Requirements-driven Verification Methodology for Standards Compliance

Serrie-justine Chapman (TVS) Mike Bartley (TVS) Darren Galpin (Infineon)

Agenda

Motivation

Why Requirements Driven Verification?

Introduction to Safety

- The Safety Standards
- What do we need to do? And deliver?
- Supporting Requirements Driven Verification with Advanced Verification Techniques

Tool Support

 Advantages of Requirements Driven Verification

An Overview of Verification Approaches

- Constrained random verification
- Assertion-based verification.
- Formal property based verification

Why Requirements Driven Verification?

Metric Driven Verification

- Allows us to define targets
- And monitor progress

Coverage Driven Verification

- Most common metric driven verification approach
- Code Coverage
- Functional coverage
 - Might be related to features

Feature Driven Verification

- Features MIGHT be related to spec
 - Is that relationship captures?
- Are features related to requirements?

Safety Standards

- IEC61508: Functional Safety of Electrical/Electronic/Programmable Electronic Safetyrelated Systems
- DO254/DO178: Hardware/Software considerations in airborne systems and equipment certification
- EN50128: Software for railway control and protection systems
- IEC60880: Software aspects for computer-based systems performing category A functions
- IEC62304: Medical device software -- Software life cycle processes
- ISO26262: Road vehicles Functional safety

Introduction to Safety

- The life cycle processes are identified
- Objectives and outputs for each process are described
 - Objectives are mandatory
 - But vary by Integrity Level
 - For higher Integrity Levels, some Objectives require Independence

Key Elements

- Plans & Standards
- Requirements
- Design Specifications
- Reviews and Analyses
- Testing (against specifications)
 - At different levels of hierarchy
- Test Coverage Criteria
- Requirements Traceability
- Independence

Key Deliverables

- Hardware Verification Plan
- Validation and Verification Standards
- Hardware Traceability Data
- Hardware Review and Analysis Procedures
- Hardware Review and Analysis Results
- Hardware Test Procedures
- Hardware Test Results
- Hardware Acceptance Test Criteria
- Problem Reports
- Hardware Configuration Management Records
- Hardware Process Assurance Records

REQUIREMENTS ENGINEERING DEFINITIONS

Requirement:

- 1. A condition or capability needed by a user to solve a problem or achieve an objective
- 2. A condition or capability that must be met or possessed by a system or system component to satisfy a contract, standard, specification or other formally imposed documents
- 3. A documented representation of a condition or capability as in (1) or (2)

[IEEE Std.610.12-1990]

Stakeholder:

 A stakeholder of a system is a person or an organization that has an (direct or indirect) influence on the requirements of the system

* All Definitions taken from IREB

REQUIREMENTS ENGINEERING CORE ACTIVITIES

Requirements Engineering is a systematic and disciplined approach to the specification and management of requirements with the following goals:

- Knowing the relevant requirements, achieving a consensus among the Stakeholders about these requirements, documenting them according to given standards, and managing them systematically
- Understanding and documenting the stakeholders' desires and needs, then specifying and managing requirements to minimize the risk of delivering a system that does not meet the stakeholders' desires and needs

Four core activities :

- Elicitation
- Documentation
- Validation and negotiation
- Management

Requirements Traceability

Documented:

- all integrity levels/classes
- All requirements:
 - Tested or otherwise verified (Audit trail)

Traceable

"Requirements Traceability = the ability to follow the life of a requirement, in both a backward and forward direction"

Supporting Advanced Verification

- Constrained random verification with automated checks based on models or scoreboards, etc.
- Coverage driven verification based on functional coverage models and code coverage metrics.
- Assertion-based verification.
- Formal property based verification.

Supporting Advanced Verification

Tracking

Track Progress on Requirements Signoff

Done - Dashboard loaded successfully.

Copyright TVS Limited | Private & Confidential | Page 15

Supporting Hierarchical Verification

- A requirement might be signed off at multiple levels of hierarchy during the hardware development
 - Block
 - Subsystem
 - SoC
 - System
 - Including Software
 - Post Silicon

Tool Support Requirements

- Requirements -> test plan
- Data Integrity, hierarchy, data translation
- Change management instant update
- Live database -> easy documentation
- Tailored Documented proof
- Allows reviews of implementation document against test plan
- Mapping
- Test management
- Compliance / Audit Management

asureSIGN Dataflow

Advantages of Requirements Driven Verif

- Requirements Management
- Verification Management
- Project Management
- Impact Analysis
- Product Line Engineering
- Variant management
- Improved Product Sign-Off

Conclusion

Requirements Driven Verification

- Needed to support compliance to various hardware (and software) safety standards
- There are several other advantages
- Advanced verification techniques can be deployed in Requirements Driven Verification
 - Tool support required

