
 

1 

 

Reusable Processor Verification Methodology 

Based on UVM 

 

Mustafa Khairallah, Boost Valley for Engineering Services, Cairo, Egypt 

(mustafa.khairallah@boostvalley.com) 

Maged Ghoneima, Ain Shams University, Cairo, Egypt (m_ghoneima@ieee.org) 

 

Abstract— Processor verification has always been a challenging problem for verification engineers. The ever-

growing complexity of processor designs increases the verification complexity, and the gap between a verification 

plan and the available technologies to implement it. This increases the time spent on the implementation, and leads to 

a questionable quality of the verification process. One of the approaches that can be utilized is formal property 

checking, but it requires a white-box methodology and some mathematical skills to analyze logical relations in the 

design, so it is more convenient for block-level verification. The other approach is dynamic simulation; the main 

challenge in this approach is test-case generation, which is done either through pure directed testing that is not 

reasonable for complex designs due to the effort required to develop it, or constrained-random coverage-driven 

testing. The problem is that the functional space of a processor is too wide that the test-case generation mechanism 

needs to be well designed to cover all the testable features in the shortest possible time. This makes basic coverage-

driven random testing not a good approach, unless combined with complex machine learning techniques. Another 

approach is to use directed testing to cover all the explicit features in the test plan, while using random testing in a 

later stage of the project to reveal hidden bugs and functionalities. A new practice emerged that minimizes the effort 

needed to develop functional directed test-cases, which uses a separate, random stimuli generator that generates test 

programs for the required processor. Based on this approach, IBM developed the Test Plan Automation (TPA) 

methodology that depends on formulating a scenario-description language to describe test templates to be used in 

micro-architectural verification process. 

In this paper, we propose using the Universal Verification Methodology (UVM), combined with advanced System 

Verilog properties, as an efficient solution for implementing a test-template-based testbench. Moreover, a new testing 

methodology is proposed for processor verification and can be easily reused for different architectures or micro-

architectures by extending the scope and quality of the ideas previously utilized in this scope. We define a UVM 

transaction that is used by the testbench as a test program. It is modeled as an empty test program with some 

randomized control fields. The stimulus generator (UVM sequence) picks a predefined scenario, and accordingly sets 

the required control fields of the transaction. Then it uses the information in the control fields to fill in the test 

program according to a predefined template for each scenario. We also present a case study demonstrating our 

proposed methodology on the open source Wishbone Bus Z80 Processor available through the opencores community. 

Finally, some results are shown, such as the exponential decrease in the time needed to add a new scenario for the test 

suite, and the easy control of test generation through feedback from the testbench, for example, coverage. 

Keywords— Processor Verification; UVM; Coverage Driven Verification; Constrained Random Testing; Test 

Generation; Test Program 

I.  INTRODUCTION 

During the past decade, the time spent by digital design teams on functional verification rose to 60% or more 

of the total project time. Even developers of smaller chips and FPGAs are having problems with the past 

verification approaches. It has become more difficult to get our goal of verification using conventional 

verification techniques [1]. Due to the huge functional space of a processor, processor verification is considered 

to be one of the most challenging problems facing verification engineers. The functional verification of a 

processor is the process of raising the confidence level in the compliance of a processor design to its 

specifications. The verification process begins with creating a verification plan that defines what properties and 

functionalities need to be verified, what are the methods and approaches that will be used in processor testing and 

what is the expected behavior of the design.  In other words, verification planning is the process of studying and 

analyzing the design specifications with the goal of quantifying the verification problem and specifying its 

solution. It is the process of defining functional coverage models and functional specifications of the verification 
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environment [2]. 

The testing strategy is one of the major decisions taken in the verification planning phase. Directed testing is 

well suited for testing single functionalities, but it is hard to hit more complex scenarios using only directed 

testing. On the other hand, constrained-random verification (CRV) can be very effective in tackling processor 

verification challenges, such as: complex instruction sets, multiple pipeline-stages, in-order or out-of-order 

execution strategies, instruction parallelism, multi-precision operations… etc. The most important module of a 

CRV environment is the test-case generator, which plays a very important role in most of the recent approaches 

towards developing automated processor verification environments [3]. A test-case generator generates a large set 

of valid test cases in a pseudo-random way controlled/guided by constrained randomness. The development of 

such test generators has started to catch attention of functional verification engineers, and researchers since the 

early 2000s, such as [3, 4, 5, and 6]. Due to the poor features of Hardware Description Languages (HDLs) 

available back then, Verilog and VHDL, in terms of verification and software, the development of these 

generators have been categorized as a software problem, tackled either by building them as software applications 

[6] or by designing new scenario-level languages, such as Test-Template Language in [4]. However, recent 

efforts have been exerted towards the utilization of System Verilog features as a Hardware Verification Language 

(HVL) to improve stimulus generation quality such as in [7]. 

In this paper, we propose a methodology for test generation, and processor verification using the Universal 

Verification Methodology (UVM) and System Verilog capabilities. We also present a case study demonstrating 

our proposed methodology on the open source Wishbone Bus Z80 Processor available through the opencores 

community [8]. Finally, we present other advantages to our proposed methodology, such as the percentage of 

reuse to add a new scenario for the test suite. 

The rest of the paper is organized as follows: In section II some of the related published work is discussed in 

more details, showing the advantages and disadvantages of each approach. In sections III and IV, the proposed 

methodology is discussed. Experimental results are illustrated in Section V and the paper is concluded in section 

VI. 

II. RELATED WORK 

A lot of efforts have been exerted over the years to face the processor verification challenge. We are going to 

sum up some of the recent efforts, describing different modern approaches. 

Genesys-Pro, IBM‟s third-generation test generator for the functional verification of microprocessors, is 

described in [4]. The major advancements in this generator can be summarized in three points: 

A. Scenario-Level Testing 

The language describing the generated test template “Test-Template Language” has the expressiveness of a 

programming language. 

B. Genesys-Pro’s framework for modeling processor architectures 

Genesys-Pro provides high-level building blocks specifically suited for modeling processors. However, 

processor modeling techniques are outside the scope of this paper. 

C. Powerful Generation Engine 

The generator translates the test generation problem into a constraint satisfaction problem (CSP), and uses a 

generic CSP solver customized for pseudorandom test generation. In other words, each test is based on a set of 

random variables and a set of constraints that need to be satisfied, instead of developing this test in a directed 

way. 

In [6], the authors discussed the verification flow of TiCore2 processor. They used a verification flow that 

combined both directed and random testing to achieve the required goal. They also discussed the concept of 

self-checking test generation, that doesn‟t need the presence of reference model in the verification environment. 

The generation schemes used in  [4,6] have several advantages: (1) They break the generation task into 

smaller, easier to handle test cases and (2) they allow the generator to use the current state of  a processor to 

control the generation of the following instructions. However, verification plans have evolved to target events in 
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the processor core such as interactions between instructions, which require significant efforts for the creation of 

test-templates that can generate instructions‟ dependencies [3]. 

In 2013, efforts in this direction have evolved to a promising solution by IBM [3]. This solution provided a 

new method of test generation based on a high level scenario description language that is close to the 

microarchitecture verification plan, and a microarchitectural model to support this higher level of abstraction. 

This solution was called Test Plan Automation (TPA). The main drawback in this approach is that the 

verification engineer had to utilize a non-standard language for test generation, which increases the verification 

cycle time caused by ramping up engineers to master such a language. Moreover, the proposed language was 

proprietary of IBM, and designing a whole new language can be a hard task to perform. For example, it took 

about 4 years for SystemVerilog to replace Verilog as an IEEE Standard. 

On the other hand, some approaches, such as [7], proposed object-oriented solutions based on the 

SystemVerilog language features to tackle the processor verification challenge. In [7], the authors designed a 

stimulus generato,r in which the stimulus is a program trace that is a collection of one or more instructions. Such 

a program trace is called a scenario. Each instruction is modeled as an operation that consists of an opcode in 

addition to some other properties that make it possible to generate the machine code, and at the same time apply 

some easy to design constraints to these instructions. This approach enabled top-down stimulus planning, while 

implementing the testing process in a bottom-up manner. The authors claimed that this approach can achieve 

better verification coverage, and save time by supporting testbench reuse. 

One of the promising approaches that can experience great advancements in the near future in the field of 

processor verification is formal verification. Many efforts are being exerted towards the adoption of formal 

verification due to its potential to minimize the time required for verification, such as in [9, 10]. However, these 

efforts target verifying only part of the processor, i.e. block level verification, because formal verification needs 

advanced mathematical skills, and are hard to model for large designs. 

III. PROPOSED METHODOLOGY 

The main goal of our methodology is to improve the stimuli generation mechanism for processor verification, 

in other words, narrow the gap between the verification plan and its implementation. This is achieved by building 

an object-oriented stimulus generation solution based on the UVM base class library. The test generator, a UVM 

Sequence, either chooses or is provided with a scenario, described below, to perform. Each scenario consists of a 

group of operations, each defined by a group of random properties as it will be described below. Finally, the 

generator fills one or more test templates to map the scenario being tested into an actual program. The main 

benefit of this methodology is that it enables the test writer to develop tests based on high level scenarios, while 

keeping the microarchitectural claims and the instruction set details hidden from him. Moreover, a scenario is 

built in a generic way that easily enables its integration with other scenarios. Consequently, each scenario can be 

considered as a test template that can be combined with other templates to build complex scenarios. This solution 

is built in a layered way, keeping the microarchitectural claims at the lower level, and letting the test writer use a 

simpler scenario level interface to build different tests. The layers of the methodology are described in Figure 1. 

The layered structure shown in Figure 1 consists of: 

A. Sequence 

The high level interface of the stimulus generator. It combines one or more scenarios to generate the final 

test-case. 

B. Scenario 

A scenario contains a group of operations along with constraints on the interactions between them. Scenarios 

help us simplify the tests generated, as scenarios can be classified according to what they are testing. For 

example, if we are testing ALU operations, we can fix the source and destination registers. Another example is 

that if we are testing a Read-after-Write hazard, we can fix the other processor parameters.  
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Figure 1 Layers of the proposed methodology 

C. Operation 

An operation is an actual microarchitectural operation that the processor can perform. It contains operands, 

randomization directives and constraints. It also contains self-checks for the expected behavior of the operation, 

in addition, it contains the actual assembly instructions needed to perform this operation. A simple example: 

Load operation has an addressing mode directive, source, destination and data operands, and its check is that 

after execution (value (source) = value (destination)). 

An operation consists of 5 different groups of data: 

1) Operands: Such as source, destination, data, address …etc. 

2) Directives: Such as addressing modes. 

3) Constraints: To ensure that the test-cases are within the operation range of the processor and meet the 

coverage requirements in the verification plan. 

4) Checks: A self-checking test can be used to detect the bugs in both the RTL DUT, and the reference 

model. It is a test scenario with predictable results that can be easily calculated either inside the 

stimulus generator itself, or inside the UVM scoreboard. The main advantage of this type is that we 

can start our verification process before having a fully functional reference model. Complex scenarios 

can be divided into groups of simpler scenarios, using initialization and advanced checking 

mechanisms provided by the UVM Register Layer. Moreover, the same generated scenarios and 

sequences, in additon to more complex ones, can be utilized when we have a reference model. The 

self checks will not be used. 

5) Assembly Instructions:The actual binary instructions. 

IV. TEST TEMPLATE DESIGN 

As mentioned earlier, the implementation of our methodology is done in a bottom up manner: (1) the 

functional space of the processor to be tested is divided into families of possible execution scenarios, namely 

scenario families. Each of these families contains a part of the processor‟s functionality. (2) For each family a 

group test templates is designed. (3) The operations required to execute each scenario, and their relevant 

properties are defined. (4) Finally, the test generator (sequence) is defined and used to generate scenarios within 

one or more scenario families.  

An object-oriented design is strongly convenient for such a layered structure. A System Verilog class object 

contains properties, constraints and methods that operate on the properties. In our proposed work, we modeled 

the „Sequence‟ as a UVM Sequence and the „Scenario‟ as a UVM Sequence Item, inheriting from the UVM 

Base Class Library. The „Operation‟ is a virtual layer inside the scenario, defined by the properties of the UVM 

sequence item. A property is typically either a field of the UVM Sequence Item or a piece of supporting 
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information that is needed to generate this sequence item. A scenario family runs a group of similar scenarios. 

Each scenario family is a UVM Sequence Item class; it has basically the following properties: 

A. Scenario Name:  

The scenario name is an enumerated-type variable that takes a value from a predefined set of scenarios. It is 

the main property that directs randomization during test generation. 

B. Memory Map 

The processor being tested is unaware of the Transaction Level Modeling (TLM) nature of the UVM 

verification environment. It expects to deal with a memory address space, which is usually a multi-gigabyte 

address space. However, during a typical test, probably the processor will only access no more than a thousand 

memory locations. Therefore using System Verilog associative arrays enables modeling a very large address 

space while allocating only the used elements of this space inside the memory map that emulates a real Random 

Access Memory [11]. 

C. Input and Output Data. 

D. Register Name: 

The internal register name that the scenario will use is decided using this property from the internal registers 

of the processor. 

E. Addressing Mode: 

This property decides and directs the instruction into one of the processor‟s available addressing modes.  

F. Operation Name: 

A group of enumerated-type variables that specify which operations are to be performed during the execution 

of the scenario. 

The previous properties are not the only properties defining a scenario. Each family of scenarios needs its own 

properties. For example, a Jump instruction needs a jump address property, which includes the value that should 

either be loaded into or added to the program counter. 

After properties are defined, constraints are defined to describe the relationships between different properties. 

For example: a shift scenario should execute shift and rotate operations, data addresses should be outside the 

space of the program inside the memory map …etc. In addition to that, constraint can be used to insert errors 

inside test cases in an easy way as they can be enabled or disabled during runtime. 

The UVM Sequence Item class has a group of methods that represent utilities that deals with the objects 

instantiated from this class. Some of these methods are just basic utilities used to manipulate the object, such as 

new, copy, compare … etc. Other methods are used during test generation. We call this type of methods Test 

Templates. An example of a test template is shown in Figure 2. As shown in Figure 2, a test template is a function 

that takes a starting address as an input and returns the address where the template ends “end address”. It fills the 

memory map with actual assembly instructions. 

At the lower level, the operations are translated into binary instructions. These binary instructions are 

structured according to the instruction set architecture (ISA) of the processor being tested. Consequently, this part 

of the methodology is the major part that needs to be changed when testing processors with different instruction 

sets. An example on how to model these instructions is shown in Figure 3. In fact, this part of the methodology 

can be made even easier if we integrated a higher level compiler in the verification environment. However, this 

approach is not safe as the compiler itself may include bugs. Finally, the instructions shown in Figure 3 are placed 

inside this memory map, which are sent to the UVM Driver to communicate with the DUT using a Bus 

Functional Model that varies according to the bus protocol used by the processor under test. 

As shown is Fig. 4, these templates can be combined together to build complex scenarios, without the need to 

design these complex scenarios from the beginning. The main challenge now is how to design these templates in 

an efficient way. For example, a conditional branch in a program can have a low probability of being executed if 

the data it depends on are purely random. Such problems are handled using the constraints attached to each 
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scenario family, to ensure the efficiency of the generated test cases. The template connection block in Figure 4 

checks where the previous template has ended, and calculates the correct address for the next template to start at. 

 

Figure 2. An example of a test template 

 

Figure 3. Examples of binary instructions 

 

 

Figure 4. Template Design and Connection inside a Sample Scenario 

V. EXPERIMENTAL RESULTS: WISHBONE Z80 PROCESSOR CASE STUDY 

For the Wishbone Bus Z80 Processor, the tests are classified as shown in Table I. The specifications of the 

instruction set along with the variable properties, and the expected behavior of each instruction are mentioned in 

the Z80 user‟s manual, pages 75-282 [12]. 

 

 

Table I. Instruction Level Random Tests 

Start Address

Analyze 
arguments 
(Addressing 

Modes, adresses 
..etc)

 Get arguments.
 Do necessary 

initializations.

End Address

Template 
Connection

...Version 1 Version L

Template X

Start Address

Analyze 
arguments 
(Addressing 

Modes, adresses 
..etc)

 Get 
arguments.

 Do necessary 
initializations.

End Address

...Version 1 Version N

Template Y

function int jump_template (int start_adr); 

  int i; 

  i = start_adr; 

. 

    mem_array[i+x]   = JP; 

    mem_array[i+x+1] = jp_address [7:0]; 

. 

  jump_template = (i+LENGTH_OF_TEMPLATE); 

endfunction // jump_template 

Jump Instruction 
Instruction[0] = JP; 

Instruction[1] = jp_address[7:0]; 

Instruction[2] = jp_address [15:8]; 

 

Add Immediate Value Instruction 
Instruction[0] = ADDsA_N; 

Instruction[1] = data; 

 

Subtract a Register from the Accumulator Instruction 
Instruction[0] = {5'b10010, reg8}; 
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 Scenario Family Description 

1 
Simple Load/Store 

Data 

 In this scenario the testbench writes and reads from all the available registers and a percentage of the 
available RAM. 

 The percentage of available RAM is user defined before runtime. 

 The memory locations are chosen randomly. 

2 

Load/Store Data 

with Different 
Addressing Modes 

 Apply the same previous scenario, but with different addressing modes. 

 Test exchange, I/O and block instructions as well. 

3 
ALU Basic 
Operations 

 Test all the 8/16-bit arithmetic and logic, rotate and shift and bit-manipulation. 

 Load immediate values into registers. 

 Reset the processor between different test cases. 

4 ALU Switching 
 Switch between the 4 available ALUs (8/16-bit arithmetic and logic, rotate and shift and bit-

manipulation) without resetting the processor in between. 

5 

ALU Operations 

with Different 
Addressing Modes 

 Test all the instructions in scenarios #2 & #3 along with randomizing the addressing modes. 

6 
Interaction between 
ALU Instructions 

 Randomize between ALU operations on fixed data and let the scoreboard calculate the expected 

value. 

7 Jump/Call/Return 
 Put some routines in different, yet fixed, places in the memory, jump to their locations and check for 

their expected values. 

8 Jump/Call/Return 

(Control Hazards) 
 Combine scenarios #6 & #7. 

i.e. put scenarios in #6 at different memories for #7 to work on them. 

9 Interrupt  Repeat the scenarios #5 to #8 with random interrupt requests inserted within the scenarios.  

10 Data Hazards 
 Data hazards (Read-after-Write, Read-after-Read, Write-after-Read and Write-after-Write) are tested. 

This can be done after scenarios#1 and #2. 

11 Exceptions  CPU Control Instructions are tested. 

 

The Wishbone Z80 Processor has a two-stage pipeline-microarchitecture, which is tested implicitly within 

the hazard testing mentioned in Table I. First, the basic tests number 1, 2 and 3 were developed. Test templates, 

checks and coverage collector were developed for each test. In Table II, the number of templates for each 

scenario family can be found. It is worth mentioning that the classification in Table I has been slightly modified 

upon implementation. Scenario families 1, and 2 have been merged together as there was no actual need to 

separate them. Similarly, scenario families 4, 5, 6, and 10 were performed together in the same sequence. The 

number of cycles in the table is the simulation time, in terms of the processor clock, required to cover the events 

specified for each scenario family. The verification environment implemented is a Coverage Driven 

Environment, so each test is terminated when some events are covered. An event is one possible occurrence of a 

property from the processor‟s specification, for example, load from register A to register B, add two values with 

a carry generated, perform a Read-After-Write operation from Memory …etc. The required events are written 

inside a coverage collector.  The percentage of reuse is the ratio between the reused code lines from older 

scenarios to the total code lines required to implement a certain scenario. 

Table II. Samples of Experimental Results for Our Case Study 

Test/Scenario Family 

(Refer to Table 1) 

Number of  

Created  Templates  

Number of  

Test-Cases  

Number of Cycles 

(approximated to  

1K cycles) 

Number of 

Events 

Covered 

% of Reuse 

(Approx.) 

1 and 2 7 2,912 38K 85 0% 

3 18 29,192 421K 332 20% 

4, 5, 6 and 10 18 245 9.5K 73 70% 

7 5 552 5K 14 20% 

 

 
Figure 5. A portion of a scenario for generating interaction and data hazards 

address = txn.alu_instruction_template(address+1, 

                                       txn.instruction1, 

                                       txn.addr_mode1, 

                                       txn.register8i1, 

                                       txn.data_i1[15:8]); 

address = txn.alu_instruction_template(address+1, 

                                       txn.instruction2, 

                                       txn.addr_mode2, 

                                       txn.register8i2, 

                                       txn.data_i2[15:8]); 
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The third row of Table II is designed using the scenario shown in Figure 5, which reuse templates from 

previous tests, along with some constraints to stimulate hazards and dependencies between instructions. There are 

no new templates required to generate scenario families 4, 5, 6 and 10, as all 18 templates used for these families 

are actually reused templates from families 1, 2, and 3. This is clear in Table II, as the number of templates in the 

second and third entries is equal, and the percentage of reuse indicates that a major part of families 4, 5, 6 and 10 

is reused. In addition, it allowed us to use a constrained random approach and at the same time achieve fast 

convergence to the complete coverage of events. 

During our testing process several bugs were found. Among them some instructions, especially those with 

different addressing modes, or in Read-After-Write (RAW) hazards, were found to function incorrectly when 

issued in a row, and have to be separated by No-Operation instructions. Another major bug was found in 

branching instructions, where the program counter is not loaded correctly.  

VI. CONCLUSION AND FUTURE WORK 

The ever-growing complexity of processor architectures and microarchitectures create a gap between the 

verification requirements and the test generation mechanisms available. In this paper, we briefly discussed the 

latest directions and approaches in processor verification. In addition, we explored the capabilities of UVM to be 

used efficiently in processor functional verification. We proposed a new testing methodology for processor 

verification that can be easily reused for different architectures or micro-architectures, which is based entirely on 

UVM and SystemVerilog. We provided a practical example for the adoption of this methodology in the 

verification of the Open Source Wishbone Bus Z80 Processor. 

In our future work, we plan to extend the methodology to use UVM Registers for presetting the processor 

into a specific state at the beginning of execution of any scenario or for checking the behavior of more complex 

algorithms. Moreover, the validity of extending the proposed methodology to other areas, such as 

multithreading, will be investigated. The adoption of the proposed methodology in the verification of high-end 

processor designs will be also be explored. Finally, expansion efforts to add integration features with compilers 

are planned, so that templates can be designed in a high level language such as C-programming language. 
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