Reusing UVM Test Benches in a
Cycle Simulator

Kristina Hager, IBM corp.

Carter Alvord, Andrew Lynch, Umer Yousafzai,
Cadence Design Inc.

SOC designs require integration of diversely
sourced design and test bench components

Config
routines

\

PCle
BFM

/4

Video
Frames

Baseband

Custom

|r||.=1_.;l'-""l.|'l'$E]

50, 5010
eMMC

NAND Flash

ONFiToggle

2

\2

Memory
protocol
checker 2

Our challenge is to integrate off-the-shelf
Verilog IP and TB with cycle simulation

Cycle Sim < | > Event Driven Sim

C++TB
Components

»

2

SV

UVC
B

4

RTL IP

How can you use an event driven TB In a cycle
based methodology without rewriting code?

Let’s explore techniques we used to create our
“*Hybrid Test Bench” co-simulation solution

Cycle Sim < | > Event Driven Sim

C++TB
Components

Software

The SystemVerilog space Is wide open, so we
needed to pick a TB methodology to scope down

UVC (UVM Verification Component)

i i i
o |
\ | active |

Generation

~ Coverage

We exploited the scope and features of the UVM
methodology to enable our co-sim solution

Message

B
Archt

We also took advantage of UVM'’s feature set,

such as phasing, to build our solution

construction

J—

scenarios

—_

completion _

Ofs

Build

Connect

End of elaboration

Start_of _simulation

[
[
[
[
s

Pre reset

Reset

Post reset

Pre configure

Configure

Post configure

run

Pre main

Main

Post main

Pre_shutdown

Shutdown

Post shutdown

(. S N U S U U U W S S—

- J\)_\ﬁ’—)—p—u_\i_\;—n—v—ﬂ/

Extract

Check

Report

Finalize

Phases executing in
parallel

We extended uvm_phase and used objections to
keep the simulators in sync

Fusion Stage Progression

Sync_phase extends uvm_component
(Build
construction (Connect
[End of elaboration Reset done
Al 0fs L_Star_of simulation R ; !
Rost move forward?
Post reset 14 Y
[Pre configure |
[Canfigure
scenarios | =i F F’Ogéoonljlzﬁjure
[Main
% Post main
Pre_shutdown
) Shutdown test dOne,
Xfs ____Post_shutdown
1 (Extract \[move fOrward')
— [- -]<—’ -
7 (Report ‘
[Einalize
time

Extensible approach to create additional sync-points, e.g., Post_configure, post_main, etc.
Post_run required for VIPs that don’t use run-time phases

We extended the UVM report_server to pass
messages from ncsim to HTB

UVM_EXIT

UVM_COUNT

-

Custom UVM Report Server

Terminating /

get_max_quit_count() —;.

Action

UVM Message

Decode

Non-terminating

f— —
 —

UVM_ERROR,

Remap

S—

-~
=~

Y

—ERROR

{ UVM_FATAL >

Severity

UVM_INFO
UVM_WARNING
UVM_ERROR
UVM_FATAL

UVM_WARNING—>|

Remap

»<_Terminating?

N (remap to warning)

»
o

DPI-C

HTB Message

—WARNING

UVM_INFO
UVM_WARNING
UVM_ERROR
UVM_FATAL

|
ncsim

Simulation
Log

Dequeue
AP available

Error Enqueue \ \
—>
(queue of
Warning HTB
messages)

to Fusion

We needed an easy way to connect a test
bench to the DUT and sync the simulators

10

Simply connect the test bench to the DUT by
replacing the logic with a system task

module dut nodule dut
input wire redq_master_0. imput. wire reg_master_0,
output reg gnt_master_0. output reg ghnt_master_0.
input wire req_master_L. imput. wire req_master_1.
output. reg gnt_master_1. output reg gnt_master_1.
imput. wire clock. ‘ imput wire clock.
imput. wire resetl: imput. wire reset}

bit[2:0] =t initial %htb_register_portlist{};
always Biposedge clock or posedge reset) begin Mndnodule // dummy
if irezet) begin
start <= 1'h0;
st{=3'hi;
e
elze
caseist)
it hegin A/Begin out of Eeset
start <= 1'kbl;:
st<=3"'h3;
et
At bhegin A/5tart =

11

However, hierarchical references into the DUT
from the test bench require modification

nodule foo; nodule foo?
reg [31:0] al. a2; reg [31:0] al, a2:

Mezalut ,.al = al: ‘ initiql
a2 = Mezalut ,a2; begin

$htb_repister_write! "Mezalut ,al1".al);
endnodule /¢ fFoo :hth_register_read{"Hesaﬂut+a2",a2};
e

endmodule 7/ foo

12

Also, VPI cannot drive wires.
In this case the test bench must be modified

nodule dut{inoutfuire [31:0] cout. nodule dut{inout wire [31:0] cout.
input wire enl; input wire enl;
Adwon 't work |
initial reg [31:0] cout_data;
fhtb_register_portlisty; assign cout = cout_data;
endnodule /7 dut initial

fhtb_register_portlisty);
endnodule // dut

13

We use a VPI trick to simplify initialization

tflata.type = vpiSysTask;

tflata,sysfunctype = wpiSysTask:

tflata.ttname = (PLI_BYTER =) "s$htb_regizter_portlist":
tflata.calltf = htbh_setup_calltt:

tflata,compiletf = hth_setup_compilett !

tflata,.zizetf = 0O}

tflata,uzer_data = O}

wpi_register_systf {atflatal;

The compileTF routines collect connection data.

We use an end of compile callback to process the data collected by
the compiletf routines and register with HTB.

The callTF routine does nothing.

int hth_setup_calltf ichar = p?

i
woli_printf ¢ (PLI_BYTER =) "In htb_setup_calltfhn"iz

return Of

14

Custom VPI code synchronizes IUS with HTB
during each simulation interval.

- : Compiletf routines execute
IUS Initialization End of compilation routine execute
After Delay Callback registered

) 4

gy IUS Simulates
After Delay Callback executes

) 4

IUS Exports Signal KEEESCEE Mesa Imports Signal

—
Data Data
L

Mesa Simulates
IUS Imports Signal "p' put_value Mesa Exports Signal
Data After Delay Callback registered Data

15

We used the following VPI routines to enable
the function outlined on previous slides

vpl_register systf vpl _handle

vpi_register _cb vpiSysTfCall
cbAfterDelay vpil_control

vpl_1terate/vpl_scan vpiFinish
vpiPort vpil_get
vplArgument vpiTimePrecision

vpi_put value vpiType

vpi_get value vpiDirection

vpi_get_vlog_info vpi_get_str

vpiName

16

We needed the software solution to support all
simulator features, be modular, and be fast

Fully
Featured

17

Using processes preserved simulator features
and improved debuggability as a bonus

execv mesa

execv ncsim

simulate simulate

We created distinct software components to

achieve modularity
HTBIib

Hybrid Testbench

We relied on the posix shared memory libraries
to coordinate between processes

Producer and consumer type (FIFO) data sharing

Te
PI €S between two pProcesses
too restrictive

Similar to pipe, data is transferred using /O

Sockets operations between processes on local or
separate machines
Information is shared between processes on a
Shared . . .
single machine by R/W operations from a
memory common segment of memory.

Fast! Versatile!

Shared memory Is an extremely fast
mechanism to share data between processes

Process B
Process A

Map

Graphics obtained from:
http://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemory/
Handy reference: The Linux Programming Interface

HTBIib hides the complexity of shared memory
and semaphores

Graphics obtained from:
http://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemaory/
Handy reference: The Linux Programming Interface

22

NAND Flash
ONFi Toggle

CPUIGPU C I S
ARMx85 ycle Sim <] > Event Driven Sim
Baseband
Audiohoice Cll.losélzcm
Imagefvideo

S0, SDIO
eMMC

C++TB
Components

Cycle Sim < o > Event Driven Sim

C++ TB
Components

Software

23

Many thanks to:

HTB “Beta Testers” in IBM’s System & Technology group:
Peng Fei Gou, Yu Xuan Zhang

Additional Collaborators at Cadence Design Systems:
Carter Alvord, Amit Kohli
Additional Collaborators in IBM’s System & Technology group:
Ron Cash, Walt Kowalski, Wolfgang Roesner

24

Thanks! Any questions?
D

2

	Reusing UVM Test Benches in a Cycle Simulator
	SOC designs require integration of diversely sourced design and test bench components
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	We needed an easy way to connect a test bench to the DUT and sync the simulators
	Simply connect the test bench to the DUT by replacing the logic with a system task
	However, hierarchical references into the DUT from the test bench require modification
	Also, VPI cannot drive wires. �In this case the test bench must be modified
	We use a VPI trick to simplify initialization
	Custom VPI code synchronizes IUS with HTB during each simulation interval.
	We used the following VPI routines to enable the function outlined on previous slides
	We needed the software solution to support all simulator features, be modular, and be fast
	Slide Number 18
	We created distinct software components to achieve modularity
	We relied on the posix shared memory libraries to coordinate between processes
	Shared memory is an extremely fast mechanism to share data between processes
	HTBlib hides the complexity of shared memory and semaphores
	Slide Number 23
	Slide Number 24
	Slide Number 25

