
Reuse doesn’t come for free -
learnings from a UVM deployment

Sumeet Gulati - Senior Technical Leader, NXP Semiconductors
Srinivasan Venkataramanan - Chief Technology Officer, CVC Pvt. Ltd.

Ketki Gosavi - Trainee, NXP Semiconductors
Saumya Anvekar, Senior Design Engineer, NXP Semiconductors

Azhar Ahammad - ASIC Design Verification Engineer, CVC Pvt. Ltd.

© Accellera Systems Initiative 1

Agenda

• Background and Introduction

• Design Partitioning at IP level verification

• Tweaking UVM RAL Predictors.

• Ensuring Reusability – UVM Factory

• Conclusion

© Accellera Systems Initiative 2

Introduction

• Verification of modern day Mixed Signal SoCs and
associated IPs is very challenging and an Innovative task

• UVM Standard has become very widely adopted for
verifying complex designs at various levels of abstraction.

• UVM defines a set of templates and a set of coding
guidelines to keep verification environments reusable
across levels of verification, across projects etc.

– But there is more to reuse than just what UVM Prescribes.

• We will share some of our finer learning during the
process of UVM deployment.

© Accellera Systems Initiative 3

Smart Class-D Amplifier SoC

© Accellera Systems Initiative 4

SoC Architecture

• Our SoC is a Intelligent Class D Amplifier that reuses
several IPs along with in-house DSP processor.

• SoC has multiple interfaces for Data, Debug and one for
configuration which is through I2C (Inter-Integrated
Circuit) interface.

• Design is equally heavy in Analog & Digital

– A true Mixed Signal SoC in nature.

© Accellera Systems Initiative 5

SoC Architecture

© Accellera Systems Initiative 6

CONFIG IF IP

Debug IP

Analog Model

(WREAL)

MOBILE AUDIO SoC

FAMILY (DUT)

DATA IF

DEBUG IF

CONFIG IF

CONFIG

REGISTERS

Data IF

IP

Verification Requirements

• Individual IPs are verified in a stand-alone IP verification
environment and then integrated to the top level SoC
verification environment.

• IP level sequences shall be maximally portable.

• The individual IP owners understand each IP deeply

• Top level integrator may not be fully aware of complex
configuration sequences for each IP to configure correctly at
top level.

© Accellera Systems Initiative 7

Agenda

• Background and Introduction

• Design Partitioning at IP level verification

• Tweaking UVM RAL Predictors.

• Ensuring Reusability – UVM Factory

• Conclusion

© Accellera Systems Initiative 8

Design Partitioning at IP level
verification

© Accellera Systems Initiative 9

• Significant limitations of legacy environment was the
inability to reuse IP level scenarios directly at SoC
level.

• There was duplication of all register programming
sequences per IP at SoC level leading to:

• Redundant work at SoC Level

• Wasted debug cycles due to wrong configurations at SoC
level

Initial IP Verification Partitioning

© Accellera Systems Initiative 10

• First cut verification for an IP

• Two important input interfaces to the DUT

– I2C based configuration values

– Data interface driving audio data

DATA IF IP

DATA IF

I2C_CONFIG_VAL_1

I2C_CONFIG_VAL_2

I2C_CONFIG_VAL_N

…
.

Initial IP Level Sequence

© Accellera Systems Initiative 11

• Sequence body simply specifies the configuration
values for needed i2c_cfg_val inputs.

• A simple, dummy UVM driver attached to this
sequence (via sequencer) then drives the data
interface.

• Since at SoC level there is a real I2C interface, the
basic sequences developed at IP level were not
reusable at SoC level before.

Re-Partitioned DUT

© Accellera Systems Initiative 12

• Just mere use of UVM & SystemVerilog alone doesn’t
always enable reuse.

• So we re-partition the design for each IP level DUT to
include I2C control block with relevant registers

DATA IF

IP

(DUT)

REG_1

REG_n

I2C_CONFIG_CTRL_BLO

CK

i2c_config_val_1

i2c_config_val_n

NEW IP LEVEL RTL TOP

DATA IF

CONFIG I2C IF

…
.

New IP level verification environment

© Accellera Systems Initiative 13

• We used additional I2C UVC along with IP Level
UVC/UVCs in the IP level environment.

– Motivation behind this re-partitioning was reusability of IP
level sequences than the UVCs themselves.

CONFIG I2C IF

IP

NEW IP LEVEL RTL

TOP (DUT)

DATA IF

CONFIG I2C IF

CONFIG

REGISTERS

Data IF

IP

CONFIG I2C IF

UVC

Data IF

UVC

New IP Sequences

© Accellera Systems Initiative 14

• New modified IP level verification environment now
included register models.

– UVM RAL model added to individual IP level verification
environment

• IP level sequences programmed I2C registers that are
needed to configure the specific IP

– In exact order as per individual

IP requirements.

ip_uvm_seq_old::body

• set_i2c_val_1

• set_i2c_val_2

• set_i2c_val_n

• send_data

…

ip_uvm_vseq :: body

• `uvm_do_on (ip_i2c_uvm_seq, p_sequencer.i2c_sequencer)

•`uvm_do_on (ip_data_uvm_seq, p_sequencer.data_sequencer)

• set_i2c_val_1

• set_i2c_val_2

• set_i2c_val_n

…

ip_i2c_uvm_seq::body ip_data_uvm_seq::body

• send_data

Advantages

© Accellera Systems Initiative 15

• New IP level UVM sequences turned out to be virtual
sequences
– I2C configuration RAL sequence runs on a I2C sequencer

– Data sequence runs on a data interface UVC sequencer.

• IP level sequences now mimic the programmer’s model
of the IP
– Easy for reviewing by system architects as a side benefit

• Advantage at the SoC level
– I2C RAL sequences were plug-and-playable.

– RAL provides an easy way to manage the offset of individual
register blocks

Agenda

• Background and Introduction

• Design Partitioning at IP level verification

• Tweaking UVM RAL Predictors.

• Ensuring Reusability – UVM Factory

• Conclusion

© Accellera Systems Initiative 16

Tweaking UVM RAL Predictors

© Accellera Systems Initiative 17

• Some hype around UVM that tends to imply
– UVM knows how to verify your system

• In reality, UVM only provides a reusable framework

• Users need to write good amount of code on top to make
it usable.

• A classical case is UVM RAL predictors.

• Only some amount of "auto prediction" is supported by
UVM out-of-the-box.

• Auto-prediction does not work for complex modern
designs having very advanced register features
– Volatile registers, Safety controlled registers etc.

Dynamic Register Access-mode

© Accellera Systems Initiative 18

• Registers Accesses are set once during the model
generation.

• Dynamic changes to access policy during a simulation
needs to be modeled by user code.

• Critical for the predictor to work well in our designs as
there are protected or safety related registers that
change access privileges based on some control register
settings.

• UVM provides API to achieve this
– uvm_reg_field::set_access()

• Our team used post_predict callback in UVM registers to
model this.

Safety Lock Callback

© Accellera Systems Initiative 19

Safety Model via UVM RAL Callback

© Accellera Systems Initiative 20

• Safety lock callback models the dynamic control to
the field named "safety_field" based on value of
another register content.

• This callback is then integrated to the register model
during the model configure step as shown in the
pseudo-code below:

Agenda

• Background and Introduction

• Design Partitioning at IP level verification

• Tweaking UVM RAL Predictors

• Ensuring Reusability – UVM Factory

• Conclusion

© Accellera Systems Initiative 21

Ensuring Reusability

© Accellera Systems Initiative 22

• Given the upfront guidelines set by management

– Keep the code reusable for future changes.

– Ensure all UVM coding guidelines were followed.

• Two significant phases in the project where these
guidelines had to be ensured

– First during the environment development

– Second during developing sequences.

• In UVM, factory provides the necessary
infrastructure to keep code reusable.

UVM Factory

© Accellera Systems Initiative 23

• UVM Factory involves three steps:

– Registering the classes with factory table

– Consulting the factory table during construction

– Setting overrides on need basis

• First step is achieved through the use of handy macros:

– for registering components

`uvm_component_utils_begin (i2c_driver)

– for sequences/register models

`uvm_object_utils (data_if_config_reg)

Object Construction

© Accellera Systems Initiative 24

• Second step is to be done during construction of
every object within UVM .

• Below is the standard constructor of a
uvm_component:
– function new (string name, uvm_component parent);

• UVM recommends not to change the prototype of
this constructor in any derived class
– UVM base class would call this new() internally during

object creation.

Using create() instead of new()

© Accellera Systems Initiative 25

• User code should instead call a proxy method named
create() that in-turn calls the new() after consulting
any overrides set by end user code.

• At a high level, this create() goes and checks in the
factory table to see if there was an override and
returns derived object or the base object otherwise
– A pseudo code describing this behavior is shown below:

if (factory_override_table.exists(vlb_drvr))

create = derived_class::new();

else

create = base::new();

Advantages

© Accellera Systems Initiative 26

• A typical usage of create() instead of new() looks as
– vl_ctrl_reg = vl_ctrl::type_id::create("vl_ctrl_reg");

• With the create() routine, we now have a mechanism to
set an override in a table/registry and swap a base class
with a derived class.

• This is core to reusing components and transactions in
UVM including register models.

• At SoC level, a factory override can be done to leverage
on individual IP owner’s deep know-how on the IP
programming sequence and yet tailor to a SoC
verification scenario.

Agenda

• Background and Introduction

• Design Partitioning at IP level verification

• Tweaking UVM RAL Predictors

• Ensuring Reusability – UVM Factory

• Conclusion

© Accellera Systems Initiative 27

Preliminary results & Conclusions

© Accellera Systems Initiative 28

• IP level verification has to be thought upfront on requirements of
future reusability.

• Some of the IP level work has to be re-factored, re-engineered at a
small cost – keeping in view of the bigger benefits that SoC level
verification will yield.

• Ability to leverage on IP level knowledge directly at SoC level in the
form of UVM sequences.

• Involve all from Design architects early in the verification
brainstorming sessions to arrive at optimal choices/partitions for
reusing verification.

• We have heard the term “DFV – Design For Verification”, but this
experience shows something at a higher level of “architecting IP
partitions for easier reuse at SoC level verification”

• Finally, we stand by our title – Reuse isn’t free!

Questions

Thank You!

© Accellera Systems Initiative 29

