
Reusing UVM Test Benches in a
Cycle Simulator

Kristina Hager, IBM corp.

Carter Alvord, Andrew Lynch, Umer Yousafzai,
Cadence Design Inc.

SOC designs require integration of diversely
sourced design and test bench components

PCIe
BFM

Config
routines

Video
Frames

Memory
protocol
checker 2

C++ TB
Components

RTL
System

SV
UVC
TB

Cycle Sim Event Driven Sim

Our challenge is to integrate off-the-shelf
Verilog IP and TB with cycle simulation

How can you use an event driven TB in a cycle
based methodology without rewriting code?

RTL IP

C++ TB
Components

RTL
System

SV
UVC
TB

Cycle Sim Event Driven Sim

Let’s explore techniques we used to create our
“Hybrid Test Bench” co-simulation solution

HYBRID TEST BENCH

Software

VPI

UVM

RTL IP

4

The SystemVerilog space is wide open, so we
needed to pick a TB methodology to scope down

Generation

Checking Coverage

UVM
extensible

base classes

SV TB code

5

We exploited the scope and features of the UVM
methodology to enable our co-sim solution

TB
Architecture

Phase
Sync

Message

6

time

We also took advantage of UVM’s feature set,
such as phasing, to build our solution

7

time

Start Build

Reset done,
move forward?

DUT reset done
IUS reset done?

Move forward

Post_run

Sync_phase extends uvm_component

test done,
move forward?

Test end reached
IUS done?
Shut-down

Fusion Stage Progression

Extensible approach to create additional sync-points, e.g., Post_configure, post_main, etc.
Post_run required for VIPs that don’t use run-time phases

We extended uvm_phase and used objections to
keep the simulators in sync

8

We extended the UVM report_server to pass
messages from ncsim to HTB

9

We needed an easy way to connect a test
bench to the DUT and sync the simulators

Fusion/Mesa

HTB

IUS
VPI??

10

Simply connect the test bench to the DUT by
replacing the logic with a system task

11

However, hierarchical references into the DUT
from the test bench require modification

12

Also, VPI cannot drive wires.
In this case the test bench must be modified

13

We use a VPI trick to simplify initialization

The callTF routine does nothing.

We use an end of compile callback to process the data collected by
the compiletf routines and register with HTB.

The compileTF routines collect connection data.

14

Custom VPI code synchronizes IUS with HTB
during each simulation interval.

Mesa Simulates

Mesa Exports Signal
Data

Mesa Imports Signal
Data

IUS Initialization
Compiletf routines execute
End of compilation routine execute
After Delay Callback registered

IUS Simulates
After Delay Callback executes

IUS Exports Signal
Data

vpi_get_value

IUS Imports Signal
Data After Delay Callback registered

vpi_put_value

15

We used the following VPI routines to enable
the function outlined on previous slides

vpi_register_systf

vpi_register_cb
cbAfterDelay

vpi_iterate/vpi_scan
vpiPort

vpiArgument

vpi_put_value

vpi_get_value

vpi_get_vlog_info

vpi_handle
vpiSysTfCall

vpi_control
vpiFinish

vpi_get
vpiTimePrecision

vpiType

vpiDirection

vpi_get_str
vpiName

16

We needed the software solution to support all
simulator features, be modular, and be fast

Fully
Featured

Modular

Speed

17

ncsimmesa htb parent process

Using processes preserved simulator features
and improved debuggability as a bonus

execv mesa

simulate

execv ncsim

simulate

We created distinct software components to
achieve modularity

cycle
sim
(mesa)

ncsimfHTB nHTB

Hybrid Testbench

Sync info

Signal data

HTB messages

HTBlib

Sync info

Signal data

HTB messages

Sync info

Signal data

HTB messages

19

We relied on the posix shared memory libraries
to coordinate between processes

Pipes Producer and consumer type (FIFO) data sharing
between two processes

Sockets
Similar to pipe, data is transferred using I/O
operations between processes on local or

separate machines

Shared
memory

Information is shared between processes on a
single machine by R/W operations from a

common segment of memory.

too restrictive

too restrictive

Fast! Versatile!

Shared memory is an extremely fast
mechanism to share data between processes

Graphics obtained from:
http://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemory/
Handy reference: The Linux Programming Interface

21

HTBlib hides the complexity of shared memory
and semaphores

Graphics obtained from:
http://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemory/
Handy reference: The Linux Programming Interface

22

C++ TB
Components

RTL
DUT

SV
UVC
TB

Cycle Sim Event Driven Sim

HYBRID TEST BENCH

Software

VPI

UVM

C++ TB
Components

RTL
DUT

SV
UVC
TB

Cycle Sim Event Driven Sim

RTL IP

RTL IP

23

Many thanks to:

HTB “Beta Testers” in IBM’s System & Technology group:
Peng Fei Gou, Yu Xuan Zhang

Additional Collaborators at Cadence Design Systems:

Carter Alvord, Amit Kohli

Additional Collaborators in IBM’s System & Technology group:

Ron Cash, Walt Kowalski, Wolfgang Roesner

24

Thanks! Any questions?

25

	Reusing UVM Test Benches in a Cycle Simulator
	SOC designs require integration of diversely sourced design and test bench components
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	We needed an easy way to connect a test bench to the DUT and sync the simulators
	Simply connect the test bench to the DUT by replacing the logic with a system task
	However, hierarchical references into the DUT from the test bench require modification
	Also, VPI cannot drive wires. �In this case the test bench must be modified
	We use a VPI trick to simplify initialization
	Custom VPI code synchronizes IUS with HTB during each simulation interval.
	We used the following VPI routines to enable the function outlined on previous slides
	We needed the software solution to support all simulator features, be modular, and be fast
	Slide Number 18
	We created distinct software components to achieve modularity
	We relied on the posix shared memory libraries to coordinate between processes
	Shared memory is an extremely fast mechanism to share data between processes
	HTBlib hides the complexity of shared memory and semaphores
	Slide Number 23
	Slide Number 24
	Slide Number 25

