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SOC designs require integration of diversely 
sourced design and test bench components
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Our challenge is to integrate off-the-shelf 
Verilog IP and TB with cycle simulation

How can you use an event driven TB in a cycle 
based methodology without rewriting code?
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Let’s explore techniques we used to create our 
“Hybrid Test Bench” co-simulation solution
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The SystemVerilog space is wide open, so we 
needed to pick a TB methodology to scope down
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We exploited the scope and features of the UVM 
methodology to enable our co-sim solution
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time

We also took advantage of UVM’s feature set, 
such as phasing, to build our solution
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time

Start Build

Reset done, 
move forward?

DUT reset done
IUS reset done? 

Move forward

Post_run

Sync_phase extends uvm_component

test done, 
move forward?

Test end reached
IUS done? 
Shut-down

Fusion Stage Progression

Extensible approach to create additional sync-points, e.g., Post_configure, post_main, etc.
Post_run required for VIPs that don’t use run-time phases

We extended uvm_phase and used objections to 
keep the simulators in sync
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We extended the UVM report_server to pass 
messages from ncsim to HTB
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We needed an easy way to connect a test 
bench to the DUT and sync the simulators

Fusion/Mesa

HTB

IUS
VPI??
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Simply connect the test bench to the DUT by 
replacing the logic with a system task
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However, hierarchical references into the DUT 
from the test bench require modification
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Also, VPI cannot drive wires. 
In this case the test bench must be modified
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We use a VPI trick to simplify initialization

The callTF routine does nothing.

We use an end of compile callback to process the data collected by 
the compiletf routines and register with HTB.

The compileTF routines collect connection data.
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Custom VPI code synchronizes IUS with HTB 
during each simulation interval.

Mesa Simulates

Mesa Exports Signal 
Data

Mesa Imports Signal 
Data

IUS Initialization
Compiletf routines execute
End of compilation routine execute
After Delay Callback registered

IUS Simulates
After Delay Callback executes

IUS Exports Signal 
Data

vpi_get_value

IUS Imports Signal 
Data After Delay Callback registered

vpi_put_value
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We used the following VPI routines to enable 
the function outlined on previous slides

vpi_register_systf

vpi_register_cb
cbAfterDelay

vpi_iterate/vpi_scan
vpiPort

vpiArgument

vpi_put_value

vpi_get_value

vpi_get_vlog_info

vpi_handle
vpiSysTfCall

vpi_control
vpiFinish

vpi_get
vpiTimePrecision

vpiType

vpiDirection

vpi_get_str
vpiName

16



We needed the software solution to support all 
simulator features, be modular, and be fast
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ncsimmesa htb parent process

Using processes preserved simulator features 
and improved debuggability as a bonus

execv mesa

simulate

execv ncsim

simulate



We created distinct software components to 
achieve modularity

cycle
sim 
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ncsimfHTB nHTB

Hybrid Testbench

Sync info

Signal data

HTB messages

HTBlib

Sync info

Signal data

HTB messages

Sync info

Signal data

HTB messages

19



We relied on the posix shared memory libraries 
to coordinate between processes  

Pipes Producer and consumer type (FIFO) data sharing 
between two processes

Sockets
Similar to pipe, data is transferred using I/O 
operations between processes on local or 

separate machines

Shared 
memory

Information is shared between processes on a 
single machine by R/W operations from a 

common segment of memory.

too restrictive

too restrictive

Fast! Versatile!



Shared memory is an extremely fast 
mechanism to share data between processes

Graphics obtained from:
http://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemory/
Handy reference: The Linux Programming Interface
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HTBlib hides the complexity of shared memory 
and semaphores

Graphics obtained from:
http://www.ibm.com/developerworks/aix/library/au-spunix_sharedmemory/
Handy reference: The Linux Programming Interface
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Thanks! Any questions?
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