Reset and Initialization, the Good, the Bad and the Ugly

Ping Yeung, Mentor Graphics
Kaowen Liu, MediaTek Inc

© Abstact The Initalization Sequence Methodology _ Resus

One daunting challenge of developing a low-power SoC design is Power-Up Phase Propagation Phase Reset-off Phase; The Ugly Registers: LI GOmMPLENS) Design 1 Design 2 Design 3
. . SETIORT . n n *
how to verify its power-up, reset and initialization sequences. No Clock Clocking Clocking . Agood register can be corrupted by its fan-in logics when Number of register bits 305 47016 43622
» Bad » Bad » Bad
o - g | unknown values are propagated and sampled. Number of latch bits 0 592 0
Our initialization verification methodology classifies design - Assertions are generated to monitor all good registers in the
reqisters into: : Number of RAMs 2 0) 64
gisters design
| o > Good Good Good - The properties are written to ensure that once the registers Number of asynchronous resets 3 13 16
GOOD registers - are initialized properly, are initialized, they will stay good and will not be corrupted. Number of synchronous resets 2 23 ac
| S - With formal verification, we are able to stress the design early
BAD registers - are not initialized and uncover corner-case scenarios that will cause corruption Number of clocks 3 5 12
| S Ugly later on. | | | | | |
UGLY registers - are initialized, but are subsequently corrupted Register Status information Design 1 Design 2 Design 3
Assertions for Different Registers Good registers 38% 50% 34%
The Register Status The power-up phase: Bad registers 58% 9% 66%
. . ® Connectivity assertion * Corruption assertion
- Reset signals are asserted and the clocks are not running, Ugly registers 9 il -
| - (Good registers with asynchronous or synchronous resets are
I X Initialization assertion 4k Dataflow assertion
cleared. Design 1:
Good ___ - Bad registers without any reset signal are undefined. \Good - a common situation where 1/3 of the registers are initialized
Regh T fon phase: RegA | - formal verification finds a small percentage of registers that can
1 © propagation phase. , , be corrupted and turned ugly.
| S - Clocks start to toggle but the reset signals are still asserted. & I Design 2
— Ugly - Cleared values from good registers are propagated forward by l\ N - alot of register files in the design. When the incoming data is
— RBeagdB > ReqC > glocks tt)o é)ad reiglstetrs. d Bad Fl{ngs(/: *f__, unknown, the register in the register files will be corrupted one
” - Some bad registers turn good. ™ RegB > eg after another
1 I Th toff Dhase: | | ﬁ‘\ Design 3:
eCrlesi © pt asell. X { signal X o T® ‘ & - Bad registers in data-path are well guarded. A few good
) o OdC S grte 099 Ingt,) an trhes? SIgnals aref e-ajse 'et. registers can potentially be corrupted under some specific
Status of Status of - DadIegIsiers may be In the Tan-in Cone Of gOOd TEGISIETS scenarios below:
Problem - If these bad inputs are not guarded, good registers are
{RegA, RegB, RegC} {RegA, RegB, RegC} . - .
corrupted, and turn ugly. Register Condition Assertion
M
Reset Propagation o [
Problem: reset Methodolo - . :
signals failed to {bad, bad, bad} {bad, bad, bad} gy Al Clock is connected ~ CONNEctivity assertion |
reach RegA and | Redqisters correctly fromtopto e.g. (dut.a.enable) |-> i ~ Bho B |
RegC correctly The Good Reg|3ter3: g blocks/registers (dut.clk === dut.a.b.c.gclk) L~ 1 . VL
- Static verification is used to verify the clock and reset trees to | - I E?
Reset Timing the good registers. - Connectivity assertion + o5 T
. , . Reset is connected b S
Problem: {bad, bad, good} {bad, bad, ugly} - Assertions are generated to ensure the control signals to the Goc_)dt correctly from top to e.g. $rose(dut.rst) |-> |
reset signals to | RegA s not initialized RegC is corrupted by clocks and resets are well behaved. FegISIErs blocks/registers ##[1:3] (dut.a.b.c.rst)
r?c?tg é:gtdplfoet%%cﬂl.d corecty weo - Formal verification is used to identify registers that are A good register was corrupted by an X source (an X assignment
initialized implicitly by the good registers. Initialization assertion A d J y J
X-propaaaton . T e.g. (dut.a.b.rst) |->
propag . _ registers initialized correctly
Problem: {good, bad, good} {good, bad, ugly} The Bad Registers: - (dut.a.b.rega === “IVALUE) P T
reset signals to RegB is not initialized RegC is corrupted by - They are potential X sources if their unknown values are I e — " & D B o
RegA and RegC correctly. RegB. allowed to propagate, | W o | (0 b o
assert correctly - They will corrupt the rest of the design, and should be loaded Dataflow assertion EYo N e) i
. S with fresh data before use. e.g. $isunknown(dut.a.b.regb) |-> | 0
ower Sequence) A - : : : NPT : | "
Sroblen: (500d. bad. good {good, bad, ugly} X prgpagatlon s enabled during functional simulation to e Uninitialized value is | $isunknown({dut.a.b.fanouts}) S S
| Y ReqC is corrupted by monitor if bad values have been propagated and caused esers | Do EUElEE i | T
?S\?VE 's powered RegAfails toisolate it p. g corruption in critical design elements such as clock signals, propagating sisunknown(dut b redb o1
select-expressions, registers, and FSMs. 'sunknown(dut.a.b.regb) |-> 3
Srarsle @i | $isunknown({dut.a.b.outports})
ock Gating . e 1
Problem: o bad cood fgood, bad, ugly} A gpod register was gorrupted by a group of uninitialized bad
ReqB i controlled {good, bad, good} ReqC is corupted by Corruption assertion registers. The TX registers were not enabled. As a result, they
by gated clock that | <S9A fails to gate It RegB ItJegl.yt GOtOtd reglslters should e.g. (I dut.a.b.rst) |-> were holding their corresponding un-initialized values.
IS turned off gisters — hotturn ugly .
| $isunknown(dut.a.b.regc)

