
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Reset and Initialization, the Good, the Bad and the Ugly

Ping Yeung, Mentor Graphics

Kaowen Liu, MediaTek Inc

Abstract

One daunting challenge of developing a low-power SoC design is

how to verify its power-up, reset and initialization sequences.

Our initialization verification methodology classifies design

registers into:

GOOD registers - are initialized properly,

BAD registers - are not initialized

UGLY registers - are initialized, but are subsequently corrupted

The Register Status

The Initialization Sequence

The power-up phase:

- Reset signals are asserted and the clocks are not running,

- Good registers with asynchronous or synchronous resets are

cleared.

- Bad registers without any reset signal are undefined.

The propagation phase:

- Clocks start to toggle but the reset signals are still asserted.

- Cleared values from good registers are propagated forward by

clocks to bad registers.

- Some bad registers turn good.

The reset-off phase:

- Clocks are toggling, and reset signals are de-asserted.

- Bad registers may be in the fan-in cone of good registers

- If these bad inputs are not guarded, good registers are

corrupted, and turn ugly.

Methodology

The Ugly Registers:

- A good register can be corrupted by its fan-in logics when

unknown values are propagated and sampled.

- Assertions are generated to monitor all good registers in the

design.

- The properties are written to ensure that once the registers

are initialized, they will stay good and will not be corrupted.

- With formal verification, we are able to stress the design early

and uncover corner-case scenarios that will cause corruption

later on.

Results

Problem
Status of

{RegA, RegB, RegC}

Status of

{RegA, RegB, RegC}

Reset Propagation

Problem: reset

signals failed to

reach RegA and

RegC correctly

{bad, bad, bad} {bad, bad, bad}

Reset Timing

Problem:

reset signals to

RegA and RegC did

not meet protocol.

{bad, bad, good}

RegA is not initialized

correctly.

{bad, bad, ugly}

RegC is corrupted by

RegA.

X-propagaton

Problem:

reset signals to

RegA and RegC

assert correctly

{good, bad, good}

RegB is not initialized

correctly.

{good, bad, ugly}

RegC is corrupted by

RegB.

Power Sequence

Problem:

RegB is powered

down

{good, bad, good}

RegA fails to isolate it

{good, bad, ugly}

RegC is corrupted by

RegB

Clock Gating

Problem:

RegB is controlled

by gated clock that

is turned off

{good, bad, good}

RegA fails to gate it

{good, bad, ugly}

RegC is corrupted by

RegB

Assertions for Different Registers

Register Condition Assertion

All

Registers

Clock is connected

correctly from top to

blocks/registers

Connectivity assertion

e.g. (dut.a.enable) |->

(dut.clk === dut.a.b.c.gclk)

Good

registers

Reset is connected

correctly from top to

blocks/registers

Connectivity assertion

e.g. $rose(dut.rst) |->

##[1:3] (dut.a.b.c.rst)

Good

registers

Register is being

initialized correctly

Initialization assertion

e.g. (dut.a.b.rst) |->

(dut.a.b.rega === `IVALUE)

Bad

registers

Uninitialized value is

being guarded from

propagating

Dataflow assertion

e.g. $isunknown(dut.a.b.regb) |->

! $isunknown({dut.a.b.fanouts})

$isunknown(dut.a.b.regb) |->

! $isunknown({dut.a.b.outports})

Ugly

registers

Good registers should

not turn ugly

Corruption assertion

e.g. (! dut.a.b.rst) |->

! $isunknown(dut.a.b.regc)

Design complexity Design 1 Design 2 Design 3

Number of register bits 305 47016 43622

Number of latch bits 0 592 0

Number of RAMs 2 0 64

Number of asynchronous resets 3 13 16

Number of synchronous resets 2 33 35

Number of clocks 3 5 12

Register Status information Design 1 Design 2 Design 3

Good registers 38% 50% 34%

Bad registers 58% 9% 66%

Ugly registers 4% 41% <1%

Design 1:

- a common situation where 1/3 of the registers are initialized
- formal verification finds a small percentage of registers that can

be corrupted and turned ugly.

Design 2:

- a lot of register files in the design. When the incoming data is

unknown, the register in the register files will be corrupted one

after another.

Design 3:

- Bad registers in data-path are well guarded. A few good

registers can potentially be corrupted under some specific

scenarios below:

A good register was corrupted by an X source (an X assignment

inside the default case branch).

A good register was corrupted by a group of uninitialized bad

registers. The TX registers were not enabled. As a result, they

were holding their corresponding un-initialized values.

Methodology

The Good Registers:

- Static verification is used to verify the clock and reset trees to

the good registers.

- Assertions are generated to ensure the control signals to the

clocks and resets are well behaved.

- Formal verification is used to identify registers that are

initialized implicitly by the good registers.

The Bad Registers:

- They are potential X sources if their unknown values are

allowed to propagate,

- They will corrupt the rest of the design, and should be loaded

with fresh data before use.

- X propagation is enabled during functional simulation to

monitor if bad values have been propagated and caused

corruption in critical design elements such as clock signals,

select-expressions, registers, and FSMs.

