
Results Checking Strategies with Portable

Stimulus
Tom Fitzpatrick

Mentor, a Siemens Business

tom_fitzpatrick@mentor.com

Matthew Ballance

Mentor, a Siemens Business

matt_ballance@mentor.com

INTRODUCTION

Electronic design and verification automation have historically been driven by domain-specific languages. The

Accellera Portable Stimulus Working Group has released the Portable Test and Stimulus Standard (PSS)[1] to

enable capturing of high-level test behavior, including stimulus and coverage goals, to satisfy the requirements of

users in multiple verification domains and that can be targeted to verification environments from UVM to tests

running on the processors of an SoC. There are also existing Portable Stimulus tools in the industry that implement

taking a high-level test specification and targeting that to multiple verification environments.

PSS allows the user to create a declarative specification of critical behaviors – called actions – that must be

performed by the system-under-test, and the scheduling, resource and data constraints between them. From these

specifications, automation may be applied to allow tools to generate multiple randomized scenarios from the original

specification. In addition to scheduling, resource and data flow constraints, each leaf-level action in a PSS model

also includes templated or procedural interface code – an exec block – that implements the abstract behavior on the

desired target platform.

This idea of “scenario-level randomization” builds on strategies that UVM users have employed for years and

applies similar concepts at the higher level of abstraction necessary to model system-level intent. However, whereas

UVM deploys monitors and scoreboards to check functional correctness procedurally, Portable Stimulus poses some

challenges for results checking precisely because the PSS model is abstract and declarative, while results checking

is often platform-specific.

The key to results checking in Portable Stimulus is to understand that different levels of verification and validation

environments have different needs when it comes to results checking. In a block-level environment, we might want

detailed scoreboarding in addition to an overall per-operation pass/fail. In an SoC environment, we may only need

an overall per-operation pass/fail. The original abstract specification may indicate where in the flow results checking

should occur, but the abstract nature of the scenario specification itself necessitates that it rely on the target-specific

implementation to actually perform the checks.

PSS MODELING BASICS

Before we can discuss results checking in a PSS model, let us first examine the key elements of a PSS model and

how they interact to specify verification intent. As mentioned, a PSS model consists of a set of actions that represent

behaviors the system, which includes both the design and the verification environment, must execute. This means

that the actions will represent behaviors ultimately executed by some combination of hardware, embedded software

and verification components (VIP). Consider a simple UART block under verification as shown in Figure 1.

mailto:tom_fitzpatrick@mentor.com
mailto:matt_ballance@mentor.com

Figure 1: Block-level UART Verification Environment

In a typical block-level environment, the design-under-test (DUT) is surrounded by a set of VIP components at its

interfaces to interact with the DUT. The goal in block-level verification is to exercise the block in all possible modes

and configurations to ensure correct behavior. Thus, the VIP blocks must each be able to provide the full spectrum

of protocol and data options on each interface. Later, when the UART is integrated into a subsystem or system, the

other blocks to which it will be connected will, of necessity, conform to a subset of the protocol and data options

that were previously verified.

When it comes to modeling the verification intent in PSS, we think not about the specific components in the UVM

environment (since we want to reuse the intent in other environments), but rather about the critical operations that

must occur to verify the UART:

 The UART VIP will transmit data to be received by the UART

 The UART VIP will receive data sent from the UART

 The UART will receive the data and store the data in memory

 The UART will retrieve data from memory and send the data out

For this particular example, the data transmitted and received by the UART may be transferred using either

programmed I/O (PIO) or handshake-based mechanisms. The data protocol on the serial side of the UART demands

that the UART VIP actions and the corresponding UART action must execute in parallel. We can represent the

UART receive operation graphically as in Figure 2.

Figure 2: Block-level UART Receive Operations

In PSS parlance, tx and rx2mem are actions, and data_ref and dref_mem are data flow objects. Specifically,

data_ref is a stream object, which carries the scheduling constraint that its producer (tx in this case) and its

consumer (rx2mem) must execute in parallel, while dref_mem is a buffer object, which implies “storage” in the

system and carries the scheduling constraint that its consumer may not begin execution until the producer completes.

Code snippets for the relevant parts of the PSS model are shown starting with Example 1.

[NOTE: To simplify the graphics, the data_ref and dref_mem objects in the graphics in Figure 2

correspond to the data_ref_s and data_ref_mem_b objects, respectively, in the code examples, such as

Example 1.]

Example 1: UART Component with Receive-to-Memory Action

The component element of PSS is used to encapsulate actions and other elements that correspond to specific parts

of the system to facilitate reuse as the corresponding system element is reused in other contexts. In this example, the

wb_uart_c component is an extension of the base type pvm_dev_c, which provides a little infrastructure that will

help later, as shown in Example 2.

Example 2: Base Component Type with devid field

The wb_uart_c PSS component represents functionality that is ultimately performed by the UART block itself. The

important part initially in the PSS model is the data flow, so the UART block will receive the data stream as an input

and will store data as an output. We use constraints in the action definition to specify information about the data

objects and the relationships between the input and output data.

Example 3: UART VIP Component Transmit Action

In Example 3, we define the transmit action, tx_a, that represents functionality to be executed by the UART VIP in

Figure 1.

We can then create a PSS scenario in a top-level component to perform the receive operation as in Example 4.

Example 4: Compound Action to test UART Receive action

The activity statement in the test_rx_data action defines the set of critical actions we want to execute and their

explicit scheduling. This particular action represents the test intent captured in Figure 2, in which the uart_rx (the

UART component’s rx2mem_a) and uart_agent_tx (UART VIP’s tx_a) actions operate in parallel. The bind

statement shows that the input of the uart_rx action will be supplied by the tx_info output of the uart_agent_tx

action. In PSS, constraints are combined across bindings, so the constraints defined in the rx2mem_a action in

component wb_uart_c : pvm_dev_c {
 action rx2mem_a : pvm_dev_a {
 input data_ref_s rx_info;
 output data_ref_mem_b dat_o;

 constraint dat_o.sz > 0;
 constraint dat_o.sz <= 64;
 constraint dat_o.sz == rx_info.sz;
 }

}

component pvm_dev_c {
 action pvm_dev_a {
 rand bit[31:0] devid;
 }
}

component uart_agent_c : pvm_dev_c {
 action tx_a : pvm_dev_a {
 output data_ref_s tx_info;
 }
}

component wb_uart_ip_scenarios_c {
 action test_rx_data {
 wb_uart_c::rx2mem_a uart_rx;
 uart_agent_c::tx_a uart_agent_tx;

 activity {
 bind uart_rx.rx_info uart_agent_tx.tx_info;
 parallel {
 uart_rx;
 uart_agent_tx;
 }
 }
 }
}

Example 1 will also apply to the tx_a.tx_info output. The first two constraints define the sz field of the dat_o output

to have a value from 1 to 64. The third constraint defines that the sz field of the rx_info input object is the same as

dat_o.sz. The bind statement in Example 4 enforces the same set of constraints on the uart_agent_tx.tx_info

output. Ultimately, the scenario defined by test_rx_data is for the UART VIP to send a data object of from 1 to 64

bytes in length to the UART and have the UART store it somewhere.

We can, of course, define additional testing actions, including a scenario-level action that may choose between many

lower-level actions, as seen in Example 5.

Example 5: Additional Scenario-Level Test Actions

Graphically, this scenario, as represented by the entry action, is shown in Figure 3,

Figure 3: Top-Level Scenario Test Graph

 action config_transfer_a {
 test_rx_data test_rx;
 test_tx_data test_tx;
 action bit[7:0] in [2..5] n_ops;

 rand scenario_e scen;
 activity {
 n_ops; // randomize n_ops

 repeat (n_ops) {
 scen; // randomize the scenario
 select {
 (scen == scenario_rx): test_rx;
 (scen == scenario_tx): test_tx;
 (scen == scenario_rxtx): parallel {
 test_rx;
 test_tx;
 }
 }
 do end_scenario_a;
 }
 }
 }

 action entry {
 config_transfer_a uart_scenario;

 activity {
 repeat (10) {
 uart_scenario;
 }
 }
 }

where the test will loop 10 times (in the entry action), each iteration (in the config_transfer_a action) configuring

the UART (action not shown) and then performing a combination of from 2 to 5 randomly-chosen operations, which

are either test_rx_data, test_tx_data, or both test_tx_data and test_rx_data in parallel. This particular intent

specification defines

𝑁 = 3(10×𝑛_𝑜𝑝𝑠)

separate scenarios, given the different sequences of actions that may be produced by unrolling the inner loop.

Assuming that a generator tool will generate a sufficient number of tests to cover all possible values for the cfg

action, the number of scenarios would actually be

𝑁 = 3(10×𝐶×𝑛_𝑜𝑝𝑠)

TEST REALIZATION IN PSS

It is easy enough to understand the test intent conveyed by a PSS model such as the one shown here. One value of

PSS is that this abstract model may be mapped to multiple target implementations by extending the PSS model to

provide exec blocks that specify the detailed implementation of each leaf-level action in the scenario and having a

tool stitch these implementations together such that they meet scheduling and data constraints specified in the

model. However, when results checking is considered, we must take into account the fact that different test

implementations may handle checking in different ways.

Consider first a UVM implementation of the above test, as specified by the entry action. It may be implemented in

UVM as a virtual sequence that is initiated by the UVM test as shown in Example 6.

Example 6: Top-Level Scenario Test in UVM

where the wb_uart_pss_vseq_base type is overridden on the command line by:

+uvm_set_type_override=wb_uart_pss_vseq_base,wb_uart_pss_rxtx_transfer_seq

The wb_uart_pss_rxtx_transfer_seq virtual sequence in UVM thus coordinates the activity in the UVM test

environment by invoking sequences in the UVM components. This would typically involve the UART VIP

executing a sequence that will randomly generate a set of transactions to the UART and a scoreboard component

that can capture the data as it comes out of the UART and compare it to the data sent by the UART VIP. We could

model similar functionality in the PSS model, but unfortunately, when we get to a subsystem or system-level

environment, particularly a system which may be testing large amounts of data, the idea of maintaining copies of the

data throughout the verification environment is infeasible (and often impossible). Rather, an optimal results-

checking strategy in Portable Stimulus relies on the underlying implementation to generate and check the data while

receiving minimal guidance from the PSS model.

In effect, we must “begin with the end in mind”[2] and take into account the kind of checking that may be available

at the system-level, and incorporate that into our test realization strategy. It is almost never a good idea to model the

complete data streams in PSS. Instead, we model the data objects used by the UART as in Example 7.

class wb_uart_pss_vseq_test extends wb_uart_pss_test_base;
 `uvm_component_utils(wb_uart_pss_vseq_test)
 task run_phase(uvm_phase phase);

wb_uart_pss_vseq_base vseq =
wb_uart_pss_vseq_base::type_id::create("vseq");

 super.run_phase(phase);
 phase.raise_objection(this, "Main");
 vseq.start(null);
 phase.drop_objection(this, "Main");
 endtask
endclass

Example 7: Modeling Data in PSS

The most significant aspect of this data model is that there is no explicit “data” field in the PSS model. Instead, each

component will use the ref field as a key to generate or check data in the underlying realization. For example,

instead of just randomizing transaction items, as in Example 8,

Example 8: Random Sequence in UVM

the UVM sequence in the UART VIP would rely on the controlling virtual sequence to generate a repeatable random

stream of data as in Example 9,

Example 9: Non-random Sequence in UVM

which gets called from a SystemVerilog task, as seen in Example 10.

package pvm_types_pkg {
 struct data_mem_t {
 rand bit[31:0] addr;
 rand bit[31:0] sz;
 }

 buffer data_ref_mem_b : data_mem_t {
 rand bit[31:0] ref;
 }

 stream data_ref_mem_s : data_mem_t {
 rand bit[31:0] ref;
 }
}

class uart_serial_tx_seq extends uart_serial_seq_base;
task body();

 uart_serial_seq_item item =
 uart_serial_seq_item::type_id::create("item");

 for (int i=0; i<data.size(); i++) begin
 start_item(item);
 item.randomize();
 finish_item(item);
 end
 endtask

class uart_serial_tx_seq extends uart_serial_seq_base;
byte unsigned data[$];
task body();

 uart_serial_seq_item item =
 uart_serial_seq_item::type_id::create("item");

 for (int i=0; i<data.size(); i++) begin
 item.data = data[i]; // repeatable
 start_item(item);
 finish_item(item);
 end
 endtask

...
endclass

Example 10: Task in Virtual Sequence to Control Data Generation

The pvm_rand type provides a repeatably-generatable random value based on the seed constructor argument, as

shown in Example 11. Thus, from a given seed passed to its constructor, the next() method will return a repeatable

pseudo-random value.

Example 11: SystemVerilog Implementation of Transmit Action

Example 12 shows how the tx task is defined as the implementation in PSS.

Example 12: SystemVerilog Implementation of Transmit Action

The “{{ }}” notation allows values to be passed from the PSS model (i.e. the tx_info field in the uart_agent_c

component) into the SystemVerilog task to allow the data stream to be generated in the target UVM implementation

as a sequence of uart_serial_seq_item types.

Similarly, we can provide a UVM-compatible implementation of the rx2mem_a task for the UART component as in

Example 13.

Example 13: SystemVerilog Implementation of UART Receive Action

which uses the addr and sz fields of the dat_o object to store the data in the UVM register model to be called from a

SystemVerilog task is in Example 14.

task tx(int unsigned seed, int unsigned bytes, int unsigned stride);
uart_serial_tx_seq tx_seq = uart_serial_tx_seq::type_id::create();
pvm_rand r = new(seed);

for (int i=0; i<bytes; i+=stride) begin
 tx_seq.data[0] = r.next(); // Generate next repeatable-random value for r
 tx_seq.start(m_agent.m_seqr); // tx_seq will transmit one byte for each call
 // Spin the counter ahead for nonzero strides
 for (int j=1; j<stride; j++) begin
 void'(r.next());
 end
end

endtask

class pvm_rand;
 local int unsigned m_seed;

 function new(int unsigned seed);
 m_seed = seed;
 endfunction

 function int unsigned next();
 m_seed ^= (m_seed << 13);
 m_seed ^= (m_seed >> 17);
 m_seed ^= (m_seed << 5);
 return m_seed;
 endfunction

endclass

extend action uart_agent_c::tx_a {
 exec body SV = """
 tx({{tx_info.ref}}, {{tx_info.sz}}, 1);
 """;
}

extend action wb_uart_c::rx2mem_a {
 exec body SV = """
 rx2mem({{dat_o.addr}}, {{dat_o.sz}});
 """;
}

Example 14: SystemVerilog Task That Implements the Rx2mem Action

We complete the PSS model as shown in Example 15 by declaring a new component and an action to check the

data:

Example 15: PSS Checkdata Action

and provide an implementation that maps to the SystemVerilog environment as in Example 16.

Example 16: PSS Checkdata Implementation

To complete the test, we need to modify the scenario from Example 4 above as shown in Example 17 to include the

check:

Example 17: Compound Action to Fully Test UART Receive action

When the PSS model is rendered as a SystemVerilog test, the test_rx_data scenario could be represented in the

wb_uart_pss_rxtx_transfer_seq virtual sequence as shown in Example 18.

 virtual task rx2mem(int unsigned addr, int unsigned sz);
 byte unsigned data;

...
 for (int i=0; i<sz; i++) begin

...
 m_mem_if.write8(data, addr+i);
 end
 endtask

component pvm_data_util_c {
 action checkdata_mask_a {
 input data_ref_mem_b dat_i;
 rand bit[7:0] mask;
 }
}

extend action pvm_data_util_c::checkdata_mask_a {
 exec body SV = """
 checkdata_mask({{dat_i.ref}}, {{dat_i.addr}}, {{dat_i.sz}}, {{mask}});
 """;
}

component wb_uart_ip_scenarios_c {
 action test_rx_data {
 wb_uart_c::rx2mem_a uart_rx;
 uart_agent_c::tx_a uart_agent_tx;
 pvm_data_util_c::checkdata_mask_a checkdata;

 activity {
 bind uart_rx.rx_info uart_agent_tx.tx_info;
 bind uart_rx.dat_o checkdata.dat_i;

 parallel {
 uart_rx;
 uart_agent_tx;
 }
 checkdata;
 }
 }
}

Example 18: Virtual Sequence Realization of test_rx_data Scenario

Note that the rx2mem and tx tasks execute in parallel, as specified in the original scenario, followed by the

checkdata_mask task. Note also that the checkdata_mask task uses the same ref field (argument 1) as the tx task

(argument 2), which generated the data in the first place, and the same addr value (argument 2) as the rx2mem task

(argument 2), and that all three tasks use the same sz field value.

The data flow between the actions in the PSS model and the implementations in SystemVerilog are shown in Figure

4:

Figure 4: Data Flow in PSS and SystemVerilog

Since there is no formal reporting mechanism in PSS, any error reports must be provided by the underlying

implementation. In this case, as seen in Example 19, we rely on a conditional uvm_error report from the

checkdata_mask task:

Example 19: SystemVerilog Implementation of Checkdata Action

Similarly, the converse action, test_tx_data, is seen in Example 20.

class wb_uart_pss_rxtx_transfer_seq extends wb_uart_pss_vseq_base;
`uvm_object_utils(wb_uart_pss_rxtx_transfer_seq)
task body();
...
fork

 wb_uart_dev_rx2mem(0, 27566, 5);
 uart_agent_dev_tx(1, 3027603715, 5, 1);

join
pvm_uvm_pkg::checkdata_mask(3027603715,

 27566, 5, 127);
 ...
 endtask
endclass

task automatic checkdata_mask(
 bit[31:0] seed,
 bit[31:0] addr,
 bit[31:0] sz,
 bit[7:0] mask);
 pvm_rand r = new(seed);

 for (int i=0; i<sz; i++) begin
 int unsigned v = r.next();// Generate same data stream from given seed
 byte unsigned d;

 pvm_ioread8(d, addr+i);
 if ((d & mask) != (v & mask)) begin
 `uvm_error("checkdata_mask", $sformatf("Address 'h%08h: expect %02h, \
 receive %02h", (addr+i), (v&mask), (d&mask)));
 end
 end
endtask

Example 20: Compound Action to Fully Test UART Transmit action

REUSING TEST INTENT

The value of such an abstract reusable data-generation-and-checking model in PSS will become clear as we move

from block-level verification to the subsystem level, where the UART block will be instantiated along with several

other blocks and their attendant VIP components, such as is shown in Figure 5.

Figure 5: Subsystem Block Diagram

In this subsystem, the UART is combined with a DMA controller (DMA) and an Interrupt controller (INTC). The

UART block is still connected on its external interface to the UART VIP, but the internal interface that was

connected at the block level to the WB VIP is now connected to an actual bus that is itself connected to the other

blocks in the design, as well as to new Master VIP and Memory VIP blocks. There are several things to consider

about the new context in which we find the UART block.

The first is that we no longer have full access to all of the handshake/control signals to the UART, since they are

now connected to other blocks in the design, such as the DMA. Also, since we have exhaustively verified the UART

at the block level, we do not need to rerun the same block-level scenarios since it would not test anything new.

However, we can certainly plan to reuse the RX and TX actions from the UART VIP, as well as the rx2mem and

mem2tx actions for the UART VIP.

Similarly, we can expect that at this point in the project, the DMA and INTC blocks have similarly been fully-

verified at the block level. This means that we have additional actions available from the DMA PSS component that

we can use to build subsystem-level scenarios.

component wb_uart_ip_scenarios_c {
 action test_tx_data {

pvm_data_util_c::gendata_a gendata;
 wb_uart_c::mem2tx_a uart_tx;
 uart_agent_c::rx_a uart_agent_rx;

 activity {
 bind uart_tx.tx_info uart_agent_rx.rx_info;
 bind uart_tx.dat_i gendata.dat_o;

 gendata; // Generate data in memory
 parallel {
 uart_tx; // Transmit data from memory
 uart_agent_rx; // Receive and check data
 }
 }
 }
}

Example 21: PSS DMA Component Actions

Note that in Example 21, since all three actions are ultimately derived from the pvm_dev_a base action type, they

all contain a devid field. Graphically, these actions are shown in Figure 6.

Figure 6: DMA Component Actions

In addition to the UART scenarios (rx2mem and mem2tx) from the block level, we can also specify additional

scenarios for our subsystem that use the DMA actions to send data to or from the UART (mem2dev and dev2mem,

respectively), and we can also use the DMA itself to create additional traffic on the bus using the mem2mem action,

assuming the DMA block provides enough channels to operate multiple DMA transfers concurrently. We can extend

the scenario space by adding additional details like using specific memory address regions or specific DMA

channels for different operations via constraints applied to the actions. Note that the underlying UVM

implementations for the UART and DMA blocks do not have to change from their block-level PSS specifications, so

we can reuse those details as well.

In the abstract model, we continue to use the same basic data flow objects, relying on the ref field to allow data to be

generated and checked by the underlying implementation. The UART VIP will continue to generate data in the tx

action and check it in the rx action. The explicit gendata and checkdata actions can still be used at the subsystem

scenario level since their implementations are memory-based. For simplicity in this paper, we will limit our

scenarios to “one hop” transfers, which consist of one of the following

 Generate data buffer in memory, DMA transfer to another buffer, check data (mem2mem)

 Generate data buffer in memory, DMA transfer to UART, UART VIP receive/check data (mem2dev)

 Generate data buffer in memory, UART retrieve/transmit data, UART VIP receive/check data (mem2tx)

 UART VIP generate/transmit data, DMA transfer from UART to memory, check data (dev2mem)

 UART VIP generate/transmit data, UART receive and store data, check data (rx2mem)

component wb_dma_c : pvm_dev_c {
 abstract action dma_dev_a : pvm_dev_a {
 // All transfers involve a channel
 rand bit[7:0] in [0..7] channel;
 // Size of each transfer
 rand bit[4] in [1,2,4] trn_sz;
 }
 action mem2mem_a : dma_dev_a {
 input data_ref_mem_b dat_i;
 output data_ref_mem_b dat_o;
 }
 action dev2mem_a : dma_dev_a {
 output data_ref_mem_b dat_o;
 input data_ref_s info_i;
 }
 action mem2dev_a : dma_dev_a {
 input data_ref_mem_b dat_i;
 output data_ref_s info_o;
 }
}

We expand our choices in the PSS test scenario as shown in Example 22, using an expanded set of choices defined

in the scenario_e enumeration, which gets randomized at the start of the activity statement, and the m2m_sz

parameter which gets randomized, subject to constraints, before the operation is chosen.

Example 22: PSS Subsystem Scenarios

component wb_periph_subsys_scenarios_c {
 enum scenario_e {
 scenario_m2m,

scenario_tx_pio, scenario_rx_pio,
 scenario_tx_dma, scenario_rx_dma
 };
 rand scenario_e scen;
 action bit[16] m2m_sz;
 constraint {
 if (scen == scenario_m2m) {
 m2m_sz == mem2mem.dat_i.sz;
 } else {
 m2m_sz == 0;
 }
 }
 activity {
 scen; // randomize the scenario
 m2m_sz; // randomize the mem-to-mem transfer size
 select {
 (scen == scenario_m2m): sequence {
 gendata;
 mem2mem;
 checkdata;
 }
 (scen == scenario_tx_pio): sequence {
 gendata;
 parallel {
 uart_mem2tx;
 uart_agent_rx;
 }
 }
 (scen == scenario_rx_pio): sequence {
 parallel {
 uart_agent_tx;
 uart_rx2mem;
 }
 checkdata;
 }
 (scen == scenario_rx_dma): sequence {
 parallel {
 uart_agent_tx;
 dev2mem;
 }
 checkdata;
 }
 (scen == scenario_tx_dma): sequence {
 gendata;
 parallel {
 uart_agent_rx;
 mem2dev;
 }
 }
 }
 }
}

These choices are shown graphically in Figure 7.

Figure 7: DMA Component Actions

SUBSYSTEM-LEVEL MODELING

At the subsystem level, there may be several details that are different from the block level environment(s). For

example, the memory addresses may be different, the blocks may use different device IDs, and there may be

different constraints on certain operations, such as requiring a specific set of DMA channels to communicate with

the UART, or only allowing the UART to access certain address ranges. These can be modeled as additional layered

constraints in the PSS model.

We could create more elaborate scenarios, of course, such as a loopback test where the data is generated by the

UART VIP, gets received by the UART and stored in memory either by the UART or via DMA, then the same data

is retrieved from memory either by the UART or via DMA, sent to the UART VIP and checked against the original

data. We could also put a random number of memory-to-memory transfers of the data between the receive and the

transmit actions. Each additional scenario choice adds to the possible solution space of the resulting implementation,

but all will still carry the burden of having to check that the data that winds up at the terminus of the given operation

is correct. In this particular case, since the data always winds up either in memory or in the UART VIP, we can

reuse the same generation and checking implementations from the UART block-level environment seen earlier.

Of course, there is more to “correctness” at the subsystem level than just ensuring that the correct data was able to

flow through the system. Often subsystem tests are concerned with measuring throughput and/or latency as well as

bus utilization. Because these aspects are platform-specific, they will similarly rely on the underlying verification

environment to perform the measurements and report the results. To be sure, the scenarios can be modeled to

maximize bus traffic, for example, by performing N DMA transactions in parallel with the above scenarios.

However, it would still fall on the underlying implementation environment to measure and report on how these

complex scenarios actually impact the actual performance of the system.

MOVING TO THE SOC LEVEL

Having verified that the subsystem can correctly transfer data between the UART and the memory, we take

advantage of much of the PSS infrastructure when we move up to the SoC level.

Figure 8: SoC Block Diagram

At this level (Figure 8), the Memory VIP from the subsystem model (Figure 5) is replaced by an actual DDR

memory, and the Master VIP is replaced by a (set of) CPU model(s), which will actually execute C code. In a

simulation or emulation environment, these may be models, while in an actual FPGA or post-silicon SoC, these may

be actual processors and memories.

Also, in this particular example, we have another DMA controller in the system that is available to transfer data

between devices. This is where the devid field comes into play, since each DMA action will need to specify which

DMA instance is to be used to perform the action, as shown in Example 23.

Example 23: DMA Action Implementation in C

At this point, we must understand that, although our PSS model is still abstract and may consist of the same set of

actions available at the subsystem level, nevertheless, the target implementation must rely on the processors to drive

traffic, which requires the use of C code to implement the actions as in Example 24.

Example 24: C code Implementations to Support the test_rx_data Scenario

extend action wb_dma_c::mem2mem_a {
 exec body C = """

wb_dma_dev_mem2mem({{devid}}, {{channel}},
 {{dat_i.addr}}, {{dat_o.addr}},
 {{dat_i.sz}}, {{trn_sz}});

""";
}

extend action uart_agent_c::tx_a {
 exec body C = """
 uart_agent_dev_tx({{devid}}, {{tx_info.ref}}, {{tx_info.sz}}, 1);
 """;
}
extend action wb_uart_c::rx2mem_a {
 exec body C = """

wb_uart_dev_rx2mem({{devid}}, (void *){{dat_o.addr}}, {{dat_o.sz}});
 """;
}
extend action pvm_data_util_c::checkdata_mask_a {
 exec body C = """
 pvm_checkdata_mask({{dat_i.ref}}, {{dat_i.addr}}, {{dat_i.sz}}, {{mask}});
 """;

}

It becomes a file management problem to pass the new extensions, such as in Example 24, to the PSS processing

tool along with the same PSS files for the abstract model to define the actual test intent. When implementing the

actions, there are a few things to keep in mind.

The first is that, although we are still using the UART VIP as the external device, we no longer have the UVM test

environment to control, nor do we have access to the virtual sequence. Instead, we rely on the PSS tool to generate

the same set of scenarios, but as C code shown in Example 25 that runs on the processors (with appropriate

threading and inter-process communication) according to the schedule specified by the PSS model.

Example 25: C code Realization of test_rx_data Scenario

Compare the C code in Example 25 to the UVM virtual sequence in Example 17. The infactpss_thread* calls in

Example 25 are part of a threading package developed for our target environment and passed to the PSS tool. The

infactpss_thread_create methods cause uart_agent_dev_tx (via thread_func_5) and wb_uart_dev_rx2mem (via

thread_func_6) to be called in parallel, just as in the virtual sequence, followed by pvm_checkdata_mask. As you

would expect, the uarg_agent_dev_tx and pvm_checkdata_mask methods use the same ref value, and the

wb_uart_dev_rx2mem and pvm_checkdata_mask methods refer to the same address, while all three use the same

sz value. The uart_agent_dev_tx method, and all methods that control the behavior of the UART VIP, rely on a

“trickbox” implementation where writes to specific memory addresses cause the environment to invoke the specific

tasks in the VIP SystemVerilog implementation to affect the same behavior as if calling them in UVM from a virtual

sequence. The trickbox itself could easily be the subject of another paper.

It is easy enough to provide C code implementations of the gendatat and checkdata methods as in Example 26.

Example 26: C code Implementation for Checkdata Method

As mentioned above, the key to the whole methodology laid out here is for the pvm_rand data object to be able to

provide a repeatably-pseudorandom value from a seed (which will be left as an exercise to the reader).

CONCLUSION

The new Portable Test and Stimulus Standard from Accellera defines a declarative language for specifying

verification intent at an abstract level. A critical aspect of “portable” is the ability to provide implementations of this

void wb_periph_subsys_test(void) {
 ...
 {
 infactpss_thread_t branch_1 = infactpss_thread_create(&thread_func_5);
 infactpss_thread_t branch_2 = infactpss_thread_create(&thread_func_6);
 infactpss_thread_join(branch_1);
 infactpss_thread_join(branch_2);
 }

 pvm_checkdata_mask(2362696682, 1612443855, 14, 255);
 ...
}

void thread_func_5(void) {
 uart_agent_dev_tx(0, 2362696682, 14, 1);
}
void thread_func_6(void) {
 wb_uart_dev_rx2mem(2, (void *)1612443855, 14);
}

void pvm_checkdata_mask(uint32_t ref, uintptr_t addr,
 uint32_t sz, uint8_t mask) {
 pvm_rand_t r;
 void *addr_p = (void *)addr;
 int i;

 pvm_rand_init(&r, ref);

 for (i=0; i<sz; i++) {
 uint8_t exp_v = pvm_rand_next(&r);
 uint8_t v = uex_ioread8(addr_p+i);
 }
}

verification intent on multiple platforms and environments. Since results checking is so often dependent on the

underlying implementation, and often entails platform-specific metrics that go beyond the scope of the abstract PSS

intent model, we must approach the problem with foresight.

In an SoC environment, all data is managed by the C code running on the processor(s), even the data that eventually

gets generated by external VIP, through a software trickbox or perhaps an emulator-specific mechanism. Because

the processor(s) can only manage data via memory accesses, a gendata/checkdata scheme must be used to

guarantee portability throughout the flow. In fact, this is the “end” we must have in mind when beginning at the

block level to create a PSS model that will indeed be portable. Augmenting this result-centric approach to checking

with detailed checkers that are environment-specific ensures that verification driven by portable-stimulus tests gets

the consistency of environment-independent result checking and can benefit from detailed checks that are

environment specific.

[1]. Accellera Systems Initiative. Portable Test and Stimulus Standard Version 1.0. June 2018

[2]. Covey, Stephen R. The 7 Habits of Highly Effective People: Restoring the Character Ethic. [Rev. ed.]. New

York: Free Press, 2004.

