

Reset and Initialization: the Good, the Bad and the Ugly

Ping Yeung, Mentor Graphics

ping_yeung@mentor.com

Kaowen Liu, MediaTek Inc.

kaowen.liu@mediatek.com

- Initialization Challenge
- The Register Status
 - 5 scenarios of register corruption
 - Assertions for registers
- The Initialization Sequence
 - The 3 phases
- Verification Methodology
 - Results
 - 5 corruption cases
- Summary and Reference

Initialization Challenge

- One daunting challenge of developing a low-power SoC design is how to full verify its power-up, reset and initialization sequences.
- All of these possible reset sources are combined together to initialize the design
 - Power-on reset
 - Hardware reset
 - Software reset
 - Interrupt reset
 - Watchdog timer reset

The Register Status

- To understand the internal status of a design, our methodology classifies design registers into:
 - GOOD registers are initialized properly,
 - BAD registers are not initialized
 - UGLY registers are initialized, but are subsequently corrupted

The Example

 RegC is a FSM state register whose input function logic contains the outputs of RegA and RegB

The FSM, RegC, should not be corrupted

- Reset Propagation Problem
 - reset signals failed to reach RegA and RegC correctly

Same issue when clock signals are Xs

- Reset Timing Problem
 - reset signals to RegA and RegC did not meet protocol

RegA is not initialized correctly; RegC is corrupted by RegA.

- X-propagation Problem:
 - reset signals assert correctly; RegB is not initialized

RegB is not initialized correctly; RegC is corrupted by RegB.

- Power Sequence and Isolation Problem:
 - RegB is powered down; driving X; and not isolated

RegB is powered down; RegC is corrupted by RegB.

- Clock Gating Problem:
 - RegB is controlled by gated clock that is turned off

Clock to RegB is gated off; RegC is corrupted by RegB.

Assertions for Registers

- Ensure good clocks and resets
- Catch corruption with formal verification

Some assertions are available implicitly with X-prop simulation

The Initialization Sequence

3 Phases in Initialization Sequence

The Initialization Sequence

3 Phases in Initialization Sequence

The Initialization Sequence

3 Phases in Initialization Sequence

Verification Methodology

- Reset & Clock Trees
 - Static Checks on reset trees and clock trees
 - Formal connectivity check: verify control and distribution of reset and clock signals
- Initialization
 - X-prop simulation: monitor X propagation and usage
 - Formal initialization check: find true un-initialized registers;
 avoid X pessimism
- Initial Status
 - Formal modeling checking: ensure good registers are not corrupted; turned ugly

Design Complexity	Design 1	Design 2	Design 3
Number of register bits	305	47016	43622
Number of latch bits	0	592	0
Number of RAMs	2	0	64
Number of asynchronous resets	3	13	16
Number of synchronous resets	2	33	35
Number of clocks	3	5	12

Register Status information	Design 1	Design 2	Design 3
Good registers	38%	50%	34%
Bad registers	58%	9%	66%
Ugly registers	4%	41%	<1%

- Reset signals passed from one module to another
 - Reset signals are unknown when via module is powered down

- Reset control signals from another module
 - Foreign reset control signals may disable initialization after power cycle

 A good register was corrupted by an X source (an X assignment inside the default case branch).

 A good (synchronous reset) register was corrupted by a group of uninitialized bad registers. The TX registers were not enabled and were holding their un-initialized values.

 As SoC designs get complex, reset and initialization become harder to verify

- We discussed:
 - The register status: Good, Bad and Ugly
 - Assertions for registers
 - The initialization sequence
 - Verification Methodology
 - Results

Reference

DVCon 2015

- Multi-Domain Verification: When Clock, Power and Reset Domains Collide
 - Ping Yeung, Erich Marschner, Mentor Graphics
 - Kaowen Liu, MediaTek Inc.
- Addressing the Challenges of Reset Verification in SoC Designs
 - Chris Kwok, Priya Viswanathan, Ping Yeung, Mentor Graphics