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Abstract— SoC integration is becoming 
increasingly complex and challenging due to the 
complex nature of IPs and the need to react to fast 
moving market expectations quickly. From a 
verification standpoint, the turnaround time can be 
much faster if the verification environment can 
handle higher levels of abstraction, enabling 
verification engineers to skip block level details of 
each VIPs/IPs and focus more on 
communication/interface between IPs. Also designers 
are cutting architecture exploration time by adopting 
System-C models, which is also pushing for a shorter 
time to first test. 

In this dissertation we will introduce a verification 
methodology which delivers a configurable 
verification environment with multiple VIPs and 
enables connectivity to System-C drivers to reuse 
System-C unit tests with UVM SoC environment.  

These methodologies focus on encapsulating core 
components with simple wrappers and significantly 
reducing dependencies of sequences and data 
checkers/monitors on transaction type. 

This approach helps to improve TAT in two ways: 
Firstly, with the configurable test bench structure 
along with Fabric (AMBA) VIP wrapper scheme 
eliminates the need of re-establishing the verification 
environment from scratch for new SoC architectures. 
By using a pre-verified verification environment the 
user can focus more on test case stability rather than 
spending significant time on environment updates. 
Secondly, with the ability to switch between System 
Verilog and System-C drivers for the same interface, 
most of the block level tests can be reused at full chip 
level to quickly identify configuration/integration 
bugs. 

This paper demonstrates a UVM based 
reconfigurable verification environment, built for a 
scalable SoC architecture. This paper highlights the 
creation of wrapper for primary fabric VIP, provision 
to have multiple drivers and transaction type 
independent end-to-end data checker. We achieved 
2X reduction in time to first test as well as reduction 

in compilation and simulation time by 2X using the 
proposed techniques. 
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Introduction  
With SoCs integration challenges becoming more 

complex and TTM reducing, the TAT for verification 
is also becoming shorter. The verification 
environment has to be stable enough to absorb all the 
architectural updates at SoC level quickly. While the 
tests themselves are closely coupled to the actual 
design behavior; the environment, itself, should be 
minimally effected with these changes. There are 
many vectors which control the updates in the 
verification environment and we will be talking about 
those in the subsequent sections.  

Figure 1 shows a generic SoC design which has a 
multilayered fabric (primarily AMBA based) 
connecting various commonly used IPs/blocks. The 
primary high speed fabric connects the core, 
memories and some basic peripherals like DMA etc. 
The other layer of fabric is connected to low speed 
peripherals viz. UART, I2C, I2S etc. SoC specific IPS 
can be either connected to the primary fabric or to 
another layer which talks to the primary fabric. 
Expected bandwidth and performance will govern 
such decisions. 

The example here shows some commonly used VIPs 
like I2C, I2S, UART, SDIO and AMBA. Since the 
primary master of the system is connected to AMBA, 
the AMBA agent VIP is the primary controller of the 
sequence initiation.  Multiple master agents’ 
sequencer flow is controlled by UVM virtual 
sequencer which controls all the VIP sequencers and 
their transactions. 
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Figure.1 Baseline SoC architecture for testbench 
The paper is organized as follows.  Section II addresses the core areas that were  targeted to get significant Re-

usability and Re-configurability in SoC Verification Environment.  The proposed implementation details for short 
TAT are explained in Section III followed by the results 

Key Areas to Target for Re-
usability and Re-configurability  
 

Generic Verification Environment 
 

During the initial phase of a project, the SoC 
architecture goes through many tweaks for power and 
performance. During this phase, the verification 
environment should be able to adapt to architectural 
changes quickly.  

Fabric(AMBA) related Architectural Updates 
Based on architectural experiments there could be 

change in Fabric (AMBA) configurations, which can 
essentially change the number of fabrics (AMBA) in 
SoC, number of masters and slaves in each fabric and 
other parameters. Main fabric (AMBA) VIP 
configuration is the most affected one and being the 
backbone of complete environment, it has major 
impact on verification. During architectural 
exploration phase; main fabric undergoes frequent 
changes either to meet required bandwidth or add new 

device support (peripherals). This will result in re-
configuring many parameters of the AMBA VIP (viz. 
address map, slaves accessible to a particular master 
etc.) and hence touching the base configuration class 
again and again.  

To minimize VIP configuration efforts due to such 
changes, a wrapper was created around the base 
AMBA configuration class which has simple function 
calls to configure the VIP w.r.t SoC configuration. It 
captures all prevalent parameters required to set the 
VIP and can be extended to add control to any other 
parameter of the VIP, as per requirement. 

SoC’s External Interface related Architectural 
Updates  

Based on data transfer rates and sensor 
requirements, each SoC will have different set of 
interfaces to the external world. In order to ensure the 
connectivity and correctness of data transaction from 



SoCs to board and vice versa, the corresponding 
VIP’s will be connected which will mimic the 
behavior of on-board components.   

The verification environment needs to have the 
capability of adding, removing and modifying the 
number of external components. Accordingly the test 
bench structure was created to take a SoC specific 
single input file and configure the pre-verified 
verification components. In SoC specific input file, 
user (verification Engineer) can specify the SoC 
requirements like number and type of fabrics/ 
external interfaces and their parameters. 

Transaction Type Dependencies  

Generic Base Sequences  
Having VIPs in an environment will surely help build 
the environment quickly, but at the same time it’s 
important to keep the environment immune to VIP 
changes. To build such a robust environment, we 
have limited ourselves to use any VIP specific 
transaction class object within only one sequence and 
its methods. Rest of the sequences and tests are 
extended from a generic base sequence. We have also 
implemented centralized objection handling 
mechanism as part of the base sequence to have a 
unified way of test flow 

Generalised Data Checker  
Typical data checkers are reliant on their transaction 
type on its analysis port. Transaction type of the 
checker can be any fabric (AHB/AXI/APB) or any 
other peripherals like UART, I2C, I2S etc.,   In order 
to address this issue we have decoupled the 
transaction type dependencies from the checker 
module. Base classes are developed to work on 
custom transaction type and transformation of VIPs 
transaction type is kept only at callback level. 
 

Reusing Block level System-C tests 
For new IPs, architects are moving towards 

adopting System-C for architecture exploration and 
developing functional models, which will normally be 
available for virtual prototyping in the early phases of 
the design cycle. These models come with extensive 
block level scenarios/ tests-cases regressed at 
functional model level. If SoC test-bench can reuse 
these models/ tests from unit level block environment, 
it will help fix some low hanging integration and 
configuration bugs in the IP. 
To shorten time to first test and rerun some of the 
block level tests at full chip level, hooks were 
incorporated to choose between block level System-C 

driver and CRV based UVM driver. With this 
capability, basic block level tests can be run quickly 
to flush away basic configuration bugs. 

Proposed Techniques for Faster 
TTM 

Generic Verification Environment 
Implementation 

Configurable wrapper to absorb Fabric(AMBA) 
architectural changes 

AMBA VIP can be configured in many flavors 
with in-built monitors to watch for protocol violations 
and data sanity between master & slave. But this 
flexibility comes at the cost of configuring many VIP 
parameters with every change in fabric structure. 
Since the list of parameters is exhaustive, one need to 
be careful about every setting and any wrong 
configuration could lead to a false checker violation 
adding to simulation debug cycles. 
This process consumes significant amount of time 
especially when fabric architecture under goes 
multiple changes during exploration phase and also 
may vary with project derivatives. To handle this 
challenge, a configurable wrapper was developed 
over AMBA VIP. The wrapper consists of simple 
function calls and encapsulates all VIP configuration 
specific details from user. This enables the user to 
limit all fabric related changes to one wrapper file 
 
Let’s assume a case where fabric gets a new AHB-
Lite layer with 4 slaves all working on different clock 
and reset from the master. For this case below is the 
list of parameters that needs to be re-configured. 
Proper configurations of all parameters shown in 
Table-I below are required for VIP’s expected 
functionality 
S.N. Parameter/ Function to re-configure 
1 create_sub_cfgs(, , ) – Accepts number of different layer 
2 Layer type configuration – AHB-Lite/ AHB 
3 Number of slaves for new layer 
4 Common clock & reset mode to define relation with 

master clock & reset 
5 Master’s address & data width 
6 Per slave address & data width 
7 Master active/ passive setting 
8 Per slave active/ passive setting 
9 Master address range 
10 Per slave address range 
11 Monitor configuration 

Table I. Configuration Fabric Parameter 



Instead of remembering all above parameters and 
settings, a onetime effort was put in to develop a 
wrapper that will make the environment less prone to 
configuration errors. 

The wrapper takes input via the below 3 function 
calls as shown in Figure 2 and then configures the 
AMBA VIP under-the-hood. 
set_new_layer ( ) - This accepts all layer related 
parameters such as layer type, number of masters & 
slaves, common clock & reset mode. 
set_layer_master ( ) - This accepts master specific 
parameters such as active-passive mode, address & 
data width. Needs to call per master basis. 
set_layer_slave ( ) - This accepts slave specific 
parameters such as active-passive mode, address & 
data width, address range. Needs to call per slave 
basis. 

Encapsulates VIP Config Class Details from Users

Function: Set _new_layer
Layer type, ID Name, # Master, Slaves, Clock/Reset Mode

Function: resigter_layer_master/slave
Agent Specific Parameters
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 Figure.2 Configurable Fabric VIP Wrapper Structure 
 
Apart from these, the wrapper needs some more 

inputs to map master-slave to layers. Wrapper holds 
all inputs in associate arrays which can be later 
queried to get component specific configuration for 
any debug purpose. 

With this approach, verification environment can 
be easily tuned to any modification in fabric structure 
resulting in man-hour saving and prompt feedback to 
architecture team. 

This also gives flexibility in terms of: 
I. Constraining any major change in VIP 

configuration parameters within wrapper. 
II. Turning-off VIP monitors on specific 

interfaces and instantiate custom checker. 

Configurable TB to absorb External Interface 
changes 

 
Each SoC will have a different set of 

communication mode, bandwidth, boot-up methods 
and power budget requirements.  Based on those 
criteria the SoC will have a different architecture in all 
the aspects like fabric, peripheral types and numbers. 
The verification environment should be capable of 
handling these aspects of architectural changes. These 
issues were addressed as described below. Figure 3 
shows a conventional system environment.  

 
In a single input file, we will be specifying the 

architecture details as shown in Figure 4a. We have 
created a system environment to get the architecture 
inputs from a file and populate the corresponding 
verification environment.   

 
Figure 4b shows the proposed configurable 

verification system environment generated by the SoC 
specific input file. This input file is created by user 
and has all the details of parameters which are needed 
by to match design characteristics. It also makes it 
easy for porting and single source control.  
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Figure.3 Existing Verification System Env Structure 
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Figure.4A Snippet of SoC Specific Configuration input file  
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 Figure.4B Configurable Verification System Env Structure 
 

Developing Environment 
components independent of Fabric 
Transaction Type 

Developing Generic Base Sequences 
(Independent of Fabric transaction Type) 

In order to absorb frequent changes in 
architecture, we developed components that can work 
seamlessly with both AHB & AXI based systems and 
can easily accommodate new/mixed flavor of fabric. 
Sequences and tests reusability can be achieved only 
when they are not directly handling any specific type 
of transaction item. To improve reusability of 

sequences & tests, we extended all such components 
directly from UVM base classes and avoided any 
direct randomization of VIP AHB/ AXI transaction 
class. We implemented `uvm_do_* calls on VIP 
transaction class within our custom read and write 
tasks with appropriate arguments. All top-level 
sequences are calling these tasks without worrying 
about underlying master transaction type. 

These tasks are implemented at leaf level and here 
we randomized AHB/ AXI transactions, based on task 
arguments. Any major fabric changes related to AHB, 
AXI or any other protocol will affect only leaf level 
tasks and that can be done in few working days; 
keeping rest of the sequences/ tests immune to such 
changes. 

To have a unified way of test completion and 
avoid any dead-locks due to abrupt killing of 
sequences or tests, we also implemented objection 
handling mechanism as part of base sequence. This 
helps us to automate the objection raise-drop 
mechanism and users do not have to tackle this at 
different levels of sequences. Now every sequence 
raises its own objection at pre-start stage and drops it 
once its completed or killed.  
 

Developing End–to–End Generic Data Checker 
( Independent of Fabric transaction Type) 

AMBA VIP in-built checkers are good to check 
data integrity between master & slaves attached to 
AMBA bus but what about sanity of data appearing 
on output of attached peripheral?  

AMBA VIP CONFIGURATION 
int    layer_master                 [0:`NO_OF_AMBA_LAYERS-1]       = {4,2,1,1,2,1,1,1,1,1,1,1,1}; 
int    layer_slave                    [0:`NO_OF_AMBA_LAYERS-1]       = {5,1,1,1,5,5,1,1,5,5,1,2,2}; 
int    layer_clock_mode         [0:`NO_OF_AMBA_LAYERS-1]       = {1,1,1,1,1,1,1,1,1,1,1,1,1}; 
int    layer_reset_mode          [0:`NO_OF_AMBA_LAYERS-1]       = {1,1,1,1,1,1,1,1,1,1,1,1,1}; 
int    set_xaction_mon           [0:`NO_OF_AMBA_LAYERS-1]       = {1,1,1,1,1,1,1,1,0,0,0,1,1}; 
 
OTHER VIP CONFIGURATION: 
 
    int uart_active[0:`NO_OF_UART_INSTANCES-1]                                  = {1,1}; 
    int handshake_type[0:`NO_OF_UART_INSTANCES-1]                           = {0,0}; 
    int data_width[0:`NO_OF_UART_INSTANCES-1]                                  = {8,8}; 
    int stop_bit[0:`NO_OF_UART_INSTANCES-1]                                       = {1,1}; 
    int parity_type[0:`NO_OF_UART_INSTANCES-1]                                  = {1,1}; 
    int baud_divisor[0:`NO_OF_UART_INSTANCES-1]                                = {1,1}; 
    int uart_receiver_buffer_size[0:`NO_OF_UART_INSTANCES-1]              = {16,16}; 
    int uart_enable_tx_rx_handshake[0:`NO_OF_UART_INSTANCES-1]       = {1,1}; 
    int uart_enable_dtr_dsr_handshake[0:`NO_OF_UART_INSTANCES-1]     = {0,0}; 



Our verification environment required an end-to-
end data checker that can handle in-order comparison 
between AMBA master and output of any peripheral 
attached anywhere in the system. This implies 
handling of many different transaction types from 
various VIPs and also system reference model output 
formatted in text. 

Checker has to be generic enough to handle 
addition of any interface and hence works on its own 
transaction types. It is configurable to handle on-the-
fly reset/ abort conditions, selectively turning off 
checker on any given interface, applying byte-mask 
before comparison and is able to dump data values at 
different levels for easy debugging. 
To achieve this, it’s needed to de-couple the checker 
from any type of VIP specific transaction and operate 
only on UVM analysis ports without any clock 
dependencies. Figure.5 depicts overview of checker 
operation 
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Figure5.Checker Structure 

 
As shown above, for any given interface checker 

accepts VIP specific transactions to xfer_convert 
callback class via UVM analysis ports and then passes 
on the transformed information to checker base. All 
analysis ports and transformation classes are 
parameterized and can be configured for given 
interface while instantiating checker. This enables 
checker base functionality to deal with its own pre-
defined data format. Also UVM events and other 
configuration parameters are passed to handle resets, 
byte-masking etc. 

Checker keeps pushing TX data in queues and 
performs comparison once RX data is available on 
analysis ports without depending on any clock. 

Callback hooks are provided to manipulate data 
before comparison, if required.  

Hybrid Verification Environment 
manages between SystemC drivers 
and UVM drivers 

One possible way to address TTM challenge is to 
get unified functional models across the front-end 
flow that can be used by both validation & virtual 
prototyping team. Re-using System-C unit tests with 
configurable UVM SoC environment is such an 
option. 

One of the major components in System-C unit 
testbench is the system-C drivers. These System-C 
drivers that excite System-C models can communicate 
through TLM ports and are capable of driving logic 
values at pin level. 

Verification environment had hooks for System-C 
drivers and was configurable to choose between 
System-C drivers and UVM drivers. UVM drivers 
were used to drive randomly generated stimulus 
whereas System-C drivers were used to re-run unit 
level tests at system level. This gave us flexibility to 
use UVM constraint random approach to focus on 
generating corner case scenarios at the same time 
reduced effort to migrate unit level System-C tests to 
UVM. 

The drivers developed for Loosely-Timed(LT) and 
Approximately-Timed(AT) models are at transaction 
level and communicate to System-C models using 
TLM and drivers eventually becomes pin accurate 
when it starts feeding in to cycle accurate models. The 
connection between System-C driver and RTL 
depends on whether the System-C model is at 
transaction level or pin accurate level. 

Support of TLM 2.0 in both System-C and UVM 
makes it fairly seamless to integrate System-C 
components with UVM environment. VCS-TLI 
supports auto-conversion of transaction payload class 
extended from generic TLI structure. For user defined 
payloads, conversion functions required by TLI have 
to be written. Complexity of conversion functions 
depends upon data types used in user defined 
payloads. 
Integrating System-C pin accurate drivers are much 
simpler than writing conversion functions for user 
defined payload types. A sample TLI file needs to be 
created with the adaptor name same as the driver 



class name and then drivers are compiled along with 
the sample TLI file to dump out CPP header and SV 
file. The generated files take care of data type casting 
between System-C and SV and imports and 
implements DPI functions which help in cross 
language communication. These functions assign 
values to the driver signals based on the 
implementation and pass the same to the RTL as 
well. 

UVM 
Driver

SystemC 
Driver

Switch Control

Connection 
to DUT

 Figure6. System-C Driver Integration 
Due to availability of System-C pin accurate 

drivers from unit level environment, we adopted 2nd 
method described above. This saved our effort of 
writing TLM-TLI ports and conversion functions 
essential for SC-SV communication. 

This integration of System-C drivers gave us 
initial jump start in verification and helped to bring 
first test easily using existing unit level tests. Later in 
verification cycle, it was useful to replicate any unit 
level scenario at full chip level. This approach helped 
us by reducing directed test-case development to test 
basic functionality at system level. We could then 
focus our efforts on random scenarios generation 
using SV constraints and corner-case testing. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure7.  DPI call based handshake snippet 

Other Approaches 
Apart from approaches mentioned above, we also 

implemented some of the UVM advanced features as 
well as ways to optimize simulation performance & 
license usage. We have listed them as under: 

UVM custom phase implementation & phase 
jumping 
Implementation of custom phase, parallel to UVM 
main phase. This phase waits for few events trigger 
or timeout conditions to apply hardware reset to 
entire SoC and then jump back to UVM reset phase. 
This helps us to verify SoC behaviour on abrupt 
conditions. 

UVM RAL 
Used UVM RAL methodology at block level to get 
register coverage and understand UVM RAL flow. 

Compile what you need 
All VIP instances and relevant code are protected by 
separate defines. This gives the flexibility to compile 
only required set of VIPs as per test basis, resulting in 
lighter SIMV (simulation executable) and also 
optimize VIP license usage by not checking out all 
VIP licenses per tests. 

Results and Comparison 
The recommended techniques allow us to update 

the environment quickly and absorb the architectural 
changes. This in turn helps in bringing up the first 
test in initial few weeks of project. When compared 
to the previous projects, it reduced the initial 
environment setup time by 3-4X in terms of weeks. 
Figure8. compares the time taken to bring up the first 
test in verification environment  

 

 
Figure8.  Time to First test 
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//SC Side 
extern "C"  
{ 
     void sv_call(); 
 } 
//Based on this function call from SV, SC will start 
the test. 
 // SV Side 
import "DPI-C" function void sv_call() 
//Inside the sequence 
sv_call() 



Reduced compile and runtimes through selective 
compile and optimizing test-bench code post 
simulation profiling. This includes optimization in 
constraints blocks, avoiding any SoC status register 
polling and controlling amount of debug info output 
from test-bench. 

Figure 9 shows the same:  
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 Figure9.  Compile time and Runtime Comparison 

Potential future enhancements 
 
Implement configurable wrapper for other major 
environment components and if feasible try to 
generate configurations directly from XLSX using 
scripts. 
 
Techniques to streamline top-level module which 
instantiates all VIPs and has VIPs monitor pin 
connections. As of now top module creation is manual 
and needs touch-up with changes in architecture. 
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