
© Accellera Systems Initiative

Introduction

TEST TEMPLATE DESIGN

Methodology

TEST TEMPLATE DESIGN
As shown below, these templates can be combined together to build complex scenarios, without
the need to design these complex scenarios from the beginning. For example, a conditional
branch in a program can have a low probability of being executed if the data it depends on are
purely random. Such problems are handled using the constraints attached to each scenario
family. The template connection block in the figure below checks where the previous template has
ended, and calculates the correct address for the next template to start at.

The implementation of our methodology is done in a bottom up manner:

(1) Processor functional space is divided into families of possible execution scenarios, namely
scenario families. Each of these families contains a part of the processor‟s functionality.

(2) For each family a group test templates is designed.

(3) The operations required to execute each scenario, and their relevant properties are defined.

(4) The test generator (sequence) is defined and used to generate scenarios within one or more
scenario families.

A scenario family runs a group of similar scenarios. Each scenario family is a UVM Sequence Item
class; it has some properties like scenario name,memory map, input and output data, register
name, addressing mode, operation name, etc.

Boost Valley for Engineering Services

Mustafa Khairallah and Maged Ghoneima

Reusable Processor Verification
Methodology Based on UVM

Mustafa Khairallah
Design Verification Engineer

E-Mail: mustafa.khairallah@boostvalley.com
Cell Phone: +20-122-480-6242

Experimental Results: WISHBONE Z80
PROCESSOR CASE STUDY Conclusion

The ever-growing complexity of processor architectures and micro-architectures create a gap
between the verification requirements and the test generation mechanisms available.

In this paper, we briefly discussed the latest directions and approaches in processor verification.
In addition, we explored the capabilities of UVM to be used efficiently in processor functional
verification.

We proposed a new testing methodology for processor verification that can be easily reused for
different architectures or micro-architectures, which is based entirely on UVM and System Verilog.
We provided a practical example for the adoption of this methodology in the verification of the
Open Source Wishbone Bus Z80 Processor.

The results show how our methodology increased the amount of reuse in the later stages of
verification and helped cover unseen events and detects several bugs that may not have been
discovered using the processor.

The verification environment implemented is a Coverage Driven Environment, so each test is
terminated when some events are covered. An event is one possible occurrence of a property
from the processor‟s specification.

For example, load from register A to register B, add two values with a carry generated, perform
a Read-After-Write operation from Memory ...etc.

The required events are written inside a coverage collector. The percentage of reuse is the ratio
between the reused code lines from older scenarios to the total code lines required to implement
a certain scenario.

During our testing process several bugs were found. Among them some instructions, especially
those with different addressing modes, or in Read-After-Write (RAW) hazards, were found to
function incorrectly when issued in a row, and have to be separated by No-Operation instructions.
Another major bug was found in branching instructions, where the program counter is not loaded
correctly.

Sequence: High level interface of
the stimulus generator.
- It combines one or more
scenarios to generate the final
test-case.

Scenario: Contains a group of
operations along with constraints
on the interactions between them.
- Scenarios simplify tests
generated, as scenarios are
classified according to what they
are testing.

Operation: An actual micro-
architectural operation that the
processor can perform containing:
- Operands, randomization
directives and constraints.
- Self-checks for the expected
behavior of the operation.
- Actual assembly instructions
needed to perform this operation.

function int jump_template (int start_adr);
int i;
i = start_adr;
.
mem_array[i+x]
= JP;
mem_array[i+x+1] = jp_address [7:0];
.
jump_template =
(i+LENGTH_OF_TEMPLATE);
endfunction // jump_template

After properties are defined, constraints
are defined to describe the relationships

between different properties. For
example: a shift scenario should execute

shift and rotate operations, data
addresses should be outside the space of

the program inside the memory map
...etc.

Test/Scenario Family No. of
Created

Templates

No. of
Test

Cases

No. of
Cycles

No. of
Events

Covered

% of
Reuse

Load/Store 7 2,912 38K 85 0%

Basic ALU 18 29,192 421K 332 20%

Advanced ALU 18 245 9.5K 73 70%

Jump/Branching 5 552 5K 14 20%

	Slide 1

