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Abstract- One daunting challenge of developing a low-power SoC design is how to verify its power-up, 

reset and initialization sequences. All of the different parts of the design must reset correctly, before the 
start of functional operation. In particular, design registers must initialize properly before they are used. 
Our initialization verification methodology classifies design registers into three types: GOOD registers 
(those that are initialized properly), BAD registers (those that are not initialized) and UGLY registers (those 
that are initialized, but are subsequently corrupted). This paper presents our methodology for verifying 
these three types of design registers. 

 

I. INTRODUCTION 

The initialization sequences of today’s SoC design can be complex.  To understand the effectiveness and 

to verify the correctness of the reset sequences, we need to examine the internal status of the design. Storage 

elements such as registers, latches, counters, FIFOs and memories provide a good snapshot of the design. 

Among them, registers are the most common and representative. Some registers in the design use 

asynchronous reset; some registers use synchronous reset. Some registers are equipped with both 

asynchronous and synchronous resets, but at the same time, some registers have no reset at all. There are a 

lot of reset signals in today’s designs. Besides reset signals associated with each power domain, designs 

also have multiple sources of reset, such as power-on reset, hardware resets, debug resets, and software 

resets. It is a challenge to ensure that the sources of reset signal will propagate to their intended registers 

under different conditions.  

Simulation has been the primary method used to verify the reset sequence, the reset propagation and the 

internal status of the design. However, with a large number of combinations of reset sequences, functional 

simulation alone cannot verified the reset sequence effectively, and simulation coverage is often 

insufficient. These factors result in power-up or initialization related bugs that may lead to costly, late-stage 

design changes and, in the worst case, silicon re-spins and time-to-market delays. Typically these types of 

bugs are very serious in nature, rendering the chip completely unusable. For example, an initialization bug 

may prevent the design from getting into the known good starting state, making its operation completely 

unpredictable.  

In this paper, we define the different register status, the different phases of the initialization sequence, 

and the verification methodology. We explain how the problems can be identified through a variety of 

techniques including static analysis, simulation and formal verification. 



II. THE REGISTER STATUS 

In order to find out the status of the design deterministically, it is important to understand the status of 

the registers in the design. To keep the terminology simple, we called them the good, the bad and the ugly 

registers in the design. 

1. The good registers are ones that have been initialized deterministically. Hence, they will drive 

meaningful values downstream to logics in their fan-out cone. In addition, they can be used to 

initialize other parts of the design.  

2. The bad registers are ones that have not been initialized. Their initial values are unknown. In silicon, 

they are random 0s or 1s. These bad values will propagate downstream causing problems and 

unexpected results. To prevent these undesired effects, the outputs of the bad registers should be 

trapped or guarded to allow only valid data to be sampled. 

3. The ugly registers are ones that have been initialized, but later corrupted by uninitialized logic in 

their fan-in cone. This situation should not have happened in normal functional mode. However, 

with complex gating conditions, it is important to verify that the initialized registers will not be 

overwritten unintentionally. 

 

 

 

To illustrate, in Figure 1, the schematic shows a common structure in many designs. RegC is a finite 

state machine (FSM) that examines the data from RegB when needed. The RegA and RegC have explicit 

asynchronous reset signals. They are cleared when their reset signals are asserted. On the other hand, 

RegB does not have any reset signal; its initial value is undefined. During functional operation, RegA 

controls the sampling of RegB. It will only assert to allow meaningful data to pass from RegB to the FSM 

of RegC. However, things can go wrong in many ways: 

1. The reset signals fail to reach RegA and/or RegC correctly. As a result, the initial status of the 

registers {RegA, RegB, RegC} will be {bad, bad, bad}.  This is a reset propagation problem. 

2. RegA fails to initialize before or at the same time as RegC. For instance, RegA may be controlled 

by a software reset while RegC is controlled by the power-on reset. In addition, RegA may power 

down when RegC is on. If RegA is not cleared before RegC, the undefined value of RegA will 
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Figure 1. The Good, the Bad and the Ugly Registers 

 



corrupt RegC. As a result, {RegA, RegB, RegC} will change from {bad, bad, good} to {bad, bad, 

ugly}.  This is a reset domain crossing or reset timing problem[3]. 

3. Assuming RegA and RegC are reset correctly, RegA will control the sampling of RegB. If RegB 

has not be initialized properly when it is sampled by RegC, RegC will be corrupted. The biggest 

problem is: RegC is a FSM. Once it is corrupted, the feedback loop of the FSM will cause RegC to 

be corrupted continuously until it is reset explicitly. The status of the registers {RegA, RegB, 

RegC} are changing from {good, bad, good} to {good, bad, ugly}.  This is an X propagation 

problem[1]. 

4. This circuitry is also common in low power designs where the output of RegA is the isolation 

signal. When the module containing RegB is powered down, the output of RegB will be undefined. 

As a result, the timing of the isolation signal from RegA is important. If it is late and ModuleB has 

already been powered down, the undefined output will likely corrupt RegC[2]. 

5. We have been assuming that the clocks to RegA, RegB and RegC are running continuously. 

However, to save power, it is likely that the clock to RegB is gated. Instead of loading 

continuously, RegB will be loaded only when new data is available. If the gating condition is off, 

RegB will not be initialized to any known value. Again, this will lead to the corruption of RegC. 

 

We can summarize the potential problems in the table below. Basically, the problems are primarily caused 

by the connectivity and timing of the reset signals, the clock signals and the power control mechanism. 

 

Problem Status of {RegA, RegB, RegC} Status of {RegA, RegB, RegC} 

Reset Propagation Problem: 

reset signals failed to reach 

RegA and RegC correctly 

{bad, bad, bad} {bad, bad, bad} 

Reset Timing Problem:  

reset signals to RegA and 

RegC did not meet protocol. 

{bad, bad, good} 

RegA is not initialized correctly. 

{bad, bad, ugly} 

RegC is corrupted by RegA. 

X-propagaton Problem: 

reset signals to RegA and 

RegC assert correctly 

{good, bad, good} 

RegB is not initialized correctly. 

{good, bad, ugly} 

RegC is corrupted by RegB. 

Power Sequence Problem: 

RegB is powered down 

{good, bad, good} 

RegA fails to isolate it 

{good, bad, ugly} 

RegC is corrupted by RegB  

Clock Gating Problem: 

RegB is controlled by gated 

clock that is turned off 

{good, bad, good} 

RegA fails to gate it 

{good, bad, ugly} 

RegC is corrupted by RegB 

Table 1. Summary of Problems and Changes of Register Status 

 



III. THE INITIALIZATION SEQUENCE 

From the example above, we can see that the status of RegC has moved from good to ugly. However, it 

did not happen when RegC is being reset; it happened after RegC has been reset. Hence, to understand how 

a register changes status, we need to examine the initialization sequence. In today’s design, groups of 

modules are initialized when they are needed; blocks in different power domains are switching on and off; 

clocks are running at different ratio synchronous and asynchronous frequencies; registers are cleared with 

various hardware and software reset signals. As a result, the initialization sequence can be very complex 

and unpredictable in some cases. Conceptually, we can divide the initialization sequence into 3 phases: the 

power-up phase, the propagation phase and the reset-off phase. Traditionally, we assume the design is in a 

well-defined state after the propagation phase. Unfortunately, insufficient focus is put on the reset-off phase 

where some good registers may become ugly. 

 

Figure 2. Initialization Phases and Change of Register Status 

A. The power-up phase 

On power-up, when the reset signals are asserted and the clocks are not running, registers with 

asynchronous or synchronous resets will be cleared. Hence, they are good. On the other hand, registers 

without any reset signal will be undefined. They are bad. 

B. The propagation phase 

During the propagation phase, the clocks start to toggle, but the reset signals are still asserted. Hence, the 

cleared registers will stay in their reset states. As the cleared values from the good registers propagate 

forward by the clocks to the un-reset bad registers, some of them will be cleared as well. In this phase, some 

bad registers turn good. This is the reason why we do not need to have reset signals on all registers. By 

understanding how good values will be propagated, the design can be initialized by a subset of resettable 

registers. 

C. The reset-off phase 

In this phase, the reset signals have been de-asserted. The design is being programmed to prepare for 

functional operation. Although most of registers have been initialized and are good, there are still a 

Bad 

Good 

Bad 

Good 

Bad 

Good 

Ugly 

Power-up Phase: 
Reset On 
No Clock 

Propagation Phase: 
Reset On 
Clocking 

Reset-off Phase: 
Reset Off 
Clocking 



significant amount of registers that are bad.  As the good registers start to operate and load new values, they 

will be affected by their fan-in cone. If some of the registers in their fan-in cone are bad, and the samplings 

do not guard against these bad inputs, the good registers will be corrupted.   

 

IV. METHODOLOGY 

The objective is to classify the registers in a design and to verify their correctness. A methodology is 

defined to ensure good registers are initialized correctly, to monitor the usage of the bad registers and to 

catch any ugly register that has been corrupted. The flow consists of: 

A. The good registers 

During the initialization phases, the good registers have been initialized explicitly by synchronous or 

asynchronous reset signals, or implicitly by loading known values from their data inputs. However, if any 

of the clock or reset signal is X, the output of the register will be X. To identify and to verify the integrity 

of the good registers, the following steps are performed: 

1. Static verification is used to derive the clock and reset trees of the design. As clock gating and reset 

enabling are common in today’s low power designs, extra care is taken to extract all the control 

signals to the clock and reset trees. Assertions are generated to ensure these signals are well behaved 

in various simulation environments. 

2. Registers with explicit reset pins can be identified easily, but finding all registers that are initialized 

implicitly by their data inputs are not. X-pessimism introduced by simulation will mask some good 

registers. Hence, formal verification is used instead to identify all the good registers in the design. 

B. The bad registers  

For registers that have not been initialized, they are bad. They are potential X sources. If their unknown 

values are allowed to propagate, they will corrupt the rest of the design. Hence, the fan-out destinations of 

these registers are examined: 

1. If it only fans out to other bad registers, it is ignored. 

2. If it fans out to any output port, assertion is generated. 

3. If it fans out to any critical control logic, such as FSMs, assertion is generated. 

4. If it fans out to any good register, it is handled in the next step. 

For these bad registers, they should be loaded with fresh data before use. To monitor them, X propagation 

is enabled during functional simulation. It will warn us if any of these bad values have been propagated and 

caused corruption in various design elements such as clock signals, select-expressions, registers, and FSMs. 

C. The ugly registers 

For the good registers that have been initialized, they can potentially be turned ugly. A good register can 

be corrupted by its fan-in logics when unknown values are allowed to propagate and load into it. It is 

potentially very harmful as downstream logic may assume the data from these registers are well defined. 

As a result, for all good registers in the design, assertions are generated to monitor them. The properties are 

written to ensure that once the registers are initialized, they will stay good and will not be corrupted. These 

assertions are included in the simulation regressions. But more efficiently, with formal verification, we are 

able to stress the design early and uncover corner-case scenarios that will cause corruption later on. 



 

Figure 3. Summary of Assertions for Different Registers 

 

Register Condition Assertion 

All Registers 
Clock is connected correctly 

from top to blocks/registers 

Connectivity assertion 

e.g. (dut.a.enable) |-> (dut.clk === dut.a.b.c.gclk) 

Good registers 
Reset is connected correctly 

from top to blocks/registers 

Connectivity assertion 

e.g. $rose(dut.rst) |-> ##[1:3] (dut.a.b.rst) 

Good registers 
Register is being initialized 

correctly 

Initialization assertion 

e.g. (dut.a.b.rst) |-> (dut.a.b.rega === `IVALUE) 

Bad registers 
Uninitialized value is being 

guarded from propagating 

Dataflow assertion 

e.g. $isunknown(dut.a.b.regb) |->  

                              ! $isunknown({dut.a.b.fanouts}) 

       $isunknown(dut.a.b.regb) |->  

                              ! (dut.a.b.regb_out) 

Ugly registers 
Good registers should not 

turn ugly 

Corruption assertion 

e.g. (! dut.a.b.rst) |-> ! $isunknown(dut.a.b.regc) 

Table 2. Summary of Conditions and Assertions 
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V. RESULTS 

The methodology was implemented using products from the Questa Formal Verification tool suite, in 

particular, Questa ResetCheck® and XCheck®. Although formal verification may not have sufficient 

capability to handle a whole SoC design, with application specific tools such as ResetCheck and XCheck, 

we were able to apply them successfully on large IP blocks. The methodology was applied on 3 designs of 

varying complexity including a bridge block, a functional controller and a networking design unit.  

Design complexity Design 1 Design 2 Design 3 

Number of register bits 305 47016 43622 

Number of latch bits 0 592 0 

Number of RAMs 2 0 64 

Number of asynchronous resets 3 13 16 

Number of synchronous resets 2 33 35 

Number of clocks 3 5 12 

 

Register Status information  Design 1 Design 2 Design 3 

Good registers 38% 50% 34% 

Bad registers 58% 9% 66% 

Ugly registers 4% 41% <1% 

Table 3. Summary of Register Status after initialization and formal verification 

From Table 3, we can see the percentage of the good, the bad and the ugly registers in the design. Design 

1 represents a common situation where 1/3 of the registers are initialized during the reset sequence. 

However, majority of the registers are not initialized. And formal verification finds a small percentage of 

registers that can be corrupted and turned ugly. In one situation, the CRC calculation was corrupted. Formal 

verification had found a way to generate a read request to an uninitialized FIFO. As the egress value was 

unknown, the subsequent CRC value was undefined as well. This would be a problem in silicon. If the 

undefined CRC result becomes true occasionally, it will cause the bridge to sample bad data. 

In Design 2, we see a general problem. Although there are a lot of good registers, a lot of the registers 

have potential to be corrupted (turned ugly) when stressed by formal verification. After some analysis, there 

are two primary reasons: 

 There are a lot of register files in the design.  When the incoming data is unknown, the registers will 

be corrupted one after another. 

 To lower power consumption, most of these register files are driven by gated clocks. When the 

gating condition is undefined, it corrupts the clocks and subsequently the registers. 

For Design 3, we were debugging the potential ugly registers from formal verification, we had found a 

few hurtful situations. Fortunately, they were found before RTL code freeze; weeks before the functional 

simulation environment is ready. 

 1 clock signal can be corrupted under some gating conditions, 

 4 warm reset signals can be unknown if one of the configuration register is not setup correctly, 

 45 good registers can potentially be corrupted under some specific scenarios. 



Two situations are shown below. In figure 4, a good register with asynchronous reset was turned ugly. 

The X source was originated from the X assignment inside the default case branch. Formal verification was 

able to find a corn-case situation that activates the default branch. As a result, even though the RX register 

was initialized correctly, it was corrupted quickly when the case condition was not matched by any branch. 

In figure 5, a good register with synchronous reset was turned ugly by a group of bad registers. The TX 

registers were not enabled. As a result, they were holding their corresponding un-initialized values. When 

the reset to the RX register was de-asserted, the RX register was corrupted quickly by the un-initialized TX 

registers. 

 

Figure 5. A good register was corrupted by a group of uninitialized bad registers 

VI. SUMMARY 

In this paper, we have classified design registers into three types: GOOD registers (those that are 

initialized properly), BAD registers (those that are not initialized) and UGLY registers (those that are 

initialized, but are subsequently corrupted). By doing so, sets of assertions can be generated to verify each 

types of registers and catch UGLY registers early with formal verification. 
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