

Requirements driven Verification methodology (for

standards compliance)
Serrie-Justine Chapman

Test and Verification Solutions TVS
Engine Shed

Temple Meads, Bristol
BS1 6QH

T: +44 (0)7854 785 747

serrie@testandverification.com

Darren Galpin
Infineon Technologies UK

Infineon House, Great Western Court,
Stoke Gifford,

BS348HP
T: +44 (0)117 952 8754

Darren.Galpin@infineon.com

Dr Mike Bartley
Test and Verification Solutions TVS

Engine Shed
Temple Meads, Bristol

BS1 6QH
T: +44 (0)7854 785 747

mike@testandverification.com

ABSTRACT

Requirements-driven verification is based on ensuring that

feature-level requirements are adequately verified by

tracing such requirements through to verification tasks. It is

similar to Coverage-driven Verification in the sense that it

is metric-driven but differs significantly because the metrics

derive from requirements rather than verification goals.

Requirements-driven verification is also required for

compliance with the increasing number of standards that

control development of hardware for domains such as

automotive (ISO26262) and avionics (DO254).

Keywords

Management, Measurement, Documentation, Design, Reliability,

Standardization, Languages, Verification.

1. INTRODUCTION
In this paper we give an overview of a Requirements Driven

Verification and Test (RDVT) methodology and explain how this

methodology can be used to support compliance to various

hardware (and software) development standards. We also

demonstrate how advanced verification techniques can be

deployed in RDVT. We describe an automated solution using an

SQL database approach to capture the requirements tree and

mapping to the metrics typically generated by advanced

verification techniques.

2. Requirements Driven Verification and Test

(RDVT) Methodology
The Requirements Driven Verification and Test (RDVT)

methodology enables project progress to be analyzed and

managed by accumulating data on the status of verification and

test metrics over the duration of the project and automatically

relating these back to the specified requirements. In this way

every functional requirement can be mapped to a proof of

implementation. Additionally any verification and test activity not

relating to a requirement can be identified and questioned.

3. Development Standards Compliance
There are a number of standards that mandate various aspects of

hardware (and software) to be used in a variety of industries. For

example:

 IEC61508: Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-

related Systems

 DO254: Design Assurance Guidelines for Airborne

Electronic Hardware

 ISO26262: Road vehicles – Functional safety

A key feature of safety standards is that they aren’t prescriptive,

they don’t mandate how you develop the hardware (and software),

which lifecycle to use etc. Instead they set a number of process

objectives and outputs for the generic development processes of

planning, requirements, design, code, configuration management,

assurance and of course, for verification

These objectives vary according to the required integrity level or

class of the software/hardware. This is the second aspect of the

standards. When the hardware and software is assessed for

whether it can cause a hazardous system state it is assigned an

integrity level which reflects the severity of the hazard. For

example, ISO26262 has four ASIL (Automotive Safety Integrity

Level - ISO 26262-1:2011 Road vehicles -- Functional safety 7))

A to D, with D indicating that the consequence can be

catastrophic; ASIL A indicating a controllable, uncommon and

relatively harmless hazard. It also has a QM (Quality

Management) level which can be assigned to any features that are

deemed to be non-safety related.

A hazard analysis of the system will determine the safety integrity

level and that level will in turn reflect the objectives that must be

met and the outputs that must be produced.

The key elements that all the safety standards commonly require

to be produced are as follows:

 Plans and standards including requirements, design and

coding standards, development plans. Change and

configuration management, verification plans etc.

 Requirements should be specified, documented,

validated, verified and managed. These may be specified

with differing formats dependent on their Integrity level

(formal, semi-formal, quality criteria etc.).

 Design specifications should be produced with the

details varying by safety integrity level Specification of

Safety requirements in all domains, technical, software,

hardware, system.

 There should also be proof that reviews and analyses of

outputs have been undertaken, recorded, available for

audit and under configuration management.

 Well-argued proof of correct implementation of

requirement specifications, to have been carried out to

the appropriate level within the product, this may be

through test, verification, documentation, proven in use

or manual proof (i.e. review).

 Specific test coverage criteria are required to be met

(e.g. line coverage. MC/DC coverage)

 Requirements should be traceable down through the

design to the tests.

 Finally, for the higher integrity levels there must be

independence in verification activities – the person

producing an item cannot review or sign it off.

This paper will concentrate on the requirements management. For

Requirements Management, ISO 26262 Stipulates

“The management of safety requirements includes managing

requirements, obtaining agreement on the requirements,

obtaining commitments from those implementing the

requirements, and maintaining traceability.”

This leads to the following type of activities

 Requirements engineering, looking after requirements at

a hierarchical level, which must be of good quality.

 Requirements mapping which also ensures there is no

loss, incorrect translation or loss of context throughout

the Requirements tree.

 Also the requirements need to be proven to be

implemented and working

DO254 identifies a number of data items that must be produced

including hardware traceability data defined as:

“Hardware traceability establishes a correlation

between the requirements, detailed design,

implementation and verification data to support

configuration control, modification and verification of

the hardware item”

The above ISO26262 and DO254 stipulations traditionally lead to

the type of requirements shown in Figure 1 “Typical

Requirements Tree”. However, with advanced verification

techniques the mapping to “Proof of Implementation” is not

always so straight forward.

4. Supporting RDVT with Advanced

Verification Techniques
Hardware verification engineers tend to use a range of advanced

verification techniques such as:

 Constrained random verification with automated checks

based on models or scoreboards, etc, .

 Coverage driven verification based on functional

coverage models and code coverage metrics, .

 Assertion-based verification.

 Formal property based verification and manual sign-off,

review, directed tests etc.

A requirement might be signed off at multiple levels of hierarchy

during the hardware development. For example, consider a design

with a number of serial interfaces including SPI. We might want

have requirements to cover the accesses allowed by the interface,

specific hardware requirements, requirements relating to software

accesses and a requirement that an interrupt is generated within 2

milliseconds of data arriving in a SPI.

At block level:

 The verification of the SPI block might involve a large

number of constrained random tests.

 Functional coverage would ensure that suitable tests had

been performed including, for example, 7 and 10 bit

reads and write on the interface; specific hardware

requirements such as clocking schemes, slave select,

etc.;

 Assertions would help to ensure the correct behavior

and assertion coverage would help to ensure they were

adequately exercised.

At subsystem level:

 Formal verification connectivity checks would be used

to ensure that the SPI is correctly integrated at

subsystem level (including correct connection of the

interrupt signal)

At system level:

 Directed tests running on the host CPU access registers

in verification environment and back-door accesses

using UVM-RAL provide a checker for those accesses.

 Those directed tests send data into the SPI and then

software running on the embedded processor detects

arrival of the interrupt within the allowed number of

clock cycles.

An example partial hierarchy for these is captured in Figure 4,

section 10 “Appendix A: Sample Hierarchy”.

Thus we can see that the one-one mapping implied by Figure 1

“Typical Requirements Tree” is unlikely to work with advanced

verification techniques and hierarchical verification. Instead, the

mapping shown in Figure 2 “Requirements Tree for Advanced

Verification Techniques” is more likely.

Figure 1: Typical Requirements Tree

This leads to a different way to capture the requirements mapping

and functional verification results which is discussed in the next

section.

5. A new solution for RDVT
TVS has been working on a new solution for supporting RDVT

for Infineon within the CRYSTAL project using advanced,

hierarchical verification techniques. At the centre of this solution

is an SQL database as shown in Figure 3 “Requirements Signoff

Flow for Advanced Verification”.

Figure 3: Requirements Signoff Flow for Advanced

Verification

The database is able to capture the requirements tree shown in

Figure 2 “Requirements Tree for Advanced Verification Techniques”.

5.1 Database Design
In this section we give guidance on the type of data that needs to

be stored in the database (shown as asureSIGN™ in Figure 3

“Requirements Tree for Advanced Verification Techniques”). We

deploy RDBMS (Relational Data Base Management System)

technology. Below are some examples of the key data required.

 Captures all the requirements from top level down to

atomic level including the hierarchical relationship

between them.

 Captures the bidirectional hierarchical relationship

between requirements, features and verification goals.

 Capture all of the coverage and test information from

different regressions, and the associated meta-data.

 Source from where the coverage are recorded with

timestamp, user, version control system (like Git,

ClearCase, SVN)

 Errors and error messages associated to test executions.

 Operation or request from user, and what was the

outcome. This is used to provide audit trails.

 Captures user defined interim milestones (based on

subset of full coverage goals) to measure progress of

project.

5.2 Overview of Requirements Signoff Flows
In the flow in Figure 2 “Requirements Tree for Advanced Verification

Techniques” the requirements arrive 3 potential sources:

 Often requirements are captured as tickets in a change

management tool (such as Jira).

 They can be manually entered.

 Or they may from a larger ecosystem including

requirements database systems such as Doors or

Integrity.

Within the requirement mapping process the following steps are

followed

 The requirement quality gateway maybe ensured (if they

have not already been ensured during requirement

entry).

 Requirements are mapped to features, sub-features,

verification goals and their associated metrics. For

example functional coverage points, code coverage,

assertions, formal properties, directed tests, constrained

random tests, code reviews, manual signoff, etc.

 A review of requirements between design specification

and associated verification plan to ensure common

understanding of requirements and planned

implementation. This will ensure review for

completeness of the design and verification plan.

 Verification execution results are imported and analysed

against the verification goals contained in the plan to

ensure requirements coverage. This is performed

throughout the verification execution phase so progress

can be tracked. User defined pass criteria can be used as

interim milestones to aid progress tracking.

Finally requirements proofs may be exported in an XML format

for use within a wider requirements engineering ecosystem (such

as reqtify) or in PDF documentation format for full reviews and

audit.

The XML export may conform to industry standard formats for

import into other applications. Various XML formats have been

found to be useful

 An internal format for data exchange with other projects

or across the project hierarchy.

Figure 2: Requirements Tree for Advanced Verification Techniques

 User specific formats such as asureSIGN™

Requirement Qualification Engineering (ARQE) format

(still evolving).

It is useful to support both a full or partial export of the

requirement hierarchy, with the user selected details, to be

imported into another project or to be used for reporting.

Examples of user selected details might be

 Planning fields: Name, Description, Milestone, User,

Kind, Type, Obsolete, Percent required, External ID,

mapping criteria, Manual Sign Off, Aggregation,

Parameter etc.

 Result fields: such as Bins, Hits, mapping, Kind,

regression, pass/fail, etc.

Note that the database also needs to be able to extract data from

the verification environment and this is done in 2 ways either by:

 A simple API which allows tests to report their status

during their execution. For example, did the test

compile, execute, pass or fail?

 The test can also tell the database the location of the log

file for evidence used in subsequent audit trail

generation.

 The ability to extract information from simulation or

formal verification result databases.

 This has become easier with standardization of

interfaces to these databases such as UCIS1)

 This allows automatic extraction of functional, assertion

and code coverage, and formal verification results.

The rest of this section outlines the advantages of using a central

SQL database solution.

5.3 Requirements -> test plan import via xml
The Requirements may be written in an external tool to a feature

set level – this may then be reused as a top-level test-plan.

Alternatively the feature level Requirements or top-level test plan

may be written directly into asureSIGN™. This brings the

requirements to the verification and test engineers, thus ensuring

that they have the same comprehension of the requirements as the

concept or design engineers.

This also allows for earlier test/verification planning, the design

document will still be required for a full refinement of

requirements into goals (bottom level test plan), but an earlier

understanding can allow for understanding of test bench

requirements and methodologies to be used etc. It also allows the

database tool to sit within a larger ecosystem Product line

management tool set.

5.4 Data Integrity, hierarchy, data translation
The biggest issue with the linking of multiple tools across

multiple product variants is ensuring a common understanding of

the requirements at each level. This includes ensuring

preservation of the hierarchy as contextually requirements may

change relating to their position within the hierarchy.

With asureSIGN™ this issue is avoided by preserving the

hierarchy from the requirements database during import. The

refinement of these feature level requirements (or top level

testplan) is implemented within asureSIGN™ and thus avoids any

corruption or mis-translation through the requirements traceability

tree.

5.5 Change management – instant update
Any changes to the requirements can be automatically identified

within the tool to ensure the change management reaches directly

to the test and verification engineers. This alerts the user to

identify any test updates, new tests to be written or redundant

ones removed, in order to satisfy the new or rejected requirements

with minimum effort.

5.6 Live database -> easy documentation
Usage of a live database in the same environment as the tests that

are being managed allows for easy updates of the test descriptions

should, during the project lifecycle, the tests themselves be

updated due to change of requirements or technology

improvements.

Often the test documentation is left until the end of the project

with the information on any changes made during the project lost

or forgotten. Poorly documented tests lead to poor and complex

maintenance issues with the tests and test benches.

5.7 Tailored Documented proof
All fields within the database may be selected for export to PDF

(or XML), allowing for documentation at a particular milestone

either to goal level, mapped metric level or to result level – giving

proof of requirements, how they were mapped into test and their

results for audit purposes. They may also be chosen based on

being obsolete or unmapped, therefore when changes are

identified for a product variant you may extract a list of all the

new tests/metrics required to be written and those that may be

removed from the regression list.

5.8 Allows reviews of implementation

document against test plan
The requirements may be translated via xslt into the introduction

chapters of any design specification to indicate the requirement

features required within the chapters as well as for the database

(as a testplan). This allows for cross-referencing when the design

specification is written and can identify some interesting issues:

 Over-engineering: If the test engineer reviews the

design specification and finds a feature to test that they

cannot relate back to a requirement, then this should go

back through the change management process, as this

may indicate “Over-engineering”. For example, the

design engineer has added a feature that is not necessary

for the current product variant.

Note that over-engineering can be deemed to be a

positive thing in many cases but if it is not evaluated as

part of the wider design, resources and other product

restrictions then it may cause issues.

 Completeness: If an extra feature, as above, may

actually be a required feature that has not been

documented within the requirements list, this helps

ensure completeness as does the test team not seeing

design details of a requirement in the design spec. This

helps ensure a complete design spec.

 Ambiguity: If the design team and test team disagree

with how a requirement is interpreted then it needs to go

back through the change management to clarify what the

requirement means and to ensure that it is rewritten to

be unambiguous. This is also a requirements quality

checkpoint.

5.9 Mapping:
Mapping ensures that the test domain is tightly coupled into the

Requirements Engineering domain. asureSIGN™ supports

multiple types of metrics: directed test, random tests, structural

coverage types, functional coverage types, assertions, formal

properties, manual sign-off – they can also be assigned as obsolete

for particular products. The tool allows mapping from the goals

(test descriptions) to the metrics types through a choice of

available metrics of the selected types.

asureSIGN™ also allows the user to grade a test and match the

grading on selected milestones. The milestones can be tailored to

match the project management. Allowing visibility of the tests

and grading allows for early releases of IP Modules into sub

systems and full systems; this helps ensure communication

between the groups and stops over verification (multiple debug of

the same bugs). For example, a first release may just test the

interfaces to allow early integration of an IP Module, when the IP

Module is integrated into a larger system the engineers are aware

not to test or debug any functionality outside of the interfaces for

integration. It also allows for the user to define what % of sub

features and goals need to passing at a particular milestone to

understand that the project is progressing in a timely manner.

5.10 Test management:
Supporting a round robin solution which allows the user to export

and import the database information via XML with control, has a

couple of advantages:

1. Use of this is to allow the user to do bulk-updates

outside of the tool for ease of use.

2. It may also be used for allowing reuse of the

requirements with their mapping between product

variants.

The tool indicates what the changes are when a partial import

occurs on an existing database, and at this point it is able to

identify and indicate the new and now obsolete requirements so

users are aware of the new metrics required to be implemented

and the ones that are not required to be maintained or

implemented for this particular variant.

Due to the variety of types of metrics that may be supported, some

have a simple pass/fail criteria and some have a more complex

analysis required to indicate whether or not a metric is working

correctly. This solution allows the user the ability to control how

results information is analysed and what the success indicators

are.

Allowing the user to look across two or three selected regressions

helps users to analyse trends, project progress and areas of

concern easily.

5.11 ISO26262 compliance
ISO26262 mandates a hierarchical Requirements Engineering

approach, any solution must have a clear Hierarchy window and

also allows imports of multiple databases into others to build

bigger level hierarchies if required to ensure this exists throughout

the entire lifecycle of the project.

ISO26262 requires change and configuration management – any

tooling must integrate with any version control system and be

managed to support automated change management support, or

implement its own change and configuration management

solution.

Security must allow protection of data at all times, so supports of

baselining for future audit proofing and the ability to replicate

earlier database data is essential for such a tool.

5.12 Compliance / Audit Management
Documentation for audits is held within the tool and is readily

available to incorporate into deliverables

Compliance to different industry standards must also be

considered for any such tooling solution

6. Advantages of RDVT
RDVT offers many advantages to Requirements, Verification and

Project management and those working on Compliance and Audit.

6.1 Requirements Management
Using requirements within the test flow allows test engineers early

analysis for planning and a ‘shift-left’ approach for quality

improvement. A requirement driven test methodology then assists

with achieving a complete and high quality set of requirements,

through enforcing a well-managed process. Finally, the mapping

of requirements through tests to results ensures requirements

engineering completion.

6.2 Verification Management
Understanding the verification status in terms of externally

focused customer requirements rather than internal metrics, allows

users to have far more controllability over their projects and

assists with ensuring early releases, with better communication of

the status of the early releases. It should also be possible for a user

to generate partial reports based on their particular set of

requirements or interests (such as a block within the hierarchy,

software requirements, power management requirements, etc.).

6.3 Project Management
Reusability of data across projects allows for reduced ramp up

times is essential for state of the art products – re-implementing

mappings is a waste of resources and also a risk to data integrity.

Variant management across projects helps to easily identify

redundant tests and new tests needed and is essentially to ensue

well maintained tests and test benches

Early verification efforts during the planning phases (such as

identifying tests, coverage, assertions and linking them to

features) are difficult to measure. This can lead to a lack of

visibility of the progress during these stages. Introducing suitable

metrics and tracking them leads to better early stage project

management by making it easy to identify areas that need

attention

Milestone grading assists with resource management and allows

for improved communication across the project, most

requirements management tools do not allow good management

of the milestone process, this was identified by Infineon as being a

tooling gap.

Enabling risk-based testing (e.g. adapting the level of testing

according to risk or SIL assignment) helps manage the importance

and cost of tests and their failures. Combining data from multiple

tools into one system or combining data from multiple projects

into one underlying database are also necessary to help manage

and reuse tests, test benches, mapping and requirement data.

The visibility of requirements mapping to tests allows for a

secondary requirement quality check and a process to help ensure

completeness of the requirements, which is also deemed to be a

major failure point within requirement engineering.

6.4 Impact Analysis
Requirements engineering tools, do allow for attributes to allow

manual cross linkage to be implemented, this is often extremely

resource heavy and very difficult to implement, examples such as

puresytems:variants and Biglever Gears are two such solutions

that aim to solve this whilst also investigating impact into

different product variants.

The mapping of the tests into the requirements does offer the user

a quick analysis of how much test/verification resources will be

impacted if a change is implemented, attaching attributes to the

tests to ascertain their ‘grading/expense’ may also assist the

impact of requirement change.

TVS is currently also investigating using more automation within

the impact analysis to reduce the amount of manual input. Due to

the requirements and test being managed within the same tool

there is the possibility to use some intelligent algorithmic

solutions within the tool to assist with this.

6.5 Product Line Engineering
Product Line Engineering is about using methods, tools and

techniques for creating a collection of similar systems, from a

shared set of assets, using common means. Whilst primarily used

in software, it is becoming increasingly used in the semiconductor

hardware industry due to the drive into stricter requirements

engineering practices mandated by new and improved standards,

and also market pressure for more tailored product solutions and

thus product families as opposed to historical single products.

6.6 Variant management
The variation issue is not limited to the requirements themselves,

but permeates throughout the product life cycle from inception,

requirements, design, implementation to test and their results and

across multiple domains in the hardware world such as pre-silicon

IP/Module(unit), subsystem and SOC (System-on-chip), to post-

silicon IP/Module and SOC validation, through to firmware, test,

analog and Software. All requirements on the multiple variants

may be tested at all, multiple, or none of these domains and may

contain multiple dependencies. This makes the variant

management of the data a truly orthogonal problem requiring a

strict process and tool flow to ensure correct implementation.

With asureSIGNTM we considered the variant problem from the

experiences within the pre-silicon IP verification of the Infineon

AurixTM automotive microprocessor product family, which

consists of 5 products. The SOC (system on chip)is made up of

multiple IP Modules (these are the equivalent to software units),

in this case between 60-80, all of which are tested by multiple

teams with intricate and complex testbenches across multiple

worldwide sites. These IP Modules are released into subsystems

which allows the gluing together of systems within the same site

as the IP development team, to allow for use of the local specialist

knowledge during this process. The sub-system is then shipped to

another site in another country to be put into the SOC. There are

approximately 3000+ external requirements alone on the product

family and multiple stakeholders.

7. Conclusions
In this paper we have introduced a Requirements Driven

Verification and Test (RDVT) methodology and explained how

this methodology can be used to support compliance to various

hardware (and software) development standards. However, more

than this we have also shown that advanced verification

techniques can be deployed in RDVT. We explained the

advantages found in using an SQL database approach to capture

the requirements tree and mapping to the metrics typically

generated by advanced verification techniques.

Infineon have accepted the asureSIGN solution, developed within

the CRYSTAL ARTEMIS project as state of the art and has rolled

it out currently within its Automotive Microcontroller group, it is

currently being rolled out to the post silicon group and expanding

into further Infineon groups. Ongoing tool improvement both

with the CRYSTAL project and externally within the Rail and

Avionics domain to expand and improve the tool to ensure it has

the ability to support all tooling solutions regardless of domain.

8. CRYSTAL (CRitical sYSTem engineering)
2)

The overall project goal of CRYSTAL is to foster Europe’s

leading edge position in the design, development, and deployment

of interoperable safety-critical embedded systems in particular

regarding quality, cost effectiveness, flexibility, reusability,

acceleration of time to market, continuous integration of

innovations, and sustainability.

asureSIGNTM was developed by TVS3) for Infineon’s4) AURIXTM

5) 32-bit multicore Tricore product family in order to achieve

implementation of interoperability within the tooling as part of the

CRYSTAL project. The goal of the CRYSTAL project is to

provide a platform of interoperability between tools supporting all

the steps constituting the lifecycle of a product.

“The work undertaken leading to these results has received

funding from the European Union’s Seventh Framework Program

(FP7/2007-2013) for CRYSTAL – Critical System Engineering

Acceleration Joint Undertaking under grant agreement № 332830

and from the UK’s TSB6) Technology Strategy Board”
Further information from the CRYSTAL project can be found in

“Crystal 3rd European Conference on Interoperability for

Embedded System Development Environments” 2)
Further information on asureSIGNTM can be found at 3)

9. References
1) UCIS http://www.accellera.org/activities/committees/ucis/

2) CRYSTAL http://www.crystal-artemis.eu/

3) TVS http://www.testandverification.com/

4) Infineon http://www.infineon.com/

5) AURIXTM
http://www.infineon.com/cms/en/product/channel.html?channel=db3a304

33727a44301372b2eefbb48d9&ic=0101033

6) TSB

7) ISO 26262-1:2011 Road vehicles -- Functional safety

http://www.accellera.org/activities/committees/ucis/
http://www.crystal-artemis.eu/
http://www.testandverification.com/
http://www.infineon.com/
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30433727a44301372b2eefbb48d9&ic=0101033
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30433727a44301372b2eefbb48d9&ic=0101033
https://www.innovateuk.org/

10. Appendix A: Sample Hierarchy
Figure 3 “Requirements Signoff Flow for Advanced Verification”

shows a sample hierarchy from a project. It also shows the

software requirements as well as interface and hardware

requirements.

 Figure 4: Sample Hierarchy

