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SOC designs require integration of diversely
sourced design and test bench components
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Our challenge is to integrate off-the-shelf
Verilog IP and TB with cycle simulation
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How can you use an event driven TB In a cycle
based methodology without rewriting code?



Let’s explore techniques we used to create our
“*Hybrid Test Bench” co-simulation solution
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The SystemVerilog space Is wide open, so we
needed to pick a TB methodology to scope down

UVC (UVM Verification Component)
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We exploited the scope and features of the UVM
methodology to enable our co-sim solution
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We also took advantage of UVM'’s feature set,

such as phasing, to build our solution
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We extended uvm_phase and used objections to
keep the simulators in sync
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Extensible approach to create additional sync-points, e.g., Post_configure, post_main, etc.
Post_run required for VIPs that don’t use run-time phases



We extended the UVM report_server to pass
messages from ncsim to HTB
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We needed an easy way to connect a test
bench to the DUT and sync the simulators
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Simply connect the test bench to the DUT by
replacing the logic with a system task

module dut nodule dut
input wire redq_master_0. imput. wire reg_master_0,
output reg gnt_master_0. output reg ghnt_master_0.
input wire req_master_L. imput. wire req_master_1.
output. reg gnt_master_1. output reg gnt_master_1.
imput. wire clock. ‘ imput wire clock.
imput. wire resetl: imput. wire reset}

bit[2:0] =t initial %htb_register_portlist{};
always Biposedge clock or posedge reset) begin Mndnodule // dummy
if irezet) begin
start <= 1'h0;
st{=3'hi;
e
elze
caseist)
it hegin A/Begin out of Eeset
start <= 1'kbl;:
st<=3"'h3;
et
At bhegin A/5tart =
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However, hierarchical references into the DUT
from the test bench require modification

nodule foo; nodule foo?
reg [31:0] al. a2; reg [31:0] al, a2:

Mezalut ,.al = al: ‘ initiql
a2 = Mezalut ,a2; begin

$htb_repister_write! "Mezalut ,al1".al);
endnodule /¢ fFoo :hth_register_read{"Hesaﬂut+a2",a2};
e

endmodule 7/ foo
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Also, VPI cannot drive wires.
In this case the test bench must be modified

nodule dut{inoutfuire [31:0] cout. nodule dut{inout wire [31:0] cout.
input wire enl; input wire enl;
Adwon 't work |
initial reg [31:0] cout_data;
fhtb_register_portlisty; assign cout = cout_data;
endnodule /7 dut initial

fhtb_register_portlisty);
endnodule // dut
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We use a VPI trick to simplify initialization

tflata.type = vpiSysTask;

tflata,sysfunctype = wpiSysTask:

tflata.ttname = (PLI_BYTER =) "s$htb_regizter_portlist":
tflata.calltf = htbh_setup_calltt:

tflata,compiletf = hth_setup_compilett !

tflata,.zizetf = 0O}

tflata,uzer_data = O}

wpi_register_systf {atflatal;

The compileTF routines collect connection data.

We use an end of compile callback to process the data collected by
the compiletf routines and register with HTB.

The callTF routine does nothing.

int hth_setup_calltf ichar = p?

i
woli_printf ¢ (PLI_BYTER =) "In htb_setup_calltfhn"iz

return Of
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Custom VPI code synchronizes IUS with HTB
during each simulation interval.

- : Compiletf routines execute
IUS Initialization End of compilation routine execute
After Delay Callback registered
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We used the following VPI routines to enable
the function outlined on previous slides

vpl_register systf vpl _handle

vpi_register _cb vpiSysTfCall
cbAfterDelay vpil_control

vpl_1terate/vpl_scan vpiFinish
vpiPort vpil_get
vplArgument vpiTimePrecision

vpi_put value vpiType

vpi_get value vpiDirection

vpi_get_vlog_info vpi_get_str

vpiName
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We needed the software solution to support all
simulator features, be modular, and be fast

Fully
Featured
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Using processes preserved simulator features
and improved debuggability as a bonus

execv mesa

execv ncsim

simulate simulate




We created distinct software components to

achieve modularity
HTBIib

Hybrid Testbench




We relied on the posix shared memory libraries
to coordinate between processes

Producer and consumer type (FIFO) data sharing

Te
PI €S between two pProcesses
too restrictive

Similar to pipe, data is transferred using /O

Sockets operations between processes on local or
separate machines
Information is shared between processes on a
Shared . . .
single machine by R/W operations from a
memory common segment of memory.

Fast! Versatile!




Shared memory Is an extremely fast
mechanism to share data between processes

Process B
Process A

Map

Graphics obtained from:
http://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemory/
Handy reference: The Linux Programming Interface




HTBIib hides the complexity of shared memory
and semaphores

Graphics obtained from:
http://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemaory/
Handy reference: The Linux Programming Interface
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Thanks! Any questions?
D
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