
Resetting Anytime with the Cadence

UVM Reset Package

Courtney Schmitt

Analog Devices, Inc.

Norwood, MA

courtney.schmitt@analog.com

Phu Huynh, Stephanie McInnis, Uwe Simm

Cadence Design Systems

San Jose, CA

phuynh@cadence.com, swaters@cadence.com,

uwes@cadence.com

Abstract— When verifying a device under test (DUT), a

common requirement is to reset the design, restart the

environment, and check to make sure that it comes out of

reset without any problems. The primary purpose of a

reset is to force the design into a known state for stable

operations in a simulation or in the real DUT itself. It is

necessary to verify that the design behaves as expected

when going into and coming out of the reset state. The

reset can be applied at the beginning of the verification

process, which is quite common, but applying it anywhere

else in the verification process can create problems if the

verification environment was not designed to handle this

scenario. In this paper we will describe a reset

methodology that uses the UVM run_phase and works

with the standard UVM library. This reset methodology

consists of a reset package that provides a Reset Handler

and two (2) additional run_phase APIs to allow the UVM

components to gracefully shut the activities down when

reset occurs, and to restart the components’ normal

activities after the reset goes away. The methodology and

implementation also supports the situation where there are

multiple reset regions. We implemented this package at

ADI and found it easy to use with both new and existing

testbench environments. The two additional classes were

easily managed and we only had to make minimal

modifications to our existing UVCs.

Keywords— SystemVerilog; UVM; Reset Verification;

I. RESET VERIFICATION REQUIREMENTS

One of the important verification tasks of a DUT is to
ensure that the DUT will come out of the reset correctly. It is
also important to ensure that if a reset is active in the middle of
a normal operation, the DUT will also shutdown gracefully and
be able to restart when the reset goes away. To accomplish the
reset verification task, additional requirements are imposed on
the verification environment; specifically, the verification
environment needs to do the following things when reset
happens in the middle of the simulation:

 Activities and stimulus need to stop and possibly restart
once the reset is de-asserted

 Assertions and checkers need to shut down gracefully

 Scoreboards and data structures need to be reset to
proper initial values

 When reset goes away, the verification components
need to restart from the initial state.

The current version of the UVM library (uvm-1.1d [1])
includes three (3) phases related to reset:

 pre_reset_phase()

 reset_phase()

 post_reset_phase()

However the current solution is still incomplete and has not
yet been finalized. The reset phases are standardized but the
activities to be performed by these phases have not been
clearly defined yet. It is unclear how the above phases can be
used to satisfy the reset verification requirements. Since the
committee has still not finalized on all of the phasing
components, we chose to use a valuable alternative.

II. CADENCE UVM_THREAD RESET METHODOLOGY

The Cadence reset methodology uses the UVM
run_phase(). It is designed to work with the existing UVCs that
have already been designed to handle reset at the start of the
simulation. Our reset methodology relies on thread
management instead of phase management; it can also be
extended to handle multiple reset domains and different types
of reset.

To use the Cadence reset methodology, you need the
uvm_thread package [2]; there will be no changes required for
the Accellera UVM library. The uvm_thread package allows a
UVM testbench to add the following capabilities:

 A reset_handler: this component is derived from a
uvm_thread class (provided by the uvm_thread
package); it keeps track of the UVM components that
are resettable and manages the “run” threads of these
components; specifically, when reset occurs, it will
terminates the “run” threads of these components and
call a clean_up() method to shut down the current

2

operation gracefully and to re-initialize the internal data
structure.

 A reset_monitor: this component is derived from an
uvm_monitor class. This component monitors the
RESET signal and has a handle to the reset_handler;
when there is a change in the RESET signal, it will call
the notify() method of the reset_handler with one of
the following messages:

o TERMINATE: when the RESET signal
becomes active

o ACTIVATE: when the RESET signal goes
away

 Any UVM components that need to be resettable will
need to do the following things:

o Register themselves with the reset_handler

o Implement two (2) new methods: clean_up()
and run_phase_new(). The clean_up()
method will be invoked by the
reset_handler when reset occurs. The
run_phase_new() will be invoked by the
reset_handler when reset goes away. Any
threads spawned by the run_phase_new(),
including itself, will be terminated by the
reset_handler when reset occurs.

Fig. 1. Usage of the uvm_thread package

Fig. 1 illustrates how the uvm_thread package is used in a
testbench and the interactions between the reset_monitor, the
reset_handler, and the resettable components of a UVM
testbench.

Fig. 2 below shows the relationship between reset (active
low resetN signal), the UVM run_phase(), and the two (2)
additional methods: clean_up() and run_phase_new().

Fig. 2. run_phase_new and cleanup in relationship to reset and run_phase

3

III. REAL-WORLD EXAMPLE – ADI VERIFICATION

ENVIRONMENT

This section shows how the uvm_thread package was used
to handle reset in an UVM environment at Analog Devices,
Inc. (ADI).

In our experience, reset is usually an afterthought that
occurs during the middle of the verification effort. At that
stage it can be very difficult to modify existing code to handle
the reset. We often end up having to compromise on the reset
verification just to get something running. We have, in the
past, turned off checks during reset, created a separate
testbench just to handle reset, or created directed tests designed
specifically to test reset. These modifications worked okay,
however, this custom reset code usually has problems in higher
system-level testbench environments. To do a proper reset,
you should plan for it at the beginning.

We chose to use a System Oscillator environment to
illustrate the Cadence Reset Package. This environment
provides a main system clock which is calculated using a
crystal oscillator as the input. This environment uses a
watchdog timer to take advantage of the high-precision crystal
oscillator to detect faults on the input clock. An active low,
“rstb” disables the block (see Fig. 3 below).

We followed some stringent verification requirements for
the System Oscillator:

 Check CLKO frequency based on the crystal frequency

 Activate various fault conditions and check that they are
detected correctly. Some examples of that could be
missing transitions or having a frequency above or
below the spec.

 Check that the block shuts down gracefully when reset
is asserted.

 Check that the block restarts correctly when reset is de-
asserted.

The testbench architecture for the Watchdog Oscillator
used the Universal Verification Methodology (UVM) to
communicate with the Oscillator and the Fault Checker (see
Fig. 4 below).

Fig. 3. System Oscillator with Watchdog

Fig. 4. Testbench Architecture for Watchdog Oscillator

In a UVM environment, an active agent would contain a
sequencer, a driver, and a monitor. The driver takes
transactions from the sequencer and translates them into a form
that the DUT can understand (in this case, the Watchdog
Oscillator). It then passes that transaction to the DUT via an
interface (in this case, wd_osc_interface). Optionally it may
wait for a response to appear on the interface and send that data
back to the sequencer. The stimulus used to generate a
transaction in a UVM environment is called a sequence. A
Universal Verification Component (UVC) typically contains at
least one, but in many cases, multiple agents, and the testbench
contains multiple UVCs.

We were able to easily edit our existing code to implement
the Cadence Reset Package. Below we will show examples of
the changes we made.

We first edited the testbench environment class
(wd_osc_env) to add a pointer to the reset handler and the reset
monitor. We also had to register the reset_monitor and the
reset handler with the factory in the build phase. Finally, we
stored the handle to the reset_handler in the config_db (see Fig.
5 below).

Fig. 5. Testbench Environment Class Modifications

class wd_osc_env extends uvm_env;
 wd_osc_agent agent_wd_osc;

 wd_osc_scoreboard wd_osc_sb;

 virtual wd_osc_interface vif;

 reset_monitor reset_mon; // Pointer to reset_monitor

 uvm_thread reset_handler; // Pointer to reset_handler

function void build_phase(uvm_phase phase);

 …

 // Register reset_mon and reset_handler with the factory

 reset_mon = reset_monitor::type_id::create("reset_mon", this);

 reset_handler = uvm_thread::type_id::create("reset_handler", this);

 // Store the handle to reset_handler in the config_db

 uvm_config_db#(uvm_thread)::set(this, "*", "reset_handler",

reset_handler);

 endfunction : build_phase

 …

endclass : wd_osc_env

4

Fig. 6 below shows the reset_monitor class. This class
monitors the reset signal contained in the virtual interface,
“reset_if” and notifies the reset handler when a reset occurs.

Fig. 6. Reset Monitor Class

It was also necessary to make some modifications to the
existing testbench UVC. We edited the sequencer, driver,
monitor, and test classes. Each of these classes were modified
to be aware of reset. They all were connected to the
reset_handler so they could track the reset status. We also
added the function, “clean_up” as well as the task,
“run_phase_new” which are invoked by the reset_handler
when reset is activated or terminated.

When reset is asserted, the sequencer stops sending
transactions and the driver stops driving crystal oscillator input
onto OSC1 and OSC2. In order to do this, the “clean_up”
implementation is enforced. A call to “stop_sequences()” will
stop all of the currently active sequences. If an object was
raised in a sequence, it will use “do_kill()” to drop the
objection.

When reset is de-asserted, the sequencer starts sending new
transactions and the driver resumes driving OSC1 and OSC2.
If it is a “warm reset”, it will restart the default sequence.

Fig. 7 below shows the changes that were needed for the
sequencer class and Fig. 8 shows the changes that were
necessary for the driver class. Notice the function, “clean_up”.
This is invoked when reset is terminated. The
“run_phase_new” task is invoked when reset goes away.

Fig. 7. Testbench Environment Class Modifications : Sequencer

Fig. 8. Testbench Environment Class Modifications : Driver

class wd_osc_drv extends uvm_driver #(wd_osc_data);

 uvm_thread reset_handler;

 local uvm_thread_imp#(wd_osc_drv) reset_export;

 function new(string name, uvm_component parent);

 reset_export = new("reset_export", this);

 endfunction : new virtual

 function void connect_phase(uvm_phase phase);

 uvm_config_db#(uvm_thread)::get(this, "", "reset_handler",

reset_handler)

 reset_handler.register(reset_export,

uvm_thread_pkg::default_map);

 endfunction

 virtual function void clean_up();

 `uvm_info(get_type_name(),"Starting clean_up...",UVM_NONE)

 endfunction : clean_up

 virtual task run_phase(uvm_phase phase);

 endtask : run_phase

 virtual task run_phase_new(uvm_phase phase);

 super.run_phase(phase);

 get_and_drive();

 endtask : run_phase_new

endclass : wd_osc_drv

class wd_osc_sqr extends uvm_sequencer #(wd_osc_data);

 uvm_thread reset_handler;

 local uvm_thread_imp#(wd_osc_sqr) reset_export;

 local uvm_phase run_phase_handle;

 local bit first_run = 1;

 function new(string name, uvm_component parent);

 reset_export = new("reset_export", this);

 endfunction : new

 virtual function void connect_phase(uvm_phase phase);

 uvm_config_db#(uvm_thread)::get(this, "", "reset_handler",

reset_handler

 reset_handler.register(reset_export,

uvm_thread_pkg::default_map);

 endfunction : connect_phase

endclass

 virtual task run_phase(uvm_phase phase);

 run_phase_handle = phase;

 super.run_phase(phase);

 endtask : run_phase

 virtual task run_phase_new(uvm_phase phase);

 if (!first_run) start_phase_sequence(run_phase_handle);

 else first_run = 0;

 endtask : run_phase_new

 virtual function void clean_up();

 stop_sequences();

 endfunction : clean_up

endclass : wd_osc_sqr

class reset_monitor extends uvm_monitor;

 virtual reset_if vif;

 uvm_thread reset_handler;

 `uvm_component_utils_begin(reset_monitor)

 `uvm_field_object(reset_handler, UVM_DEFAULT |

UVM_REFERENCE)

 `uvm_component_utils_end

 function void connect_phase(uvm_phase phase);

 uvm_config_db#(virtual reset_if)::get(this, "", "vif", vif)
 uvm_config_db#(uvm_thread)::get(this, "", "reset_handler",

reset_handler)

 endfunction : connect_phase

virtual task run_phase(uvm_phase phase);

 @(vif.resetN);

 if (vif.resetN) begin

 reset_handler.notify(ACTIVATE);

 forever begin

 @(negedge vif.resetN) reset_handler.notify(TERMINATE);

 @(posedge vif.resetN) reset_handler.notify(ACTIVATE);
 end

 end else begin

 reset_handler.notify(TERMINATE);

 forever begin

 @(posedge vif.resetN) reset_handler.notify(ACTIVATE);

 @(negedge vif.resetN) reset_handler.notify(TERMINATE);
 end

 end

 endtask : run_phase

endclass : reset_monitor

5

Fig. 9 below show the changes that were necessary for the

monitor class and Fig. 10 shows the changes for the base_test

class. Finally, Fig. 11 below shows the changes that were

necessary for the basic_test class.

Fig. 9. Testbench Environment Class Modifications : Monitor

Fig. 10. Testbench Environment Class Modifications : base_test

Fig. 11. Testbench Environment Class Modifications : basic_test

The code examples in this section show that it was very
easy to implement the reset package in our existing UVM
environment. The waveform window in Fig. 12 below shows
the simulation results for the watchdog oscillator with the
integrated reset package. The waveforms show that when reset
was asserted (the first set of red circles), the sequencer stopped
sending transactions and the driver stopped driving the crystal
oscillator inputs onto OSC1 and OSC2. Then when reset was
de-asserted (the second set of circles), the sequencer started
sending new transactions and the driver resumed driving OSC1
and OSC2. These results confirm that the reset package is
behaving as expected and correctly controlling the design and
testbench components.

Fig. 12. Reset Operation Waveform

class basic_test extends base_test;

 local uvm_thread_imp#(basic_test) reset_export

 function new(string name, uvm_component parent);
 super.new(name,parent);

 reset_export = new("reset_export", this);

 endfunction : new

 virtual function void connect_phase(uvm_phase phase);

 uvm_config_db#(uvm_thread)::get(this, "", "reset_handler",

reset_handler))

 reset_handler.register(reset_export,

uvm_thread_pkg::default_map);

 endfunction : connect_phase

 task run_phase_new(uvm_phase phase);

 fork

 wd_osc_seq.start(tb.env.agent_wd_osc.sequencer);

 join

 endtask : run_phase_new

 function void clean_up();

 `uvm_info("COMPONENT","CLEANING",UVM_NONE)

 endfunction : clean_up

endclass : basic_test

class base_test extends uvm_test;
 wd_osc_tb tb;

 uvm_thread reset_handler;

 virtual function void build_phase(uvm_phase phase);

 …

 reset_handler = uvm_thread::type_id::create("reset_handler",

this);

 uvm_config_db#(uvm_thread)::set(this, "*", "reset_handler",

reset_handler);

 endfunction : build_phase

endclass : base_test

class wd_osc_mon extends uvm_monitor;
 virtual interface wd_osc_interface vif;

 uvm_thread reset_handler;

 local uvm_thread_imp#(wd_osc_mon) reset_export;

 function new(string name, uvm_component parent);

 super.new(name,parent);

 reset_export = new("reset_export", this);

 endfunction : new

 virtual function void connect_phase(uvm_phase phase);

 super.connect_phase(phase);

 uvm_config_db#(uvm_thread)::get(this, "", "reset_handler",

reset_handler)

 reset_handler.register(reset_export,

uvm_thread_pkg::default_map);

 endfunction : connect_phase

 virtual function void clean_up();

 data_fifo.empty();

 endfunction : clean_up

endclass : wd_osc_mon

6

IV. EXTENDING TO AN SOC

Today's SoCs integrate many subsystems, such as: processor

cores, memory, graphics, audio, networking, and various other

I/O subsystems. Depending on the functional requirements,

multiple resets may be needed to reset various subsystems of

an SoC. We can easily extend the use of the Cadence reset

methodology to handle multiple resets in an SoC.

At the system level, you would still have a reset monitor as we

did at the block level. This monitor will contain a pointer to

the reset_handler for each subsystem that wants to track their

reset functionality. As illustrated in Fig. 13 and Fig. 14, the

Reset Monitor has handles to multiple reset handlers

(reset_handler_1, reset_handler_2, etc.). The Reset Monitor

will call notify(ACTIVATE/TERMINATE) for the

corresponding reset handler when its reset signal changes

state. The notify call for each subsystem block will then

inform that subsystem that a reset has been activated or

terminated. If reset was not active, it would invoke

run_phase_new() and if it was active, it would terminate all of

the threads spawned by run_phase_new() and invoke the

clean_up() method, the same way it behaved at the block

level.

As you can see, the Cadence reset package is very flexible and

can easily be extended to manage multiple resets at the block

level or at the system level.

Fig. 13. Handling Multiple Reset Regions

Fig. 14. Multiple Resets – Reset Monitor

V. CONCLUSIONS

The Cadence Reset Package has truly provided a good
methodology for adding reset verification to a UVM
environment. We found that it is flexible, extendible, and
works with the standard UVM library source code. These
benefits were all very important and proved to be useful for our
evaluation verification environment of a watchdog oscillator
block at ADI. The reset package described in this paper
provides a standard reset methodology which can be used
across teams, projects, and companies. It also allows for code
reuse and is easy to implement in both new and existing UVM
testbench environments with minimal modifications to existing
verification components.

To find the Cadence Reset Methodology Package as well as the
complete working example that we used in this paper, please
visit the Accellera community website at the following link.
The relevant code is available under the user contributions
area:

http://www.accellera.org/community/uvm/

REFERENCES

[1] Accellera UVM Class Library Code for Release 1.1d

[2] uvm_thread package - in UVM Contribution Area

[3] IEEE 1800-2012 SystemVerilog LRM

class reset_monitor extends uvm_monitor;

 virtual reset_if vif;

 uvm_thread reset_handler_1,

 reset_handler_2;
 …
 virtual task run_phase(uvm_phase phase);

 fork
 begin

 // monitor vif.reset_1 and

 // notify(ACTIVATE |TERMINATE) reset_handler_1
 end

 begin

 // monitor vif.reset_2 and
 // notify(ACTIVATE |TERMINATE) reset_handler_2

 end
 join

 endtask

http://www.accellera.org/community/uvm/
http://www.accellera.org/downloads/standards/uvm/uvm-1.1d.tar.gz
http://forums.accellera.org/files/category/3-uvm/

