads the data from the HTB component and drives it into the 
DUT. 

We chose to use a simple one character per bit 
representation for both scalars and vectors.  This was easier to 
code and debug, but does leave room for future optimization.  
At this point, all signals are read and written each cycle.  This 
will be optimized such that only the signals that change will be 
copied. 

III. ISSUES CONSIDERED 

We discussed and resolved many issues regarding 
coordination and communication between the simulators. We 
present here these issues and our solution.  These questions and 
answers can also serve as a FAQ. 

1) How will time and cycles be advanced? 
The IBM simulator is a cycle based simulator, and ncsim is 

an event based simulator which operates based on physical 
elapsed time. Therefore, the verification engineer must 
determine which clock in the cycle simulation is the one with 
the smallest clock cycle and also know the length of that cycle. 
The verification engineer specifies that time length to the 
ncsim simulator as the time elapsed during "one clock cycle 
length". The IBM simulator is the "master" in the HTB 
simulation and determines how many clock cycles to advance 
at each interval. That number of cycles is communicated to the 
ncsim simulator which translates the number of cycles into a 
length of time. The ncsim simulator runs for that length of time 
and then pauses to "sync" up with the IBM simulator. 

2) How will the SystemVerilog simulator simulate an 

existing VIP/UVC with minimal changes and drive/sample the 

DUT in the cycle simulator? 
The motivating usage scenario for HTB is the integration 

of an off the shelf Verilog design unit into a larger 
environment. This unit will be connected into a larger design at 
the Verilog design's interfaces (inputs and outputs and inouts). 
In the usual ncsim simulation the Verilog design and 
SystemVerilog testbench are compiled together such that the 
DUT ports are directly connected to the UVC’s interfaces. 
However, in the HTB solution the DUT exists only in the IBM 
simulator so this connection no longer exists.  

The verification engineer must make a minor modification 
to the top Verilog design component definition to exclude the 
definition of the design and include an invocation of a system 
task $htb_register_portlist which tells the ncsim-HTB 
component to read the portlist of the design. HTB samples 
values on input ports from the TB and drives the DUT input 
ports  at the sync-points described in II A.   It does the opposite 
for DUT output ports on the dummy DUT. 

This question is answered more completely and with 
examples in section II.D.3 “Signal Registration”. 

3) How will the simulators stay in sync with respect to 

important execution points such as initialization, execution, 

and reporting of results? 
The simulators have these important execution points pre-

defined which are explained in the "sync points" section above. 
These sync points force each simulator to stop and wait at 
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those pre-defined points so that information can be exchanged 
between the simulators. 

The simulators also utilize the few sync points enabled 
within each simulation interval.  IBM VIP in C++ has its own 
concept of phasing which are called “Stages”. Once we 
mapped and understood the intended function of each phase 
and stage, we included code to keep the simulators in sync with 
respect to these phases and stages.  For example, we didn’t 
want to start transaction collection and checking in the UVC 
checker until we knew that the design had come out of reset 
and that the config registers were programmed.  During each 
interval, the ncsim simulator communicates via sync point to 
the IBM simulator whether it is "finished" or "busy" in that 
particular phase. If the IBM simulator receives a "busy" 
message from ncsim regarding a particular phase, then both 
simulators will stay in that phase/stage until all pieces of the 
test bench, including ncsim, report "finished". If the IBM 
simulator receives a "finished" from the ncsim simulator 
regarding a phase, and if all other test bench components are 
finished with that phase, then the IBM simulator will move to 
the next phase and signal to ncsim to do the same. 

4) How will Incisive communicate UVM_ERROR type 

messages to the Mesa simulator? 
The ncsim simulator can place UVM_ERROR type 

messages on a message queue maintained by the HTB core 
library at any time. At a pre-defined sync point, the IBM 
simulator will fetch messages from the queue. When the IBM 
simulator fetches messages from the queue, it will also 
examine the type of each message. At this time, the IBM 
simulator is configured to consider UVM_FATAL and 
`UVM_ERROR to be a sim terminating error. However, that 
configuration can be easily modified on either side. 

5) How will each simulator communicate tool errors or 

the need to abort the sim? 
Each "sync point" allows each simulator to send the name 

of the sync point it is waiting at, whether it is finished or busy 
in that phase, and a flag signaling if it needs to abort or not. If 
the simulator needs to abort immediately (immediately after 
the sync point) then it will set the abort flag. The other 
simulator checks for that flag and will also exit as gracefully as 
possible. 

IV. HYBRID TESTBENCH CHALLENGES AND NEXT STEPS 

A. Restrictions Placed on Solution  

This approach is designed to minimize code changes in 
SystemVerilog testbench if the testbench complies with UVM 
guidelines.   For instance, the SystemVerilog Interface is used 
to abstract connection between design and testbench.  The 
SystemVerilog interface is also used to encapsulate properties 
and assertions.  If the SV testbench is not UVM compliant and 
uses OOMRs for signal access/assertions, the testbench porting 
to HTB will require significant rewrite. 

Secondly, this approach relies on a synchronous design 
which allows a clean mapping of a cycle in Mesa into a time 
quantum in event driven simulation. 

B. UVM All the way but reality strikes 

We encountered a style of OOMRs in SV VIP on a real 
project that we had to deal with.  There was not any other 
better approach to make it easier to port to hybrid testbench.   
This is the case where a SV checker is monitoring something 
deep in the DUT hierarchy.   

 

Figure 5.  Simple example of a need for hierarchical access 

For example, Figure 5 shows a simple code fragment that 
illustrates the problem.  dut_i.data in the simulator needs to be 
wired to tb_if.data for the SV checker to work.  However, if 
the dut instance is embedded in the larger system, the port map 
doesn’t work and an OOMR access is required.  To solve this 
problem we created a handful of system tasks to declaratively 
register an implicit read from or a write to a hierarchical path in 
the design from a corresponding signal in the interface. 

Here is an example of registering an OOMR input signal:  

 
  

C. Pico seconds or a cycle? 

In order for UVM testbenches to work properly in HTB, 
the verification engineer must properly pass to ncsim via a 
provided command line option how long a one clock cycle is in 
Mesa.  It is dangerous to use # delays in SV TB to drivers or 
procedural code.  For example, if the driver code in 
SystemVerilog has a # delay to model asynchronous behavior 
that is not mapped to a fast clock in the cycle simulator, the 
simulation will in all likelihood simulate incorrectly.  There is 
nothing in HTB that detects this problem explicitly aside from 
checkers in the TB misfiring. 

D. Future Challenges 

The next phase of this project will require more complex 
data structure communication between event driven simulator 
and C++ testbench.  For example, end-to-end checkers such as 
scoreboards are implemented in SV or in C++ and can reuse 
significant VIP logic by passing transactions across the 
language boundary using a TLM analysis port or export and 
auto transaction mapping from SV to C++ or vice-versa.  

Corner case test scenarios also need better coordination of 
stimulus between different VIPs.  For example, creating back-
pressure on a FIFO by slowing the read frequency compared to 
the write frequency or creating system level congestion to a 
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shared resource such as DMA or memory controllers.  Finer 
grain execution control and data sharing will be required to 
achieve this level of testing.   

V. COST OF HTB SOLUTION 

Once a verification team has understood the co-simulation 
approach described here at least at a high level, their next 
inquiry is always "How much extra time does this co-
simulation take compared to the usual single simulation?". 
Clearly, the HTB co-simulation will necessarily cost more 
execution time and memory than the usual one simulator 
process. However, we need to be able to quantify that cost for 
the verification engineer end user.  

We propose the following experiments to address this 
question. Since the initial usage scenario is a large IBM 
verification environment with a smaller SystemVerilog test 
bench, we will start our experiments with this in mind as 
described below: 

• Mesa standalone: Capture baseline performance of a 
single Mesa (IBM) simulation without any HTB or 
SystemVerilog components. This is our starting point 
for analysis.  

• Minimal HTB: Capture the performance of the same 
Mesa (IBM) simulation with the HTB functionality 
and ncsim process added but without any 
SystemVerilog testbench enabled. This experiment 
will show the cost of adding the HTB infrastructure 
and sync points every cycle alone. The ncsim process 
will still also be running, but it will not require any 
time for SystemVerilog test bench activities. In this 
mode, signal data will not be communicated between 
the simulation environments. 

• Regular HTB: Capture the performance of the above 
experiment with the SystemVerilog test bench 
enabled. The ncsim process will need to elaborate and 
simulate the testbench. Comparing the performance of 
this experiment to the previous will show how much 
of the additional cost of an HTB sim is related to the 
SystemVerilog simulation and communication of 
things like signal reads and writes and message 
passing. 

The goal of the above experiments is to quantify the 
minimum expected tax of an HTB simulation to execution time 
and memory and also to show an example benchmark using an 
existing use case. This data should also inform us (as the HTB 
developers) as to which parts of the HTB interface may need 
optimizations or, perhaps, where further improvements are not 
possible. 

At this time, we have some preliminary results from an 
execution of the above experiment on a single HTB simulation 
environment. These experiments were run on a single Linux 
machine, so we do not need to account for system specification 
variations. However, these experiments were run on systems 
exposed to the fluctuations of a batch environment, so system 
load could have varied during the experiments. Given that only 
two sets of experiments were run on one simulation 
environment and the test machine was not otherwise idle, these 

results are not scientific. However, they are still a useful data 
point for both users and developers of HTB.   

We found that the simulation time increased only slightly 
when moving from the “Mesa standalone” environment to the 
“Minimal HTB” environment. The increase in simulation time 
could be considered “in the noise” when running simulations 
on a batch system. However, we conclude that there indeed 
must be a small increase in CPU time when adding HTB and 
the ncsim process to the simulation environment. This is 
expected since the Mesa process will stop a few times each 
cycle to communicate with HTB. Also, the memory footprint 
of the “Minimal HTB” simulation grew by a small amount for 
the Mesa process. This is due to the shared memory segments 
for HTB being allocated and accounted to the Mesa process. 

Next, we would like to compare the “Mesa standalone” 
simulation to the “Regular HTB” simulation. In this 
experiment, we used a cached elaboration on the ncsim side for 
best performance. In the “Regular HTB” simulation, the mesa 
process memory utilization grew by the same amount as for the 
“Minimal HTB” simulation. The wall clock time of the 
“Regular HTB” simulation increased to about 1.7x to 2.1x the 
wall clock time of the “Mesa standalone” process. We consider 
this to be a useful data point, but we also expect this factor to 
be largely dependent on the complexity and size of the 
SystemVerilog test bench, Fusion test bench, and the number 
of signals that are synchronized across the HTB interface. In 
other words, your mileage may vary.. 

VI. Summary  

We have successfully built a co-simulation solution 
leveraging the standardization of the UVM methodology and 
base-class library, the flexibility of the VPI interface and the 
DPI interfaces in the Incisive simulator.   In order to develop 
and debug this solution, IBM and Cadence decided to use a 
simple UVM example called “ubus” that contained all the 
necessary ingredients of a real life UVM environment.  The 
example proved instrumental to prototype different ideas 
quickly and freely exchange code without worrying about IP 
security.   

The HTB co-simulation solution is presently being used on 
an IBM SoC design where 100% of the active testbench is in 
IBM’s simulator and a complex checker from an IP-level 
SystemVerilog testbench is being re-used and simulated by 
ncsim to aid in debug and system-level checking.  
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