
Responding to TAT Improvement Challenge
through Testbench Configurability and Re-use

Kartik Jain, Renuka Devi Nagarajan, M Akhila, Component Design Engineer,

Mukesh Bhartiya, Engineering Manager, Intel Technology India Pvt. Ltd, Bangalore, India

Abstract— SoC integration is becoming
increasingly complex and challenging due to the
complex nature of IPs and the need to react to fast
moving market expectations quickly. From a
verification standpoint, the turnaround time can be
much faster if the verification environment can
handle higher levels of abstraction, enabling
verification engineers to skip block level details of
each VIPs/IPs and focus more on
communication/interface between IPs. Also designers
are cutting architecture exploration time by adopting
System-C models, which is also pushing for a shorter
time to first test.

In this dissertation we will introduce a verification
methodology which delivers a configurable
verification environment with multiple VIPs and
enables connectivity to System-C drivers to reuse
System-C unit tests with UVM SoC environment.

These methodologies focus on encapsulating core
components with simple wrappers and significantly
reducing dependencies of sequences and data
checkers/monitors on transaction type.

This approach helps to improve TAT in two ways:
Firstly, with the configurable test bench structure
along with Fabric (AMBA) VIP wrapper scheme
eliminates the need of re-establishing the verification
environment from scratch for new SoC architectures.
By using a pre-verified verification environment the
user can focus more on test case stability rather than
spending significant time on environment updates.
Secondly, with the ability to switch between System
Verilog and System-C drivers for the same interface,
most of the block level tests can be reused at full chip
level to quickly identify configuration/integration
bugs.

This paper demonstrates a UVM based
reconfigurable verification environment, built for a
scalable SoC architecture. This paper highlights the
creation of wrapper for primary fabric VIP, provision
to have multiple drivers and transaction type
independent end-to-end data checker. We achieved
2X reduction in time to first test as well as reduction

in compilation and simulation time by 2X using the
proposed techniques.

Keywords— Generic Test bench Structure; Fabric
(AMBA) VIP configurable Wrapper; System-C
drivers integration; Generic Base Sequences and Data
Checker; UVM Advanced Features – Custom
Phasing, UVM RAL;

Introduction
With SoCs integration challenges becoming more

complex and TTM reducing, the TAT for verification
is also becoming shorter. The verification
environment has to be stable enough to absorb all the
architectural updates at SoC level quickly. While the
tests themselves are closely coupled to the actual
design behavior; the environment, itself, should be
minimally effected with these changes. There are
many vectors which control the updates in the
verification environment and we will be talking about
those in the subsequent sections.

Figure 1 shows a generic SoC design which has a
multilayered fabric (primarily AMBA based)
connecting various commonly used IPs/blocks. The
primary high speed fabric connects the core,
memories and some basic peripherals like DMA etc.
The other layer of fabric is connected to low speed
peripherals viz. UART, I2C, I2S etc. SoC specific IPS
can be either connected to the primary fabric or to
another layer which talks to the primary fabric.
Expected bandwidth and performance will govern
such decisions.

The example here shows some commonly used VIPs
like I2C, I2S, UART, SDIO and AMBA. Since the
primary master of the system is connected to AMBA,
the AMBA agent VIP is the primary controller of the
sequence initiation. Multiple master agents’
sequencer flow is controlled by UVM virtual
sequencer which controls all the VIP sequencers and
their transactions.

BASE UVM ENV
AMBA VIP/Wrapper

I2C VIP

I2S VIP

UART VIP

SoC Specific IP(s)

SDIO VIP

Coverage Module

DATA Checker

Hooked to all IFs

DATA Checker

Hooked to all IFs

DATA Checkers

Hooked to all IFs

Primary fabric –AHB/AXI

Low speed fabric - APB

Core DMA

Memories
I2C

UART

I2S

UVM
sequencer
Controls all
the
sequencers

SDIO

Figure.1 Baseline SoC architecture for testbench
The paper is organized as follows. Section II addresses the core areas that were targeted to get significant Re-

usability and Re-configurability in SoC Verification Environment. The proposed implementation details for short
TAT are explained in Section III followed by the results

Key Areas to Target for Re-
usability and Re-configurability

Generic Verification Environment

During the initial phase of a project, the SoC
architecture goes through many tweaks for power and
performance. During this phase, the verification
environment should be able to adapt to architectural
changes quickly.

Fabric(AMBA) related Architectural Updates
Based on architectural experiments there could be

change in Fabric (AMBA) configurations, which can
essentially change the number of fabrics (AMBA) in
SoC, number of masters and slaves in each fabric and
other parameters. Main fabric (AMBA) VIP
configuration is the most affected one and being the
backbone of complete environment, it has major
impact on verification. During architectural
exploration phase; main fabric undergoes frequent
changes either to meet required bandwidth or add new

device support (peripherals). This will result in re-
configuring many parameters of the AMBA VIP (viz.
address map, slaves accessible to a particular master
etc.) and hence touching the base configuration class
again and again.

To minimize VIP configuration efforts due to such
changes, a wrapper was created around the base
AMBA configuration class which has simple function
calls to configure the VIP w.r.t SoC configuration. It
captures all prevalent parameters required to set the
VIP and can be extended to add control to any other
parameter of the VIP, as per requirement.

SoC’s External Interface related Architectural
Updates

Based on data transfer rates and sensor
requirements, each SoC will have different set of
interfaces to the external world. In order to ensure the
connectivity and correctness of data transaction from

SoCs to board and vice versa, the corresponding
VIP’s will be connected which will mimic the
behavior of on-board components.

The verification environment needs to have the
capability of adding, removing and modifying the
number of external components. Accordingly the test
bench structure was created to take a SoC specific
single input file and configure the pre-verified
verification components. In SoC specific input file,
user (verification Engineer) can specify the SoC
requirements like number and type of fabrics/
external interfaces and their parameters.

Transaction Type Dependencies

Generic Base Sequences
Having VIPs in an environment will surely help build
the environment quickly, but at the same time it’s
important to keep the environment immune to VIP
changes. To build such a robust environment, we
have limited ourselves to use any VIP specific
transaction class object within only one sequence and
its methods. Rest of the sequences and tests are
extended from a generic base sequence. We have also
implemented centralized objection handling
mechanism as part of the base sequence to have a
unified way of test flow

Generalised Data Checker
Typical data checkers are reliant on their transaction
type on its analysis port. Transaction type of the
checker can be any fabric (AHB/AXI/APB) or any
other peripherals like UART, I2C, I2S etc., In order
to address this issue we have decoupled the
transaction type dependencies from the checker
module. Base classes are developed to work on
custom transaction type and transformation of VIPs
transaction type is kept only at callback level.

Reusing Block level System-C tests
For new IPs, architects are moving towards

adopting System-C for architecture exploration and
developing functional models, which will normally be
available for virtual prototyping in the early phases of
the design cycle. These models come with extensive
block level scenarios/ tests-cases regressed at
functional model level. If SoC test-bench can reuse
these models/ tests from unit level block environment,
it will help fix some low hanging integration and
configuration bugs in the IP.
To shorten time to first test and rerun some of the
block level tests at full chip level, hooks were
incorporated to choose between block level System-C

driver and CRV based UVM driver. With this
capability, basic block level tests can be run quickly
to flush away basic configuration bugs.

Proposed Techniques for Faster
TTM

Generic Verification Environment
Implementation

Configurable wrapper to absorb Fabric(AMBA)
architectural changes

AMBA VIP can be configured in many flavors
with in-built monitors to watch for protocol violations
and data sanity between master & slave. But this
flexibility comes at the cost of configuring many VIP
parameters with every change in fabric structure.
Since the list of parameters is exhaustive, one need to
be careful about every setting and any wrong
configuration could lead to a false checker violation
adding to simulation debug cycles.
This process consumes significant amount of time
especially when fabric architecture under goes
multiple changes during exploration phase and also
may vary with project derivatives. To handle this
challenge, a configurable wrapper was developed
over AMBA VIP. The wrapper consists of simple
function calls and encapsulates all VIP configuration
specific details from user. This enables the user to
limit all fabric related changes to one wrapper file

Let’s assume a case where fabric gets a new AHB-
Lite layer with 4 slaves all working on different clock
and reset from the master. For this case below is the
list of parameters that needs to be re-configured.
Proper configurations of all parameters shown in
Table-I below are required for VIP’s expected
functionality
S.N. Parameter/ Function to re-configure
1 create_sub_cfgs(, ,) – Accepts number of different layer
2 Layer type configuration – AHB-Lite/ AHB
3 Number of slaves for new layer
4 Common clock & reset mode to define relation with

master clock & reset
5 Master’s address & data width
6 Per slave address & data width
7 Master active/ passive setting
8 Per slave active/ passive setting
9 Master address range
10 Per slave address range
11 Monitor configuration

Table I. Configuration Fabric Parameter

Instead of remembering all above parameters and
settings, a onetime effort was put in to develop a
wrapper that will make the environment less prone to
configuration errors.

The wrapper takes input via the below 3 function
calls as shown in Figure 2 and then configures the
AMBA VIP under-the-hood.
set_new_layer () - This accepts all layer related
parameters such as layer type, number of masters &
slaves, common clock & reset mode.
set_layer_master () - This accepts master specific
parameters such as active-passive mode, address &
data width. Needs to call per master basis.
set_layer_slave () - This accepts slave specific
parameters such as active-passive mode, address &
data width, address range. Needs to call per slave
basis.

Encapsulates VIP Config Class Details from Users

Function: Set _new_layer
Layer type, ID Name, # Master, Slaves, Clock/Reset Mode

Function: resigter_layer_master/slave
Agent Specific Parameters

Lo
op

 fo
r a

ll
Ag

en
ts

/L
ay

er
s

VIP Configuration
Num of agents
Data/Address width Configs
AHB Lite/APB3/APB4/ Configs
Master-Slave Clock/Reset Modes
Active/Passive Configs
Agent address Mapping
AMBA Monitor Hook-ups
Other Configs

Agent_data_holder_st
 Store agent configs

Layer_data_holder_st
 Store layer configs

 Figure.2 Configurable Fabric VIP Wrapper Structure

Apart from these, the wrapper needs some more

inputs to map master-slave to layers. Wrapper holds
all inputs in associate arrays which can be later
queried to get component specific configuration for
any debug purpose.

With this approach, verification environment can
be easily tuned to any modification in fabric structure
resulting in man-hour saving and prompt feedback to
architecture team.

This also gives flexibility in terms of:
I. Constraining any major change in VIP

configuration parameters within wrapper.
II. Turning-off VIP monitors on specific

interfaces and instantiate custom checker.

Configurable TB to absorb External Interface
changes

Each SoC will have a different set of

communication mode, bandwidth, boot-up methods
and power budget requirements. Based on those
criteria the SoC will have a different architecture in all
the aspects like fabric, peripheral types and numbers.
The verification environment should be capable of
handling these aspects of architectural changes. These
issues were addressed as described below. Figure 3
shows a conventional system environment.

In a single input file, we will be specifying the

architecture details as shown in Figure 4a. We have
created a system environment to get the architecture
inputs from a file and populate the corresponding
verification environment.

Figure 4b shows the proposed configurable

verification system environment generated by the SoC
specific input file. This input file is created by user
and has all the details of parameters which are needed
by to match design characteristics. It also makes it
easy for porting and single source control.

AMBA_ENV

AHB1 AHB2

APB2

AXI1

AXI2

UART_ENV1 UART_ENV2 I2S_ENV1

I2S_ENV2 I2C_ENV2 SPI_ENV1

GPIO_ENVSDIO_ENV

SYS_ENV

APB1

AHB1_IF

AHB2_IF

APB1_IF

APB2_IF

AXI1_IF

AXI2_IF

AMBA_ENV

AHB1 AHB2

APB2

AXI1

AXI2

UART_ENV1 UART_ENV2 I2S_ENV1

I2S_ENV2 I2C_ENV2 SPI_ENV1

GPIO_ENVSDIO_ENV

SYS_ENV

APB1

UART1_IF

UART2_IF

I2S1_IF

I2S2_IF

I2C1_IF

GPIO_IF

SDIO_IF

Figure.3 Existing Verification System Env Structure

s

Figure.4A Snippet of SoC Specific Configuration input file

AMBA_ENV

AHB1 AHB2

APB2

AXI1

SYS_ENV

APB1

AHB_IF[*]

APB_IF[*]

AXI_IF[*]

AMBA_ENV

AHB_ENV[*]

APB_ENV[*]

AXI_ENV[*]

UART_ENV[*] I2S_ENV[*] I2C_ENV[*]

SDIO_ENV[*] SPI_ENV[*] GPIO_ENV[*]

SYS_ENV

UART_IF[*]

I2S_IF[*]

I2C_IF[*]

GPIO_IF[*]

SDIO_IF[*]

SPI_IF[*]

SoC Specific
Config File

*

 Figure.4B Configurable Verification System Env Structure

Developing Environment
components independent of Fabric
Transaction Type

Developing Generic Base Sequences
(Independent of Fabric transaction Type)

In order to absorb frequent changes in
architecture, we developed components that can work
seamlessly with both AHB & AXI based systems and
can easily accommodate new/mixed flavor of fabric.
Sequences and tests reusability can be achieved only
when they are not directly handling any specific type
of transaction item. To improve reusability of

sequences & tests, we extended all such components
directly from UVM base classes and avoided any
direct randomization of VIP AHB/ AXI transaction
class. We implemented `uvm_do_* calls on VIP
transaction class within our custom read and write
tasks with appropriate arguments. All top-level
sequences are calling these tasks without worrying
about underlying master transaction type.

These tasks are implemented at leaf level and here
we randomized AHB/ AXI transactions, based on task
arguments. Any major fabric changes related to AHB,
AXI or any other protocol will affect only leaf level
tasks and that can be done in few working days;
keeping rest of the sequences/ tests immune to such
changes.

To have a unified way of test completion and
avoid any dead-locks due to abrupt killing of
sequences or tests, we also implemented objection
handling mechanism as part of base sequence. This
helps us to automate the objection raise-drop
mechanism and users do not have to tackle this at
different levels of sequences. Now every sequence
raises its own objection at pre-start stage and drops it
once its completed or killed.

Developing End–to–End Generic Data Checker
(Independent of Fabric transaction Type)

AMBA VIP in-built checkers are good to check
data integrity between master & slaves attached to
AMBA bus but what about sanity of data appearing
on output of attached peripheral?

AMBA VIP CONFIGURATION
int layer_master [0:`NO_OF_AMBA_LAYERS-1] = {4,2,1,1,2,1,1,1,1,1,1,1,1};
int layer_slave [0:`NO_OF_AMBA_LAYERS-1] = {5,1,1,1,5,5,1,1,5,5,1,2,2};
int layer_clock_mode [0:`NO_OF_AMBA_LAYERS-1] = {1,1,1,1,1,1,1,1,1,1,1,1,1};
int layer_reset_mode [0:`NO_OF_AMBA_LAYERS-1] = {1,1,1,1,1,1,1,1,1,1,1,1,1};
int set_xaction_mon [0:`NO_OF_AMBA_LAYERS-1] = {1,1,1,1,1,1,1,1,0,0,0,1,1};

OTHER VIP CONFIGURATION:

 int uart_active[0:`NO_OF_UART_INSTANCES-1] = {1,1};
 int handshake_type[0:`NO_OF_UART_INSTANCES-1] = {0,0};
 int data_width[0:`NO_OF_UART_INSTANCES-1] = {8,8};
 int stop_bit[0:`NO_OF_UART_INSTANCES-1] = {1,1};
 int parity_type[0:`NO_OF_UART_INSTANCES-1] = {1,1};
 int baud_divisor[0:`NO_OF_UART_INSTANCES-1] = {1,1};
 int uart_receiver_buffer_size[0:`NO_OF_UART_INSTANCES-1] = {16,16};
 int uart_enable_tx_rx_handshake[0:`NO_OF_UART_INSTANCES-1] = {1,1};
 int uart_enable_dtr_dsr_handshake[0:`NO_OF_UART_INSTANCES-1] = {0,0};

Our verification environment required an end-to-
end data checker that can handle in-order comparison
between AMBA master and output of any peripheral
attached anywhere in the system. This implies
handling of many different transaction types from
various VIPs and also system reference model output
formatted in text.

Checker has to be generic enough to handle
addition of any interface and hence works on its own
transaction types. It is configurable to handle on-the-
fly reset/ abort conditions, selectively turning off
checker on any given interface, applying byte-mask
before comparison and is able to dump data values at
different levels for easy debugging.
To achieve this, it’s needed to de-couple the checker
from any type of VIP specific transaction and operate
only on UVM analysis ports without any clock
dependencies. Figure.5 depicts overview of checker
operation

Parameterized
Analysis Export1

Parameterized
Analysis Export2

Transacti
on

Xformati
on

Callback

Transaction
Xformation

Callback

Transaction
Xformation

Callback

Checker Config
(UVM events to turn-off, flush queues,byte-masks,...)

In-Order Compare
Logic

In-order
Compare Logic

VIP1 Transcation Object VIP2 Transcation Object

Figure5.Checker Structure

As shown above, for any given interface checker

accepts VIP specific transactions to xfer_convert
callback class via UVM analysis ports and then passes
on the transformed information to checker base. All
analysis ports and transformation classes are
parameterized and can be configured for given
interface while instantiating checker. This enables
checker base functionality to deal with its own pre-
defined data format. Also UVM events and other
configuration parameters are passed to handle resets,
byte-masking etc.

Checker keeps pushing TX data in queues and
performs comparison once RX data is available on
analysis ports without depending on any clock.

Callback hooks are provided to manipulate data
before comparison, if required.

Hybrid Verification Environment
manages between SystemC drivers
and UVM drivers

One possible way to address TTM challenge is to
get unified functional models across the front-end
flow that can be used by both validation & virtual
prototyping team. Re-using System-C unit tests with
configurable UVM SoC environment is such an
option.

One of the major components in System-C unit
testbench is the system-C drivers. These System-C
drivers that excite System-C models can communicate
through TLM ports and are capable of driving logic
values at pin level.

Verification environment had hooks for System-C
drivers and was configurable to choose between
System-C drivers and UVM drivers. UVM drivers
were used to drive randomly generated stimulus
whereas System-C drivers were used to re-run unit
level tests at system level. This gave us flexibility to
use UVM constraint random approach to focus on
generating corner case scenarios at the same time
reduced effort to migrate unit level System-C tests to
UVM.

The drivers developed for Loosely-Timed(LT) and
Approximately-Timed(AT) models are at transaction
level and communicate to System-C models using
TLM and drivers eventually becomes pin accurate
when it starts feeding in to cycle accurate models. The
connection between System-C driver and RTL
depends on whether the System-C model is at
transaction level or pin accurate level.

Support of TLM 2.0 in both System-C and UVM
makes it fairly seamless to integrate System-C
components with UVM environment. VCS-TLI
supports auto-conversion of transaction payload class
extended from generic TLI structure. For user defined
payloads, conversion functions required by TLI have
to be written. Complexity of conversion functions
depends upon data types used in user defined
payloads.
Integrating System-C pin accurate drivers are much
simpler than writing conversion functions for user
defined payload types. A sample TLI file needs to be
created with the adaptor name same as the driver

class name and then drivers are compiled along with
the sample TLI file to dump out CPP header and SV
file. The generated files take care of data type casting
between System-C and SV and imports and
implements DPI functions which help in cross
language communication. These functions assign
values to the driver signals based on the
implementation and pass the same to the RTL as
well.

UVM
Driver

SystemC
Driver

Switch Control

Connection
to DUT

 Figure6. System-C Driver Integration
Due to availability of System-C pin accurate

drivers from unit level environment, we adopted 2nd
method described above. This saved our effort of
writing TLM-TLI ports and conversion functions
essential for SC-SV communication.

This integration of System-C drivers gave us
initial jump start in verification and helped to bring
first test easily using existing unit level tests. Later in
verification cycle, it was useful to replicate any unit
level scenario at full chip level. This approach helped
us by reducing directed test-case development to test
basic functionality at system level. We could then
focus our efforts on random scenarios generation
using SV constraints and corner-case testing.

Figure7. DPI call based handshake snippet

Other Approaches
Apart from approaches mentioned above, we also

implemented some of the UVM advanced features as
well as ways to optimize simulation performance &
license usage. We have listed them as under:

UVM custom phase implementation & phase
jumping
Implementation of custom phase, parallel to UVM
main phase. This phase waits for few events trigger
or timeout conditions to apply hardware reset to
entire SoC and then jump back to UVM reset phase.
This helps us to verify SoC behaviour on abrupt
conditions.

UVM RAL
Used UVM RAL methodology at block level to get
register coverage and understand UVM RAL flow.

Compile what you need
All VIP instances and relevant code are protected by
separate defines. This gives the flexibility to compile
only required set of VIPs as per test basis, resulting in
lighter SIMV (simulation executable) and also
optimize VIP license usage by not checking out all
VIP licenses per tests.

Results and Comparison
The recommended techniques allow us to update

the environment quickly and absorb the architectural
changes. This in turn helps in bringing up the first
test in initial few weeks of project. When compared
to the previous projects, it reduced the initial
environment setup time by 3-4X in terms of weeks.
Figure8. compares the time taken to bring up the first
test in verification environment

Figure8. Time to First test

0
2
4
6
8

10
12
14

Project1 Project 2

Project1

Project 2

W
ee

ks

//SC Side
extern "C"
{
 void sv_call();
 }
//Based on this function call from SV, SC will start
the test.
 // SV Side
import "DPI-C" function void sv_call()
//Inside the sequence
sv_call()

Reduced compile and runtimes through selective
compile and optimizing test-bench code post
simulation profiling. This includes optimization in
constraints blocks, avoiding any SoC status register
polling and controlling amount of debug info output
from test-bench.

Figure 9 shows the same:

0

3

6

9

12

15

18

Project1
Project2

Av
g

W
al

l C
lo

ck
 T

im
e

in
 M

in
s

Similar peripheral tests

 Figure9. Compile time and Runtime Comparison

Potential future enhancements

Implement configurable wrapper for other major
environment components and if feasible try to
generate configurations directly from XLSX using
scripts.

Techniques to streamline top-level module which
instantiates all VIPs and has VIPs monitor pin
connections. As of now top module creation is manual
and needs touch-up with changes in architecture.

References
[1] IEEE Standard System-C Language Reference Manual.
[2] UVM 1.1 User Guide.
[3] Synopsys AMBA VIP User Manual.

	Introduction
	Key Areas to Target for Re-usability and Re-configurability
	Generic Verification Environment
	Fabric(AMBA) related Architectural Updates
	SoC’s External Interface related Architectural Updates

	Transaction Type Dependencies
	Generic Base Sequences
	Generalised Data Checker
	Reusing Block level System-C tests

	Proposed Techniques for Faster TTM
	Generic Verification Environment Implementation
	Configurable wrapper to absorb Fabric(AMBA) architectural changes
	Configurable TB to absorb External Interface changes

	Developing Environment components independent of Fabric Transaction Type
	Developing Generic Base Sequences (Independent of Fabric transaction Type)
	Developing End–to–End Generic Data Checker (Independent of Fabric transaction Type)

	Hybrid Verification Environment manages between SystemC drivers and UVM drivers
	Other Approaches
	UVM custom phase implementation & phase jumping
	UVM RAL
	Compile what you need

	Results and Comparison
	Potential future enhancements
	References

