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Introduction

• Verification of modern day Mixed Signal SoCs and 
associated IPs is very challenging and an Innovative task 

• UVM Standard has become very widely adopted for 
verifying complex designs at various levels of abstraction. 

• UVM defines a set of templates and a set of coding 
guidelines to keep verification environments reusable 
across levels of verification, across projects etc.

– But there is more to reuse than just what UVM Prescribes.

• We will share some of our finer learning during the 
process of UVM deployment. 
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Smart Class-D Amplifier SoC
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SoC Architecture

• Our SoC is a Intelligent Class D Amplifier that reuses 
several IPs along with in-house DSP processor.

• SoC has multiple interfaces for Data, Debug and one for 
configuration which is through I2C (Inter-Integrated 
Circuit) interface.

• Design is equally heavy in Analog & Digital

– A true Mixed Signal SoC in nature.
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SoC Architecture
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Verification Requirements

• Individual IPs are verified in a stand-alone IP verification 
environment and then integrated to the top level SoC 
verification environment.

• IP level sequences shall be maximally portable.

• The individual IP owners understand each IP deeply

• Top level integrator may not be fully aware of complex 
configuration sequences for each IP to configure correctly at 
top level.
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Design Partitioning at IP level 
verification

© Accellera Systems Initiative 9

• Significant limitations of legacy environment was the 
inability to reuse IP level scenarios directly at SoC 
level.

• There was duplication of all register programming 
sequences per IP at SoC level leading to:

• Redundant work at SoC Level

• Wasted debug cycles due to wrong configurations at SoC 
level



Initial IP Verification Partitioning
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• First cut verification for an IP

• Two important input interfaces to the DUT

– I2C based configuration values

– Data interface driving audio data
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Initial IP Level Sequence
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• Sequence body simply specifies the configuration 
values for needed i2c_cfg_val inputs. 

• A simple, dummy UVM driver attached to this 
sequence (via sequencer) then drives the data 
interface.

• Since at SoC level there is a real I2C interface, the 
basic sequences developed at IP level were not 
reusable at SoC level before.



Re-Partitioned DUT
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• Just mere use of UVM & SystemVerilog alone doesn’t 
always enable reuse.

• So we re-partition the design for each IP level DUT to 
include I2C control block with relevant registers
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New IP  level verification environment
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• We used additional I2C UVC along with IP Level 
UVC/UVCs in the IP level environment.

– Motivation behind this re-partitioning was reusability of IP 
level sequences than the UVCs themselves.
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New IP Sequences
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• New modified IP level verification environment now 
included register models. 

– UVM RAL model added to individual IP level verification 
environment 

• IP level sequences programmed I2C registers that are 
needed to configure the specific IP

– In exact order as per individual 

IP requirements.

ip_uvm_seq_old::body

• set_i2c_val_1

• set_i2c_val_2

• set_i2c_val_n

• send_data

…

ip_uvm_vseq :: body

• `uvm_do_on (ip_i2c_uvm_seq, p_sequencer.i2c_sequencer)

•`uvm_do_on (ip_data_uvm_seq, p_sequencer.data_sequencer)

• set_i2c_val_1

• set_i2c_val_2

• set_i2c_val_n

…

ip_i2c_uvm_seq::body ip_data_uvm_seq::body

• send_data



Advantages
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• New IP level UVM sequences turned out to be virtual 
sequences 
– I2C configuration RAL sequence runs on a I2C sequencer 

– Data sequence runs on a data interface UVC sequencer.

• IP level sequences now mimic the programmer’s model 
of the IP 
– Easy for reviewing by system architects as a side benefit 

• Advantage at the SoC level
– I2C RAL sequences were plug-and-playable.

– RAL provides an easy way to manage the offset of individual 
register blocks 
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Tweaking UVM RAL Predictors 
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• Some hype around UVM that tends to imply
– UVM knows how to verify your system 

• In reality, UVM only provides a reusable framework 

• Users need to write good amount of code on top to make 
it usable. 

• A classical case is UVM RAL predictors. 

• Only some amount of "auto prediction" is supported by 
UVM out-of-the-box. 

• Auto-prediction does not work for complex modern 
designs having very advanced register features 
– Volatile registers, Safety controlled registers etc.



Dynamic Register Access-mode
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• Registers Accesses are set once during the model 
generation.

• Dynamic changes to access policy during a simulation 
needs to be modeled by user code. 

• Critical for the predictor to work well in our designs as 
there are protected or safety related registers that 
change access privileges based on some control register 
settings. 

• UVM provides API to achieve this 
– uvm_reg_field::set_access()

• Our team used post_predict callback in UVM registers to 
model this. 



Safety Lock Callback
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Safety Model via UVM RAL Callback
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• Safety lock callback models the dynamic control to 
the field named "safety_field" based on value of 
another register content. 

• This callback is then integrated to the register model 
during the model configure step as shown in the 
pseudo-code below:
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Ensuring Reusability
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• Given the upfront guidelines set by management

– Keep the code reusable for future changes.

– Ensure all UVM coding guidelines were followed. 

• Two significant phases in the project where these 
guidelines had to be ensured 

– First during the environment development

– Second during developing sequences.

• In UVM, factory provides the necessary 
infrastructure to keep code reusable. 



UVM Factory
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• UVM Factory involves three steps: 

– Registering the classes with factory table

– Consulting the factory table during construction

– Setting overrides on need basis

• First step is achieved through the use of handy macros: 

– for registering components 

`uvm_component_utils_begin (i2c_driver)

– for sequences/register models 

`uvm_object_utils (data_if_config_reg)



Object Construction
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• Second step is to be done during construction of 
every object within UVM .

• Below is the standard constructor of a 
uvm_component:
– function new (string name, uvm_component parent);

• UVM recommends not to change the prototype of 
this constructor in any derived class
– UVM base class would call this new() internally during 

object creation.



Using create() instead of new()
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• User code should instead call a proxy method named 
create() that in-turn calls the new() after consulting 
any overrides set by end user code.

• At a high level, this create() goes and checks in the 
factory table to see if there was an override and 
returns derived object or the base object otherwise
– A pseudo code describing this behavior is shown below:

if (factory_override_table.exists(vlb_drvr))

create = derived_class::new();

else

create = base::new();



Advantages
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• A typical usage of create() instead of new() looks as
– vl_ctrl_reg = vl_ctrl::type_id::create("vl_ctrl_reg");

• With the create() routine, we now have a mechanism to 
set an override in a table/registry and swap a base class 
with a derived class. 

• This is core to reusing components and transactions in 
UVM including register models.

• At SoC level, a factory override can be done to leverage 
on individual IP owner’s deep know-how on the IP 
programming sequence and yet tailor to a SoC 
verification scenario.
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Preliminary results & Conclusions
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• IP level verification has to be thought upfront on requirements of 
future reusability.

• Some of the IP level work has to be re-factored, re-engineered at a 
small cost – keeping in view of the bigger benefits that SoC level 
verification will yield.

• Ability to leverage on IP level knowledge directly at SoC level in the 
form of UVM sequences.

• Involve all from Design architects early in the verification 
brainstorming sessions to arrive at optimal choices/partitions for 
reusing verification.

• We have heard the term “DFV – Design For Verification”, but this 
experience shows something at a higher level of “architecting IP 
partitions for easier reuse at SoC level verification”

• Finally, we stand by our title – Reuse isn’t free!



Questions

Thank You!
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