
Reusing Testbench Components in a
Hybrid Simulation-Formal Environment

Ritero Chi

Entropic Communications, Inc.
2570 North First Street

San Jose, California, U.S.A.
+1-408-325-8741

Ritero.Chi@entropic.com

Xiaolin Chen
Synopsys, Inc.

700 East Middlefield Road
Mountain View, California, U.S.A.

+1-650-584-4922

Xiaolin@synopsys.com

ABSTRACT

Simulation and formal verification traditionally have been treated as

completely separate processes. Simulation is procedural and

dynamic in nature, highly efficient at testing basic functionalities, but

can be difficult to control to target corner case scenarios. Formal is

static in nature and highly efficient at finding corner case bugs, but it

has serious capacity limitation due to state explosion. Each has its
own advantages and limitations.

Assertions used in formal can be reused and double checked in

simulation, but reuse of non-formal-compatible testbench

components by formal engines is not really possible. The reason is

that formal algorithms require logic to be represented as a formal

model. Testbench components are excluded from the pure formal

verification environment because they cannot be compiled into a

formal model. As assertion based verification methodology becomes

more widely adopted, and formal verification increasingly becomes

part of the verification flow, the need to bridge the gap between
simulation and formal verification is also increasing.

Hybrid-formal technology can address this need. Hybrid-formal uses

constraint-solving technology to generate legal stimuli compliant to

the assertion constraints on the input ports. These constrained-

random stimuli are driven to the DUT through the built-in simulator.

Constrained random simulation is run in conjunction with formal,

allowing formal search to be performed from deep design states,

exploring corner case scenarios that are beyond the reach of pure

formal engines and difficult to reach using simulation. Hybrid-

formal technology combines the strengths from both verification

methodologies to overcome the limitations of each individual

technology. Because a logic simulator is one of the components in

hybrid-formal, the technology allows the reuse of the testbench

components in the constrained random simulation environment.

Suddenly the door is open to more opportunities! The benefits
include the possibility to:

 Identify discrepancies between a reference model and the

DUT behavior in formal environment.

 Check for under-constraining, over-constraining, or

conflict constraints in the formal environment.

 Monitor data transfer behavior and packet transactions,
traditionally difficult to verify in pure formal environments

In this paper, methodology for testbench component reuse in hybrid-

formal will be discussed, including the process of architecting

assertions and testbenches for reuse at the verification planning

stage. We will share the lessons learned during our quest for an ideal

verification environment to face the challenges of finding corner case

bugs in data-intensive designs and to reach the “last mile” of

coverage convergence. We will describe the process we went

through to overcome the hurdles encountered while integrating

testbench components into the hybrid formal environment, which

makes the ideal verification environment close to reality. Initial

experiments at Entropic showed promise that adding testbench

components to the power of formal could help reach the last bit of

functional coverage convergence, verify functionality of data-path

components, monitor data integrity and find corner case bugs. We

see this has the potential to be a perfect vehicle to complement

simulation and pure formal technology to ensure a high quality

product!

1. INTRODUCTION

Assertion-based verification (ABV) has become a widely used

methodology to address the challenges with traditional functional

verification flow[1]. Formal verification is also gaining momentum.

We started to explore new possibilities and wanted to see for

ourselves what benefits the new methodology and technology could

bring to the simulation testbench verification currently in place. We

looked at what areas we would like to see improved in the existing

flow, a few were easily identified: Verify legacy blocks with little or

no documentation but to be used in next generation chips; find corner
case bugs; improve code coverage convergence.

In the following sections, we will take a look at the the gap between

simulation and formal. We will describe the challenges we

encountered at different stages of adopting ABV methodology and

formal technology, including creating and debugging assertions,

verifying data intensive designs using formal, and attempting to

improve coverage convergence with formal. We will share the

lessons learned during our quest for an ideal verification

environment and take you through the process we went through to
search for a flow that could work for us.

2. EXISTING TESTBENCH ENVIRONMENT

In the existing simulation testbench environment, a VMM based

transaction generator is the stimulus generator that creates

transaction level traffic and drives them into the DUT using a

simulator. There is a SystemC reference model. There are also

VMM response checkers that check for the DUT response to the

stimuli, and monitor how well the DUT has been exercised. As the

simulation runs, responses from the DUT are compared to the

expected responses from the SystemC reference model to check if

the DUT is behaving correctly according to the reference model. At

the same time, the VMM scoreboard information is also collected to

measure the quality of the stimuli. A block diagram of the existing
testbench environment is shown in Figure 1.

Figure 1: Existing testbench environment diagram

3. VENTURING WITH FORMAL

3.1 A Typical Formal Environment

When we started looking into formal verification, we learned that we

needed to first have formal-friendly assertions, starting with the

boundaries of the DUT. In a typical formal verification environment,

the essential element is assertions. Given a complete set of

assertions describing the protocol at the interface, many different

formal algorithms can be applied to prove the assertions on the

outputs or on internal logic to always hold true based on a set of

assertions as constraints on the inputs. If assertions are violated,

counter examples are generated to show assertion failures. Figure 2
shows the block diagram of a typical formal environment.

3.2 Debug Assertions in Familiar Environment

The first challenge we encountered was to get design and verification

engineers to write and debug assertions for their own blocks. It was

easy to get them trained in writing assertions in SystemVerilog

language. However, it could be very time consuming to write and

debug a set of complete interface assertions to describe interface

protocol for the block under verification. Although formal checkers

could provide an easy way to visualize and debug assertions without

having to create a testbench, learning a new tool and debugging in an

unfamiliar formal environment still made people shy away from

engaging in ABV.

Figure 2: Typical formal environment

3.3 How to Make It Easier to Adopt ABV

To overcome this hurdle, two processes were put in place. The first

was to identify a common set of protocols. This was easy to do since

the protocol was the same for several RTL design blocks. A set of

assertions describing the protocol was developed by the verification

team and checked into an internal assertion library. The second

process was to create a makefile that designers could use to visualize

and debug custom assertions they wrote to verify their block. Since

we used Magellan, a hybrid-formal tool with a built-in simulator, this

makefile would automatically generate scripts to set up and run

Magellan and bring up waveforms in the simulation debugger. This

helped to ease the designer into the assertion world by providing a

familiar debugging environment without a testbench. An example of

the makefile is shown in Figure 3. Designer could simply type in

“make debug_io”, and out came the simulation waveform for

assertion visualization and debugging. Figure 4 shows an illustrative
waveform of constrained random simulation in DVE.

Figure 3: Example makefile

Figure 4: Waveform in DVE for assertion debugging

3.4 Running into Limitations with Formal

The next step was using Magellan to formally verify the assertion

properties. We experimented with various sizes of design ranging

from few thousand gates to the few hundreds of thousands to get a
feel for what was possible or not with formal.

We were not able to get very far in terms of property convergence for

very large scopes due to the data intensive nature of the designs.

For designs within 100k gates, and sequentials within 10% of the total

gates, most of the automatic extracted properties and custom

properties were validated. It turned out to be very promising in

checking the behavior against interface protocol assertion properties

in block-level designs. The tool could potentially be used for

designers to validate their blocks at the end of their design phase

before it is delivered for integration and verification in a higher level

scope. Things seemed good as we would then be able to get the intent

of the design and assumptions validated at block-level and have

assertions be completely leveraged at the next level of integration.

However, there was still a missing piece in this flow: checking for

data integrity. Due to the nature of the design being related to data

processing, data integrity checking was an essential piece. We must

have a way to check data flow in order to feel confident in this
verification flow and quality of our design.

4. EXPLORING HYBRID-FORMAL

4.1 Leveraging Testbench Components in

Hybrid-Formal Environment

The missing piece to make the flow really useful was to have the

stimuli created during the formal session also being driven to the

reference model so that we would have a way to make sure data
integrity is not violated for the corner cases of the design.

Since Magellan used hybrid-formal technology, we considered the

possibility of incorporating testbench components, especially the

SystemC reference model and the cross-checking component, into

the hybrid-formal environment. Referring back to Figure 1, many of

the components, including some of the non-formal compatible ones,

in fact can be leveraged[2]. This is because hybrid-formal
technology uses a simulator in conjunction with formal engines.

We examined our existing simulation testbench setup. To begin

with, neither the stimulus generator nor the feedback to the driver in

the simulation testbench could be re-used. This was due to the fact

that, in hybrid-formal environment, the testbench stimulus generator

including the feedback mechanism in the simulation environment

was replaced by a hybrid stimulus generator with constraint

assertions on the inputs. These constraint assertions were solved by

a built-in constraint solver and only the legal stimuli compliant to the

constraints were driven to exercise the DUT through the simulator.

The feedback driver could not be re-used because the stimulus

generator was not accessible to user for adding the feedback driver to
the stimulus generator.

Other components in our simulation testbench environment, even if

non-formal compatible, such as the response checker, reference

model, coverage and data collection component, passive feedback,

and some of the assertions were using non-formal compatible 4-state

logic could actually all be re-used in the hybrid-formal checker’s
simulation environment.

Figure 5: Assertion-based verification testbench environment with

hybrid-formal reusable components

Once we established what components can be re-used in hybrid-

formal, the next task was to go through the testbench setup and

organize it so that the driving and active feedback mechanisms were

completely separated from the monitoring and data collection

components. This took some re-thinking and re-architecting because

the testbench was already done in such a way that all the driving,

feedback and monitoring functions were intertwined together in a

transaction-level fashion. We had to make sure that the code only

seen by the simulator in the hybrid-formal set up did not contain any

logic feeding into the fan-in cone of an assertion targeted by formal

engines or used as a constraint. Otherwise, the results could be

inaccurate or mismatched. The interface to the components had to be

at the signal level. Figure 5 shows the new simulation testbench

architecture and Figure 6 shows the testbench components being re-

used in hybrid-formal environment.

Figure 6: Leveraging testbench components in hybrid-formal

4.2 Improving Coverage Convergence with

Hybrid-Formal Technology

Code coverage is one of the sanity measurements to gauge the

quality of the simulation testbench as well as the RTL design code,

and almost always used as one of the sign-off requirements. It can
be really difficult to reach the final bits of coverage targets.

The good thing is that Magellan offers built-in automatically

extracted properties for line and condition coverage. Magellan and

VCS also shares the same coverage database. We could import the

coverage database obtained from simulation testbench, and Magellan

would automatically target only the coverage goals that were un-

covered in the database. This feature could help improve code

coverage convergence in two ways. Firstly, without any constraints,

we found that we could easily identify the unreachable line and

condition coverage goals. We could then exclude them from total

number of goals in the testbench metric, therefore immediately

improving the coverage results. Secondly, when we were certain that

the set of constraints at the block interface level were adequately

representing the set up of the simulation environment, coverage goals

reported by hybrid-formal technology could easily be imported into

testbench simulation coverage database, therefore increasing the

coverage convergence outcome.

Similarly, hybrid-formal can also assist in improving coverage

convergence in functional coverage. Although covergroups were not

yet supported in Magellan’s formal flow, they could easily be

converted into cover properties which were supported. Usually the

functional coverage points are intended to be checked by higher-

level tests, and facilities like Coverage Convergence Technology

(CCT) can help reduce the manual effort and the verification time to

reach the verification goals[3], but CCT cannot determine if

coverage targets are unreachable. Formal technology can be used at

block level to check for unreachability of these functional coverage

points without constraints or with proper constraints. This can help

identify potential set up or design flaws preventing the coverage

points to be unreachable. However, to consider functional coverage

targets reached in the hybrid-formal environment, it is absolutely

essential to make certain that the assumptions made at the block level
are equivalent to the stimulus driven at the higher-level.

Although we did not have the time to reproduce test results on the

entire block, some experiments on smaller blocks demonstrated the

ease of integrating hybrid-formal technology into the coverage

convergence flow, especially the unreachable coverage targets with
unconstrained environment.

4.3 How to Incorporate Testbench Components

When incorporating testbench code into Magellan, we found there

were two ways to make this happen: One way was to create a top

level wrapper that instantiates the program block or testbench

modules along with DUT. Another way was to instantiate the classes

directly inlined in the Magellan hybrid-formal environment without
the program block.

Again, we believed automation was the key to facilitate adoption.

Makefiles were created script to do the following:

 Automatically generate top level wrapper that incorporated

testbench components

 Compile the SystemC reference model for reuse in

Magellan environment

 Automatically including assertions from the central library

as well as custom assertions written by the designer based

on the block information provided

 Set up and run Magellan with compiled library along with

other testbench components including scoreboard and

passive monitors in the simulation environment to target

assertions and coverage goals

At the end of the run, property falsification traces were automatically

displayed by the tool for designers to diagnose the cause of failure,

coverage information could be displayed in URG, and scoreboard

summary information could also be gathered from the final block just
before exiting from the simulation in Magellan.

4.4 The Power of Hybrid-Formal Technology

Why should anybody get excited about being able to reuse testbench

code in formal? What are the benefits you get out of this?

From our experiment with this setup, we found that the benefits

included:

First, it helped to identify discrepancies between reference model and

DUT without a full-fledge block level testbench, using just the

assertions as constraints for Magellan’s stimulus generation.

Second, the added monitors, both functional checkers as well as

coverage monitors helped to identify conflict constraints, over-

constraining, or under-constraining in the formal environment.

These constraints were the very same ones used for proving

properties. It was already known that assertions in formal should

also be used in the testbench to check for discrepancies in the

assumptions made in the formal environment. By having reference

models and monitors in the hybrid-formal environment, it allowed us

to also double check the correctness of assumptions made for formal
environment without a testbench.

Third, this allowed the monitoring of data transfer behavior, such as

packet transactions which is difficult to verify in pure formal
environment due to capacity limitations.

Fourth, by adding a reference model and response checker, it

provided a way to help with coverage convergence. With this setup,

if the DUT behaved as expected from the reference model and none

of the checkers fired, the reachable coverage might be considered

merging into the simulation testbench coverage matrix. Not to

mention the unreachable coverage goals proven by formal engines

without any constraints or with proper constraints could also be
merged into simulation testbench coverage matrix.

5. LESSONS LEARNED

5. 1 Architecting Assertions for Formal

Plan for assertion writing from the beginning with formal

verification in mind. First partition blocks so they have clear and

complete interface protocol definition. Start assertion development

early in the cycle, even before or in parallel with RTL and testbench

development! Make sure that you have a complete and accurate set

of assertions for the interface. Assertions scattered here and there are

not going to be adequate for formal verification later. Standardizing

the interface used by all the various blocks is key to guarantee the

effort in coming up with the interface properties is reused and

therefore making the process efficient.

Try to keep non-formal compatible assertions separate using macros

to hide them from formal. Some formal unfriendly assertions are

formal-compatible but produce too many sequential elements

exceeding formal engine capacity limit. Put these formal-unfriendly

assertions in macros as well to hide them from formal. These

assertions are only seen by the simulator and can be checked in

hybrid formal mode.

5.2 Architecting Testbench for Hybrid-Formal

In the beginning of the testbench planning stage, some thought

should be put into architecting the testbench for later re-use in

formal. Keep the stimulus generator part modular so they can be
easily separated out later for hybrid-formal verification.

It is common practice to hook the layered adaptive transaction level

stimulus generation directly to the monitor and driver. However, it

will take a lot of work later to separate the scoreboard from the

transaction layer for reuse in hybrid-formal environment. Keep this

in mind when constructing monitors and feedback connections to the

stimulus generator. Try to use lower level abstractions at the signal

level for monitoring, coverage or data collection rather than at

transaction level, so they can be later removed for hybrid-formal

verification. For example, some good testbench practices for
testbench reuse include:

 Use lower level monitor for scoreboard control, instead of

at transaction level. Good and bad examples are illustrated

in Figure 7 and Figure 8.

 Keep the consensus part of the environment completely

separate from passive monitor.

 Some of the feedback constraints such as biasing of the

input distribution could be used in hybrid environment, so

make them as a separately contained component to be later

re-used in hybrid-formal environment.

 Keep signal level constraints separate from high level

transaction level constraints, so that the signal level

constraints can be ported to hybrid-formal environment.

 Keep active response checkers and reference model

separate from passive ones, so the passive monitors and

reference models can easily be incorporated into the
hybrid-formal environment later.

Figure 7: Transaction level scoreboard not reusable in hybrid-formal

Figure 8: Signal-level scoreboard can be reused in hybrid-formal

5. 3 Establishing a Basic Flow

Defining a process is the key to deploying ABV methodology and

formal technology into the existing verification flow. One example
of a basic flow is shown in Figure 9.

Figure 9: Basic Flow

5. 4 Automation Saves Time!

It is clear to us that developing the scripts to automate the steps in the

process makes it much easier to adopt this verification flow.

Creating the central library, defining procedures for developing

custom assertions and testbench components allow the possibility for

automation, and automation does increase productivity!

6. SUMMARY

The results of our experiments have showed promise that adding

testbench components to the power of formal could help reach the

last bit of functional coverage convergence, check data integrity and

find corner case bugs. We believe this has the potential to be a

perfect vehicle to bridge the gap between testbench simulation and
pure formal technology.

7. ACKNOWLEDGMENTS

The authors wish to thank Wei-Hua Han for his contribution to the

SystemC compilation, VMM and Magellan flow.

8. REFERENCES

[1] Lionel Bening and Harry Foster, “Principles of Verifiable RTL Design”,
©2000, Kluwer Academic Publishers, pp. 31-32.

 [2] Xiaolin Chen, Mandar Munishwar, Den Benua, Krishna Balachandran,

“Combining Formal Verification with Simulation: The Best of Both Worlds

”, Synopsys Webinar 2009.

[3] Simon Huang, Zhiyong Shao, “Improve Verification Productivity with

Synopsys Coverage Convergence Technology”, SNUG 2009.

