
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Abstract
 Often UPF needs to be

modified at the next
verification stage (RTL to
GLS)

– Hierarchy changes
– Cell placements
– Cell connections

 Problems
– Managing different

UPFs
– Logic Equivalence

Highlight differences
between RTL and GLS
UPF

Proposed methodology to
write RTL UPF

Minimal UPF changes
required during gate-level
power verification

Benefits of Re-usable UPF

Difference in Low-Power RTL and GL Netlist

Conclusion

Writing Reusable UPF Writing Reusable UPF contd.

Iso/LS strategy in RTL UPF is replaced by actual
physical cell in the netlist

Use use_interface_cell/map_* : Helps simulation
tool to identify and associate the cells correctly
with the strategy

Use most explicit –elements : Recommendation
is to change the RTL UPF
(set_isolation –elemens) to be signal wise once it
is verified using –source/-sink

Source/sink tends to break in GLS because of
additional buffers, AON and other elements in the
actual source/sink path

Specify retention elements on signal basis in
set_retention –elements

Supply connections to PA cells : Use
UPF_GENERIC

GLS (Iso/LS/ELS are dual-rail, multi-rail or single-
rail) Vs RTL (always single rail powered by its
strategy) - Mismatch in GLS vs. RTL simulation

UPF GENERICS in conjunction with bind_checker
is very helpful in catching the multi-power rail
issues at RTL UPF itself

REUSABLE UPF: Transitioning from RTL to Gate Level Verification
Durgesh Prasad, Jitesh Bansal, Madhur Bhargava

Mentor Graphics Corp. 8005 SW Boeckman Rd. Wilsonville, OR 97070

Challenges in Re-using UPF

UPF

UPF

UPF

Si
m

ul
at

io
n,

 L
og

ic
al

 E
qu

iv
al

en
ce

 C
he

ck
in

g,

Netlist

Synthesis

Netlist

P&R

RTL

UPF is same
No

need for doing
Low-Power

Coverage again

UPF is same
No

need for
equivalence

UPF
Not

generated by
tool

UPF
Changes

at RTL follows
to GLS

LANGUAGE
• More Abstract
• Always & Assigns

LANGUAGE
• Closer to Silicon
• Cells & Gates

 PA Activity by tool
 Virtual Cells (PA

Cells) inserted by
tool

 PA Intent part of Design
 PA Cells in designs (No

virtual cells required)

 GLS: HDL + UPF +
Liberty Files

RTL GLS

 Elements get
flattened in the
GLS netlist

 State
Elements
(Signals in
RTL) got
changed to
instances in
GLS

 Iso/LS inside
Netlist (GLS).
Synthesis tool
might optimize
to create ELS
cells

 Potential
change in
source/sink
because of
additional
AON
buffers,
feedthru
cells

Vector signal in UPF : Writing consistent UPF
Definition: reg [2:0] A
Usage:
set_retention –elements {A} >>
set_retention –elements { A[0] A[1] A[2] } >>

Hier-path scope difference : Recommendation is
to write the elements in the gate-level UPF form

Hier-path separator “.” : Separate the generate
hierarchies with “.” instead of “/”

RTL >> GLS
/tb/top/gen[0]/mid_inst >> /tb/top/\gen[0].mid_inst

UPF “find_object”: Use find_object command
wherever possible, since it supports wildcard
based search also, so a little change of a name in
GLS would not be a problem for RTL UPF.

Hier-Path Related Issues in RTL Vs GLS UPF

RTL state
element

GL State
Element GL UPF RTL UPF

module dft(…)
reg srpg_flp1;
generate begin :
srpg
always@(posedge
clk or negedge
rst_t)
begin

if(!rst_t)
srpg_flp1 <=

1’b0;
else

srpg_flp1 <=
enable;
end
endgenerate

module srpg (..)
srff_dff
srpg_flp1 (….);
..
endmodule

set_retention
ret1 \
–domain pd \
-elements
{…dft_inst/sr
pg/srpg_flp1}

set_retention
ret1 \
–domain pd \
–elements
{…dft_inst/srpg
_flp1}

RTL GLS RTL UPF

for(i=0;i<num;i=i+1)
begin:cfg_gen
hm_cfg

hm_cfg1_mem1(…);
hm_cfg

hm_cfg1_mem2(…);
end

hm_cfg
\cfg_gen[0].hm_cfg1_
mem1(…);
hm_cfg
\cfg_gen[0].hm_cfg1_
mem2(…);

set ret_exclude_list [
join [find_objects . –
transitive true –pattern
hm_cfg1_mem -
object_type instance]]

PA Cell Handling

Source Sink

Source

New Sink

Reusable
UPF

Liberty

Tools

Easy Migration
(RTL  GLS)

	Slide Number 1

